1
|
Cui J, Wang X, Zeng R. Directed copper-catalyzed C-H functionalization of unactivated olefins with azodicarbonamide compounds. RSC Adv 2024; 14:27475-27480. [PMID: 39221125 PMCID: PMC11359497 DOI: 10.1039/d4ra04113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The copper-catalyzed strategy employing the 8-aminoquinoline directing group has proven to be a highly advantageous approach for functionalizing C-H bonds. In this study, we present the successful application of this strategy to accomplish Heck-type coupling reactions and construct β-lactam skeletons, simultaneously introducing a unique cyano functional group. The resulting Heck-type coupling products demonstrate good stereo- and region-selectivity. Initial mechanistic investigations indicate that the reaction proceeds via a radical coupling mechanism, exhibiting a wide substrate scope and delivering good yields.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Xiaoya Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
2
|
Zhang J, Mao L, Liu C, Tan X, Wu J, Wei X, Wu W, Jiang H. Palladium-catalyzed 1,1-aminoxylation of 3-butenoic acid with 2-alkynylanilines. Chem Commun (Camb) 2024; 60:9404-9407. [PMID: 39135493 DOI: 10.1039/d4cc03099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Herein, a palladium-catalyzed 1,1-aminoxylation of 3-butenoic acid and 2-alkynylanilines has been developed, achieving the installation of two distinct heteroatom motifs across an olefin skeleton. The strategy features a high step and atom economy and good functional group tolerance, which outlines an efficient approach for simultaneously building up γ-butylactone and indole skeletons. Notably, an external ligand, 2,9-dimethyl-1,10-phenanthroline, has been used to succeed in this protocol to effectively suppress the production of indole byproducts.
Collapse
Affiliation(s)
- Jinhui Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lihua Mao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chao Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xuefeng Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Liu S, Xu T, Liu Y, Wang Y. Dearomative Intramolecular meta-Thermocycloadditions of Benzene Rings via Wheland Intermediates. Angew Chem Int Ed Engl 2024; 63:e202407841. [PMID: 38837571 DOI: 10.1002/anie.202407841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Dearomative cycloadditions are powerful synthetic transformations utilizing aromatic compounds for cycloaddition reactions. They have been extensively applied to the synthesis of biologically relevant compounds not only because of the complexity generated from simplicity but also the atom- and step-economy. For the most studied yet challenging benzene ring systems, ortho- and para-cycloadditions have been realized both photochemically and thermally, while the meta-cycloadditions are still limited to the photochemical processes tracing back to the 1960s. Herein, we for the first time realized the thermal cycloadditions of benzene rings with alkenes in a meta fashion via Wheland intermediates. A broad spectrum of readily available C(sp2)-rich aniline-tethered enynes were transformed into C(sp3)-rich 3D complex polycyclic architectures simply by stirring in TFA. Moreover, the reaction could be performed in gram-scales and the products could be diversely elaborated.
Collapse
Affiliation(s)
- Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Tianyi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Yuting Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Chaturvedi AK, Shukla RK, Volla CMR. Rh(iii)-catalyzed sp 3/sp 2-C-H heteroarylations via cascade C-H activation and cyclization. Chem Sci 2024; 15:6544-6551. [PMID: 38699273 PMCID: PMC11062110 DOI: 10.1039/d3sc06955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
The development of an efficient strategy for facile access to quinoline-based bis-heterocycles holds paramount importance in medicinal chemistry. Herein, we describe a unified approach for accessing 8-(indol-3-yl)methyl-quinolines by integrating Cp*Rh(iii)-catalyzed C(sp3)-H bond activation of 8-methylquinolines followed by nucleophilic cyclization with o-ethynylaniline derivatives. Remarkably, methoxybiaryl ynones under similar catalytic conditions delivered quinoline tethered spiro[5.5]enone scaffolds via a dearomative 6-endo-dig C-cyclization. Moreover, leveraging this method for C8(sp2)-H bond activation of quinoline-N-oxide furnished biologically relevant oxindolyl-quinolines. This reaction proceeds via C(sp2)-H bond activation, regioselective alkyne insertion, oxygen-atom-transfer (OAT) and intramolecular nucleophilic cyclization in a cascade manner. One C-C, one C-N and one C[double bond, length as m-dash]O bond were created with concomitant formation of a quaternary center.
Collapse
Affiliation(s)
- Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
5
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
6
|
Meng J, He H, Liu Q, Xu H, Huang H, Ni SF, Li Z. Enantioselective Palladium(II)-Catalyzed Desymmetrizative Coupling of 7-Azabenzonorbornadienes with Alkynylanilines. Angew Chem Int Ed Engl 2024; 63:e202315092. [PMID: 37943545 DOI: 10.1002/anie.202315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.
Collapse
Affiliation(s)
- Junjie Meng
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Qianru Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510641, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
7
|
Xiao X, Han P, Wan JP, Liu J. Stereoselective Synthesis of Indolyl- C-glycosides Enabled by Sequential Aminopalladation and Heck Glycosylation of 2-Alkynylanilines with Glycals. Org Lett 2023; 25:7170-7175. [PMID: 37756216 DOI: 10.1021/acs.orglett.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An efficient and general approach for the synthesis of indolyl-C-glycosides via aminopalladation and subsequent Heck-type glycosylation of easily available 2-alkynylanilines and glycals has been developed. This protocol features excellent stereoselectivity, a broad substrate scope, and mild reaction conditions. In addition, 2,3-pseudoglycals also successfully participated in this cascade reaction, affording C2/C3-branched indolyl glycosides with high regio-/stereoselectivity. The utility of this protocol was also demonstrated by a large-scale reaction and diversified synthetic transformations of the desired products.
Collapse
Affiliation(s)
- Xiao Xiao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Puren Han
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
8
|
Azizzade M, Rashidi Ranjbar P, Sajadi A. Palladium-Catalyzed Oxidative Annulation Leading to Substituted Pyrrolo[3,2,1- jk]carbazoles by Sequential C-N and C-C Bond Formation. Org Lett 2023; 25:1823-1828. [PMID: 36926942 DOI: 10.1021/acs.orglett.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A novel regioselective annulation of propargylic alcohols with simple carbazoles for the construction of [3,2,1-jk]carbazole scaffolds is described to be the first example of intermolecular synthesis of [3,2,1-jk]carbazoles from simple carbazoles. In situ synthesis of propargyl alcohols from simple, cheap, and easily accessible ketones has also been developed during the one-pot synthesis of [3,2,1-jk]carbazoles.
Collapse
Affiliation(s)
- Meysam Azizzade
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | | | - Akram Sajadi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| |
Collapse
|
9
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
10
|
Ballav N, Dana S, Baidya M. Palladium(II)-Catalyzed Regioselective Hydrocarbofunctionalization of N-Alkenyl Amides: Synthesis of Tryptamine Derivatives. Org Lett 2022; 24:9228-9232. [PMID: 36511853 DOI: 10.1021/acs.orglett.2c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrocarbofunctionalization of allyl amines connected to the picolinamide directing group is developed under Pd(II) catalysis. The strategy is grounded on a nucleopalladation concept, and a wide range of indoles effectively participated to produce valuable tryptamine derivatives in high yields. Synthetic utilities were showcased through the substrate diversification bearing bioactive core, Pictet-Spengler cyclization, and β-carboline synthesis. A mechanistic study suggested an irreversible nucleopalladation step, while protodepalladation follows a reversible pathway.
Collapse
Affiliation(s)
- Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
11
|
Simlandy AK, Rodphon W, Alturaifi TM, Mai BK, Ni HQ, Gurak JA, Liu P, Engle KM. Catalytic Addition of Nitroalkanes to Unactivated Alkenes via Directed Carbopalladation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M. Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John A. Gurak
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Liu M, Sun J, Zhang T, Ding Y, Han Y, Martín‐Montero R, Lan Y, Shi B, Engle KM. Regio- and Stereoselective 1,2-Oxyhalogenation of Non-Conjugated Alkynes via Directed Nucleopalladation: Catalytic Access to Tetrasubstituted Alkenes. Angew Chem Int Ed Engl 2022; 61:e202209099. [PMID: 36082442 PMCID: PMC9588632 DOI: 10.1002/anie.202209099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/12/2023]
Abstract
A catalytic 1,2-oxyhalogenation method that converts non-conjugated internal alkynes into tetrasubstituted alkenes with high regio- and stereoselectivity is described. Mechanistically, the reaction involves a PdII /PdIV catalytic cycle that begins with a directed oxypalladation step. The origin of regioselectivity is the preference for formation of a six-membered palladacycle intermediate, which is facilitated by an N,N-bidentate 2-(pyridin-2-yl)isopropyl (PIP) amide directing group. Selectivity for C(alkenyl)-X versus -N (X=halide) reductive elimination from the PdIV center depends on the identity of the halide anion; bromide and iodide engage in C(alkenyl)-X formation, while intramolecular C(alkenyl)-N reductive elimination occurs with chloride to furnish a lactam product. DFT calculations shed light on the origins of this phenomenon.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Juntao Sun
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Tao Zhang
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Yi Ding
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ye‐Qiang Han
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Raúl Martín‐Montero
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Yu Lan
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouHenan450001P. R. China,School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing400030P. R. China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Keary M. Engle
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
13
|
Sontakke GS, Ghosh C, Pal K, Volla CMR. Regioselective Dichotomy in Ru(II)-Catalyzed C-H Annulation of Aryl Pyrazolidinones with 1,3-Diynes. J Org Chem 2022; 87:14103-14114. [PMID: 36226324 DOI: 10.1021/acs.joc.2c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we present a substrate-controlled regiodivergent strategy for the selective synthesis of C3 or C2-alkynylated indoles via ruthenium-catalyzed [3 + 2]-annulation of readily available pyrazolidinones and 1,3-diynes. Remarkably, C3-alkynylated indoles were obtained in good yields when 1,4-diarylbuta-1,3-diynes were employed as the coupling partners. On the other hand, dialkyl-1,3-diynes led to the selective formation of C2-alkynylated indoles. The key features of the strategy are the operationally simple conditions and external-oxidant-free, broad-scope, and substrate-switchable indole synthesis. Scale-up reactions and further transformations expanded the synthetic utility of the protocol.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chiranjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Müller N, Schreib BS, Leutenegger SU, Carreira EM. Picolinamides and Iodoalkynes Enable Palladium-Catalyzed syn-Aminoalkynylation of Di- and Trisubstituted Alkenes to Give Pyrrolidines. Angew Chem Int Ed Engl 2022; 61:e202204535. [PMID: 35445778 PMCID: PMC9545406 DOI: 10.1002/anie.202204535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Palladium-catalyzed aminoalkynylation of electronically unbiased olefins with iodoalkynes is reported. The picolinamide auxiliary enables for the first time the syn-selective aminoalkynylation of mono-, di- and trisubstituted alkenes to afford the corresponding pyrrolidines in up to 97 % yield and as single diastereomers. Furthermore, through a C-H activation approach, the picolinamide allows the rapid synthesis of functionalized olefins, which are suitable cyclization precursors. Facile and orthogonal deprotection of the amides and Sii Pr3 -acetylenes in the products, and a subsequent Pictet-Spengler reaction is demonstrated.
Collapse
Affiliation(s)
- Nicolas Müller
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Benedikt S Schreib
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
15
|
Liu M, Sun J, Zhang T, Ding Y, Han YQ, Martín-Montero R, Lan Y, Shi BF, Engle KM. Regio‐ and Stereoselective 1,2‐Oxyhalogenation of Non‐ Conjugated Alkynes via Directed Nucleopalladation: Catalytic Access to Tetrasubstituted Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyu Liu
- The Scripps Research Institute Chemistry UNITED STATES
| | - Juntao Sun
- The Scripps Research Institute Chemistry UNITED STATES
| | - Tao Zhang
- Zhengzhou University College of Chemistry CHINA
| | - Yi Ding
- Zhejiang University Chemistry UNITED STATES
| | | | | | - Yu Lan
- Zhengzhou University College of Chemistry CHINA
| | | | - Keary Mark Engle
- The Scripps Research Institute Department of Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| |
Collapse
|
16
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
17
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
18
|
Müller N, Schreib BS, Leutenegger SU, Carreira EM. Picolinamides and Iodoalkynes Enable Palladium‐Catalyzed syn‐Aminoalkynylation of Di‐ and Trisubstituted Alkenes to Give Pyrrolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Müller
- University of Innsbruck: Universitat Innsbruck Chemistry AUSTRIA
| | - Benedikt S Schreib
- Eidgenössische Technische Hochschule Zürich: Eidgenossische Technische Hochschule Zurich DCHAB SWITZERLAND
| | - Sebastian U Leutenegger
- Eidgenössische Technische Hochschule Zürich: Eidgenossische Technische Hochschule Zurich DCHAB SWITZERLAND
| | - Erick Moran Carreira
- ETH-Hönggerberg Laboratorium für Anorganische Chemie Vladimir Prelog Weg 3HCl H335 8093 Zürich SWITZERLAND
| |
Collapse
|
19
|
Li M, Li Y, Jia WY, Sun GQ, Gao F, Zhao GX, Qiu YF, Wang XC, Liang YM, Quan ZJ. Directed Copper-Catalyzed Tandem Radical Cyclization Reaction of Alkyl Bromides and Unactivated Olefins. Org Lett 2022; 24:2738-2743. [PMID: 35357833 DOI: 10.1021/acs.orglett.2c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free radical cyclization reaction is a promising strategy for ring framework formation. Herein, we report a copper-catalyzed tandem radical cyclization strategy for preparing substituted lactam derivatives. This reaction proceeds through a radical coupling approach, which not only allows a wide range of alkenes but also is quite compatible with the primary, secondary, and tertiary radicals. In addition, density functional theory calculations were performed to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wan-Yuan Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Xiao Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
20
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti-(Hetero)annulation of Non-Conjugated Alkenes via Pd II /Pd IV Catalysis. Angew Chem Int Ed Engl 2022; 61:e202114346. [PMID: 35007393 PMCID: PMC8923970 DOI: 10.1002/anie.202114346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 12/14/2022]
Abstract
In this study, we systematically evaluate different ambiphilic organohalides for their ability to participate in anti-selective carbo- or heteroannulation with non-conjugated alkenyl amides under PdII /PdIV catalysis. Detailed optimization of the reaction conditions has led to protocols for synthesizing tetrahydropyridines, tetralins, pyrrolidines, and other carbo/heterocyclic cores via [n+2] (n=3-5) (hetero)annulation. Expansion of scope to otherwise unreactive ambiphilic haloketones through PdII /amine co-catalysis is also demonstrated. Compared to other annulation processes, this method proceeds via a distinct PdII /PdIV mechanism involving Wacker-type directed nucleopalladation. This difference results in unique reactivity and selectivity patterns, as revealed through assessment of reaction scope and competition experiments.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillippa Cooper
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Neal Sach
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Pranali G Bedekar
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joyann S Donaldson
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Yuan W, Li X, Qi Z, Li X. Palladium-Catalyzed Synthesis of Functionalized Indoles by Acylation/Allylation of 2-Alkynylanilines with Three-Membered Rings. Org Lett 2022; 24:2093-2098. [PMID: 35274957 DOI: 10.1021/acs.orglett.2c00246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Palladium-catalyzed synthesis of 3-acyl and -allyl indoles has been realized by merging nucleophilic cyclization of ortho-alkynylanilines with ring opening of three-membered rings such as cyclopropenones and gem-difluorinated cyclopropanes. These functionalized indoles were obtained in moderate to high yields with high stereoselectivity in both cases. This protocol provides an alternative method toward functionalized indoles under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Weiliang Yuan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
22
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti‐(Hetero)annulation of Non‐Conjugated Alkenes via Pd(II)/Pd(IV) Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui-Qi Ni
- The Scripps Research Institute Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| | | | - Shouliang Yang
- Pfizer Inc Oncology Medicinal Chemistry 10770 Science Center Drive 92121 San Diego UNITED STATES
| | - Fen Wang
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | - Neal Sach
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | | | | | | | | | - Keary Mark Engle
- The Scripps Research Institute Department of Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| |
Collapse
|
23
|
Wu J, Zhang J, Jiao Y, Deng G, Li Y, Zhang Z, Jiang Y. Palladium-Catalyzed Decarbonylation of Amino Acid Derivatives via C-C Bond and C-N Bond Dual Activations. J Org Chem 2021; 86:17462-17470. [PMID: 34781682 DOI: 10.1021/acs.joc.1c02162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A unique decarbonylation of an amino acid derivative catalytic system has been established via palladium-catalyzed C-C bond and C-N bond dual activations. By employing 8-aminoquinoline as the directing group, this transformation has been found to facilitate the high chemoselectivity to decarbonylation of amino acid derivatives rather than intramolecular deamination or cross-dehydrogenative coupling reactions. This method provides a straightforward avenue for constructing diverse functionalized amide compounds in good to excellent yields. We proposed a possible reaction pathway that may go through the C-C bond and C-N bond dual activations on the basis of the mechanistic studies.
Collapse
Affiliation(s)
- Jiamin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinli Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yongjuan Jiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Gongtao Deng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yingmei Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|