1
|
Zhao B, Liu YX, Liang PP, Hu GQ, Liu JH. S-Arylation of Thioic S-Acid Using Thianthrenium Salts via Photoactivation of Electron Donor-Acceptor Complex. J Org Chem 2024; 89:12508-12513. [PMID: 39135492 DOI: 10.1021/acs.joc.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Hanek K, Żak P. Eco-Friendly Functionalization of Ynals with Thiols under Mild Conditions. Int J Mol Sci 2024; 25:9201. [PMID: 39273150 PMCID: PMC11395323 DOI: 10.3390/ijms25179201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Kamil Hanek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland
| | - Patrycja Żak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland
| |
Collapse
|
3
|
Su L, Gao S, Liu J. Enantioconvergent synthesis of axially chiral amides enabled by Pd-catalyzed dynamic kinetic asymmetric aminocarbonylation. Nat Commun 2024; 15:7248. [PMID: 39179590 PMCID: PMC11344157 DOI: 10.1038/s41467-024-51717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Atropisomeric biaryls bearing carbonyl groups have attracted increasing attention due to their prevalence in diverse bioactive molecules and crucial role as efficient organo-catalysts or ligands in asymmetric transformations. However, their preparation often involves tedious multiple steps, and the direct synthesis via asymmetric carbonylation has scarcely been investigated. Herein, we report an efficient palladium-catalyzed enantioconvergent aminocarbonylation of racemic heterobiaryl triflates with amines via dynamic kinetic asymmetric transformation (DyKAT). This protocol features a broad substrate scope and excellent compatibility for rapid construction of axially chiral amides in good to high yields with excellent enantioselectivities. Detailed mechanistic investigations discover that the base can impede the intramolecular hydrogen bond-assisted axis rotation of the products, thus allowing for the success to achieve high enantioselectivity. Moreover, the achieved axially chiral heterobiaryl amides can be directly utilized as N,N,N-pincer ligands in copper-catalyzed enantioselective formation of C(sp3)-N and C(sp3)-P bonds.
Collapse
Affiliation(s)
- Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Zhao K, Wang H, Li T, Liu S, Benassi E, Li X, Yao Y, Wang X, Cui X, Shi F. Identification of a potent palladium-aryldiphosphine catalytic system for high-performance carbonylation of alkenes. Nat Commun 2024; 15:2016. [PMID: 38443382 PMCID: PMC10914764 DOI: 10.1038/s41467-024-46286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The development of stable and efficient ligands is of vital significance to enhance the catalytic performance of carbonylation reactions of alkenes. Herein, an aryldiphosphine ligand (L11) bearing the [Ph2P(ortho-C6H4)]2CH2 skeleton is reported for palladium-catalyzed regioselective carbonylation of alkenes. Compared with the industrially successful Pd/1,2-bis(di-tert-butylphosphinomethyl)benzene catalyst, catalytic efficiency catalyzed by Pd/L11 on methoxycarbonylation of ethylene is obtained, exhibiting better catalytic performance (TON: >2,390,000; TOF: 100,000 h-1; selectivity: >99%) and stronger oxygen-resistance stability. Moreover, a substrate compatibility (122 examples) including chiral and bioactive alkenes or alcohols is achieved with up to 99% yield and 99% regioselectivity. Experimental and computational investigations show that the appropriate bite angle of aryldiphosphine ligand and the favorable interaction of 1,4-dioxane with Pd/L11 synergistically contribute to high activity and selectivity while the electron deficient phosphines originated from electron delocalization endow L11 with excellent oxygen-resistance stability.
Collapse
Affiliation(s)
- Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China
- University of Chinese Academy of Sciences, No. 19A, Beijing, PR China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China
| | - Shujuan Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China
| | - Enrico Benassi
- Novosibirsk State University, No. 2, Pigorova ul, Novosibirsk, Russian Federation.
| | - Xiao Li
- Nanjing Chengzhi Clean Energy Co., LTD., Nanjing, PR China
| | - Yao Yao
- Nanjing Chengzhi Clean Energy Co., LTD., Nanjing, PR China
| | - Xiaojun Wang
- Nanjing Chengzhi Clean Energy Co., LTD., Nanjing, PR China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China.
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Lanzhou, PR China.
| |
Collapse
|
5
|
Cao Z, Wang Q, Neumann H, Beller M. Regiodivergent Carbonylation of Alkenes: Selective Palladium-Catalyzed Synthesis of Linear and Branched Selenoesters. Angew Chem Int Ed Engl 2024; 63:e202313714. [PMID: 37988191 DOI: 10.1002/anie.202313714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
An unprecedented regiodivergent palladium-catalyzed carbonylation of aromatic alkenes has been developed. Utilizing commercially available Pd(CH3 CN)2 Cl2 in the presence of 1,1'-ferrocenediyl-bis(tert-butyl(pyridin-2-yl)phosphine) ligand L8 diverse selenoesters are obtained in a straightforward manner. Key to success for the control of the regioselectivity of the carbonylation step is the concentration of the acidic co-catalyst. This general protocol features wide functional group compatibility and good regioselectivity. Mechanistic studies suggest that the presence of stoichiometric amounts of acid changes the properties and coordination mode of the ligand leading to reversed regioselectivity.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Cai SZ, Yu R, Li C, Zhong H, Dong X, Morandi B, Ye J, Fang X. Nickel-Catalyzed Enantioselective Hydrothiocarbonylation of Cyclopropenes. Org Lett 2023. [PMID: 38014880 DOI: 10.1021/acs.orglett.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hydrothiocarbonylation of olefins using carbon monoxide and thiols is a powerful method to synthesize thioesters from simple building blocks. Owing to the intrinsic challenges of catalyst poisoning, transition-metal-catalyzed asymmetric thiocarbonylation, particularly when utilizing earth abundant metals, remains rare in the literature. Herein, we report a nickel-catalyzed enantioselective hydrothiocarbonylation of cyclopropenes for the synthesis of a diverse collection of functionalized thioesters in good to excellent yields with high stereoselectivity. This new method employs an inexpensive, air-stable nickel(II) precursor, which provides enhanced catalyst fidelity against CO poisoning compared to nickel(0) catalysts.
Collapse
Affiliation(s)
- Song-Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongyu Zhong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Xichang Dong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
7
|
Chen W, Sheng D, Jiang YF, Zhu WC, Rao W, Shen SS, Yang ZY, Wang SY. Nickel-Catalyzed Acid Chlorides with Tetrasulfides for the Synthesis of Thioesters and Acyl Disulfides. J Org Chem 2023; 88:15871-15880. [PMID: 37882877 DOI: 10.1021/acs.joc.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Daopeng Sheng
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Hu GQ, Zhang WY, Liu YX, Liu JH, Zhao B. Visible Light-Accelerated Palladium-Catalyzed Thiocarbonylation Using Oxalic Acid Monothioester with Aryl/Alkenyl Sulfonium Salts. J Org Chem 2023; 88:14351-14356. [PMID: 37802501 DOI: 10.1021/acs.joc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.
Collapse
Affiliation(s)
- Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Tiefenbrunner I, Brutiu BR, Stopka T, Maulide N. Isothiouronium-Mediated Conversion of Carboxylic Acids to Cyanomethyl Thioesters. J Org Chem 2023; 88:3941-3944. [PMID: 36853206 PMCID: PMC10028607 DOI: 10.1021/acs.joc.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We report the development of an isothiouronium salt as a reagent for the operationally simple synthesis of cyanomethyl thioesters with high functional group tolerance and avoiding the use of thiols. Additionally, we show that the products can be engaged in amide synthesis in either a two-step or one-pot fashion.
Collapse
Affiliation(s)
| | - Bogdan R Brutiu
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna Austria
| | - Tobias Stopka
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna Austria
| |
Collapse
|
10
|
Yang R, Xie Q, Yan Q, Zhang X, Gao B. Palladium-Catalyzed Thiocarbonylation of Aryl Iodides with S-Aryl Thioformates via Thioester Transfer. Org Lett 2022; 24:7555-7559. [PMID: 36214733 DOI: 10.1021/acs.orglett.2c02953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we reported a novel approach to synthesize thioesters with S-aryl thioformates as thioester sources. The reaction proceeded at ambient temperature using widely available starting ingredients, wherein the thioester moiety was smoothly transferred to aryl iodides from S-aryl thioformates. A variety of substrates with various electronic natures were all tolerated under the reaction conditions to furnish desirable thioesters in ranges from moderate to excellent yields. The gram-scale reaction was also conducted, and there was virtually little change in chemical yield, indicating that large-scale synthesis of thioesters may be viable using this method.
Collapse
Affiliation(s)
- Ruiting Yang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qiumin Xie
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qian Yan
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Xiuli Zhang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Bao Gao
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| |
Collapse
|
11
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
12
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Wang X, Dong ZB. A Recent Progress for the Synthesis of Thioester Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Wang
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
14
|
Tandem utilization of CO 2 photoreduction products for the carbonylation of aryl iodides. Nat Commun 2022; 13:2964. [PMID: 35618727 PMCID: PMC9135707 DOI: 10.1038/s41467-022-30676-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Photocatalytic CO2 reduction reaction has been developed as an effective strategy to convert CO2 into reusable chemicals. However, the reduction products of this reaction are often of low utilization value. Herein, we effectively connect photocatalytic CO2 reduction and amino carbonylation reactions in series to reconvert inexpensive photoreduction product CO into value-added and easily isolated fine chemicals. In this tandem transformation system, we synthesize an efficient photocatalyst, NNU-55-Ni, which is transformed into nanosheets (NNU-55-Ni-NS) in situ to improve the photocatalytic CO2-to-CO activity significantly. After that, CO serving as reactant is further reconverted into organic molecules through the coupled carbonylation reactions. Especially in the carbonylation reaction of diethyltoluamide synthesis, CO conversion reaches up to 85%. Meanwhile, this tandem transformation also provides a simple and low-cost method for the 13C isotopically labeled organic molecules. This work represents an important and feasible pathway for the subsequent separation and application of CO2 photoreduction product.
Collapse
|
15
|
Zhao F, Ai HJ, Wu XF. Copper-Catalyzed Substrate-Controlled Carbonylative Synthesis of α-Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022; 61:e202200062. [PMID: 35175679 DOI: 10.1002/anie.202200062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Controllable production of α-keto amides and amides from the same substrates is an attractive goal in the field of transition-metal-catalyzed (double-)carbonylation. Herein, a novel copper-catalyzed highly selective double carbonylation of alkyl bromides has been developed. Moderate to good yields of α-keto amides were obtained as the only products. In the case of alkyl iodides, double- and mono-carbonylation can be achieved controllably under different conditions.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
16
|
Wu FP, Wu XF. Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones. Chem Sci 2022; 13:4321-4326. [PMID: 35509466 PMCID: PMC9006926 DOI: 10.1039/d2sc00840h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Regioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates. The choice of the catalyst is key for the regioselectivity control: γ-vinylboryl ketones were produced selectively with IPrCuCl and Pd(dppp)Cl2 as the catalytic system, while the corresponding β-cyclopropylboryl ketones were obtained in high regioselectivity with Cu(dppp)Cl, [Pd(η3-cinnamyl)Cl]2 and xantphos as the catalytic system. Moreover, γ-vinylboryl ketones and β-cyclopropylboryl ketones were successfully transformed into several other value-added products. A novel procedure for regiodivergent borocarbonylation of benzylidenecyclopropanes has been developed. A variety of valuable γ-vinylboryl ketones and β-cyclopropylboryl ketones can be obtained selectively in excellent yields.![]()
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
17
|
Li K, Shen N, Liu C, Shang R. Palladium-catalyzed Regiodivergent Decarboxylative Hydrothiocarbonylation of Vinylarenes using Oxalic Acid Monothioesters. Synlett 2022. [DOI: 10.1055/a-1807-8282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxalic acid monothioester (OAM), an easily accessible and bench-stable reagent, is reported herein as a synthetic equivalent of thioester for palladium-catalyzed decarboxylative hydrothiocarbonylation of vinylarenes to achieve both branched and linear regioselectivity. The reactions provided user-friendly synthetic methods for preparation of alfa- or beta-arylated propionic acid thioesters from vinylarenes without directly handling toxic carbon monoxide and odorous thiols.
Collapse
Affiliation(s)
- Kang Li
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Ni Shen
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Can Liu
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Rui Shang
- Chemistry, University of Science and Technology of China, Hefei, China
- chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Zhao F, Ai H, Wu X. Copper‐Catalyzed Substrate‐Controlled Carbonylative Synthesis of α‐Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
19
|
Wang L, Wu X, Tian Q, Li Y. Co/Cu Co‐Catalyzed Carbonylation of Alkyl Iodides and Thioesters. ChemistrySelect 2022. [DOI: 10.1002/slct.202103503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lili Wang
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Xia Wu
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Qingqiang Tian
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Yahui Li
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| |
Collapse
|
20
|
Ziyaei Halimehjani A, Breit B. Rhodium-catalyzed regioselective addition of thioacids to terminal allenes: enantioselective access to branched allylic thioesters. Chem Commun (Camb) 2022; 58:1704-1707. [PMID: 35023518 DOI: 10.1039/d1cc06470c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-catalyzed regio- and enantioselective hydrothiolation of terminal allenes with thioacids is reported for the atom-economic synthesis of chiral branched allylic thioesters. By using a rhodium(I) catalyst system, diversities of terminal allenes and thioacids afforded the corresponding branched thioesters in excellent regioselectivity, high yield, and good enantioselectivity. This method was also explored for Fmoc-protected aminothioacids for diastereoselective synthesis of the corresponding thioesters.
Collapse
Affiliation(s)
- A Ziyaei Halimehjani
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran. .,Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| | - B Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
21
|
Bołt M, Hanek K, Żak P. Metal-free thioesterification of α,β-unsaturated aldehydes with thiols. Org Chem Front 2022. [DOI: 10.1039/d2qo00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, the synthesis of thioesters starting from enals and thiols has been performed in the presence of a bulky N-heterocyclic carbene (NHC) as a catalyst.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Kamil Hanek
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
22
|
Chen B, Wu XF. Manganese(III)-promoted thiocarbonylation of alkylborates with disulfides: synthesis of aliphatic thioesters. Org Biomol Chem 2021; 19:9654-9658. [PMID: 34734959 DOI: 10.1039/d1ob01960k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A Mn(III)-promoted thiocarbonylation procedure toward the synthesis of thioesters has been developed. By employing easily available disulfides and potassium alkyltrifluoroborates as the starting materials, and cheap and non-toxic Mn(OAc)3·2H2O as the promotor, a broad range of thioesters were synthesized in good to excellent yields via radical intermediates.
Collapse
Affiliation(s)
- Bo Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.
| |
Collapse
|
23
|
Ai HJ, Lu W, Wu XF. Ligand-Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β-Unsaturated Thioesters. Angew Chem Int Ed Engl 2021; 60:17178-17184. [PMID: 34058046 DOI: 10.1002/anie.202106079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/05/2022]
Abstract
Thiocarbonylation of alkynes offers an ideal procedure for the synthesis of unsaturated thioesters. A robust ligand-controlled regioselective thiocarbonylation of alkynes is developed. Utilizing boronic acid and 5-chlorosalicylic acid as the acid additive to in situ form 5-chloroborosalicylic acid (5-Cl-BSA), and bis(2-diphenylphosphinophenyl)ether (DPEphos) as the ligand, linear α,β-unsaturated thioesters were produced in a straightforward manner. Switching the ligand to tri(2-furyl)phosphine can turn the reaction selectivity to give branched products. Remarkably, this approach also represents the first example on thiocarbonylation of internal alkynes.
Collapse
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| |
Collapse
|
24
|
Ai H, Lu W, Wu X. Ligand‐Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β‐Unsaturated Thioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang) Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
25
|
Yang X, Ma Y, Di H, Wang X, Jin H, Ryu DH, Zhang L. A Mild Method for Access to α‐Substituted Dithiomalonates through C‐Thiocarbonylation of Thioester: Synthesis of Mesoionic Insecticides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyue Yang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Yanrong Ma
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Huiming Di
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Xiaochen Wang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Hui Jin
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Do Hyun Ryu
- Department of Chemistry Sungkyunkwan University Suwon 440-746 Korea
| | - Lixin Zhang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| |
Collapse
|