1
|
Li J, Liang J, Lan MH, Xia XH. Atomic Force Microscopy-Based Nanoscale Infrared Techniques for Catalysis. J Phys Chem Lett 2023; 14:11318-11323. [PMID: 38064367 DOI: 10.1021/acs.jpclett.3c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Atomic force microscopy (AFM)-based nanoscale infrared (nano-IR) techniques have found extensive application in the fields of chemistry, physics, and materials science, enabling the visualization of nanoscale features that surpass the optical diffraction limit. More recently, tentative investigations have been conducted into the use of these techniques in the field of catalysis, particularly in studying interfacial processes involving molecular monolayer samples. IR nanoimaging and nanospectroscopy offer unique perspectives on catalytic processes. Considering the specific characteristics of catalytic processes, this Perspective highlights the need for and reviews the current status of AFM-based nano-IR techniques for catalysis investigations, which aims to contribute to a deeper understanding of the nanoscale mechanisms underlying the catalytic processes.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mu-Hao Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Rikanati L, Shema H, Ben-Tzvi T, Gross E. Nanoimaging of Facet-Dependent Adsorption, Diffusion, and Reactivity of Surface Ligands on Au Nanocrystals. NANO LETTERS 2023; 23:5437-5444. [PMID: 37327381 PMCID: PMC10311598 DOI: 10.1021/acs.nanolett.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Analysis of the influence of dissimilar facets on the adsorption, stability, mobility, and reactivity of surface ligands is essential for designing ligand-coated nanocrystals with optimal functionality. Herein, para-nitrothiophenol and nitronaphthalene were chemisorbed and physisorbed, respectively, on Au nanocrystals, and the influence of different facets within a single Au nanocrystal on ligands properties were identified by IR nanospectroscopy measurements. Preferred adsorption was probed on (001) facets for both ligands, with a lower density on (111) facets. Exposure to reducing conditions led to nitro reduction and diffusion of both ligands toward the top (111) facet. Nitrothiophenol was characterized with a diffusivity higher than that of nitronaphthalene. Moreover, the strong thiol-Au interaction led to the diffusion of Au atoms and the formation of thiol-coated Au nanoparticles on the silicon surface. It is identified that the adsorption and reactivity of surface ligands were mainly influenced by the atomic properties of each facet, while diffusion was controlled by ligand-metal interactions.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Tzipora Ben-Tzvi
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Tao S, Yang D, Wang M, Sun G, Xiong G, Gao W, Zhang Y, Pan Y. Single-atom catalysts for hydroformylation of olefins. iScience 2023; 26:106183. [PMID: 36922997 PMCID: PMC10009200 DOI: 10.1016/j.isci.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Hydroformylation is one of the most significant homogeneous reactions. Compared with homogeneous catalysts, heterogeneous catalysts are easy to be separated from the system. However, heterogeneous catalysis faces the problems of low activity and poor chemical/regional selectivity. Therefore, there are theoretical and practical significance to develop efficient heterogeneous catalysts. SACs can be widely applied in hydroformylation in the future, due to the high atom utilization efficiency, stable active sites, easy separation, and recovery. In this review, the recent advances of SACs for hydroformylation are summarized. The regulation of microstructure affected on the reactivity, stability of SACs, and chem/regioselectivity of SACs for hydroformylation are discussed. The support effect, ligand effect, and electron effect on the performance of SACs are proposed, and the catalytic mechanism of SACs is elaborated. Finally, we summarize the current challenges in this field, and propose the design and research ideas of SACs for hydroformylation of olefins.
Collapse
Affiliation(s)
- Shu Tao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangxun Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoyan Xiong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenwen Gao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youzhi Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
6
|
Ikemoto S, Muratsugu S, Koitaya T, Tsuji Y, Das M, Yoshizawa K, Glorius F, Tada M. Coordination-Induced Trigger for Activity: N-Heterocyclic Carbene-Decorated Ceria Catalysts Incorporating Cr and Rh with Activity Induction by Surface Adsorption Site Control. J Am Chem Soc 2023; 145:1497-1504. [PMID: 36511728 DOI: 10.1021/jacs.2c07290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A coordination-induced trigger for catalytic activity is proposed on an N-heterocyclic carbene (NHC)-decorated ceria catalyst incorporating Cr and Rh (ICy-r-Cr0.19Rh0.06CeOz). ICy-r-Cr0.19Rh0.06CeOz was prepared by grafting 1,3-dicyclohexylimidazol-2-ylidene (ICy) onto H2-reduced Cr0.19Rh0.06CeOz (r-Cr0.19Rh0.06CeOz) surfaces, which went on to exhibit substantial catalytic activity for the 1,4-arylation of cyclohexenone with phenylboronic acid, whereas r-Cr0.19Rh0.06CeOz without ICy was inactive. FT-IR, Rh K-edge XAFS, XPS, and photoluminescence spectroscopy showed that the ICy carbene-coordinated Rh nanoclusters were the key active species. The coordination-induced trigger for catalytic activity on the ICy-bearing Rh nanoclusters could not be attributed to electronic donation from ICy to the Rh nanoclusters. DFT calculations suggested that ICy controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takanori Koitaya
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), and Institute for Advanced Study, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
7
|
Say Z, Kaya M, Kaderoğlu Ç, Koçak Y, Ercan KE, Sika-Nartey AT, Jalal A, Turk AA, Langhammer C, Jahangirzadeh Varjovi M, Durgun E, Ozensoy E. Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy. J Am Chem Soc 2022; 144:8848-8860. [PMID: 35486918 PMCID: PMC9121382 DOI: 10.1021/jacs.2c03088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/28/2022]
Abstract
Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.
Collapse
Affiliation(s)
- Zafer Say
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510 Ankara, Turkey
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | - Melike Kaya
- Institute
of Acceleration Technologies, Ankara University, 06830 Ankara, Turkey
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
| | - Çağıl Kaderoğlu
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
- Department
of Physics Engineering, Ankara University, 06100 Ankara, Turkey
| | - Yusuf Koçak
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Kerem Emre Ercan
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | | | - Ahsan Jalal
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Ahmet Arda Turk
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | | | - Engin Durgun
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| | - Emrah Ozensoy
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
8
|
Rikanati L, Dery S, Gross E. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. J Chem Phys 2021; 155:204704. [PMID: 34852499 DOI: 10.1063/5.0072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|