1
|
Sloane SE, Sancheti SP, Hendy MS, Smith KM, Thorat RA, Senkum H, Clark JR. Regioselective Cu-Catalyzed Hydrosilylation of Internal Aryl Alkynes. Org Lett 2025. [PMID: 39883535 DOI: 10.1021/acs.orglett.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Construction of vinylsilane building blocks is important for advancing the synthesis of complex small molecules and natural products. Herein, we report a highly regio- and stereoselective copper-catalyzed hydrosilylation of unsymmetrical internal aryl alkynes. The reaction is performed across a broad scope of internal aryl alkynes, providing exclusive access to α-vinylsilane alkenyl arene products, including several silylated small molecule drug analogs.
Collapse
Affiliation(s)
- Samantha E Sloane
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Shashank P Sancheti
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Moataz S Hendy
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Kathryn M Smith
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Raviraj Ananda Thorat
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Hathaithep Senkum
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Joseph R Clark
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
Yang YY, Pan FC, Li JL, Gong F, Hu J, Zheng Q, Lin D, Huo Y. Construction of Ni 2P/WS 2/CoWO 4@C multi-heterojunction electrocatalysis derived from heterometallic clusters for superior overall water splitting. J Colloid Interface Sci 2025; 685:196-204. [PMID: 39842309 DOI: 10.1016/j.jcis.2025.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The reasonable design of an economical and robust bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is both essential but challenging. Herein, we synthesized a multi-interfacial Ni2P/WS2/CoWO4@C hybrid electrocatalyst devived from the heterometallic clusters [Co24(TC4A)6(WO4)8Cl6][HPW12O40], in which Ni2P was incorporated into WS2/CoWO4@C nanosheets via interfacial interactions by in situ phosphorization processes. Theoretical calculations revealed that moderate electron transfer from CoWO4 and Ni2P to WS2 induced by the multi-heterojunction significantly regulate the binding energies of the reactive intermediates, thus enhacing its intrinsic activity. Under alkaline medium, the overpotential of the optimized Ni2P/WS2/CoWO4@C electrocatalyst for OER and HER is only 206 mV and 90 mV at 10 mA cm-2, respectively, with extraordinary stability more than 100 h, and the potential of overall water splitting is only 1.46 V. This work motivates further research and presents a reliable design route for other heterojunction engineered cost-effective bifuctional electrocatalysts.
Collapse
Affiliation(s)
- Yu-Ying Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Fu-Chun Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jia-Ling Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Feng Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jisong Hu
- School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| |
Collapse
|
3
|
Yang R, Sun K, Mao Q, Wang W, Deng K, Wang J, Yu H, Wang L, Wang H. Proton Ionic Liquid Modulates Hydrogen Coverage and Subsurface Absorbed Hydrogen to Enhance Pd Metallene Electrocatalytic Semi-hydrogenation of Alkynols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407446. [PMID: 39422370 DOI: 10.1002/smll.202407446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Electrochemical semi-hydrogenation of alkynols to produce high-value alkenols is a green and sustainable approach. Although Pd can exhibit excellent semi-hydrogenation properties, its intrinsic mechanism still lacks in-depth study. Herein, a proton ionic liquid (PIL)-modified Pd metallene (Pdene@PIL) is synthesized for the electrocatalytic semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE). The PIL modification of Pdene@PIL resulted in an MBY conversion of 96.1% and MBE selectivity of 97.2%, respectively. Theoretical calculations indicate the electron transfer between Pdene and PIL, leading to easier adsorption of MBY on the Pd surface. The d-band center of Pdene@PIL shifts away from the Fermi level, which weakens the adsorption of over-hydrogenated intermediates. At the same time, the PIL modification facilitates the adsorption of surface-adsorbed hydrogen (H*ads) and inhibits the formation of subsurface-absorbed hydrogen (H*abs). In particular, the PIL modification optimizes Hads* coverage, reduces the reaction energy of the rate-determining step (C5H8O*-C5H9O*), and inhibits HER. The reduction of H*abs formation inhibits the transfer of Pd to PdHx and suppresses the over-hydrogenation. This work provides new insights into the modulation of H* to enhance the alkynol electrocatalytic semi-hydrogenation reaction (ESHR) process from the perspective of surface modification.
Collapse
Affiliation(s)
- Ruidong Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Kuo Sun
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
4
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024; 30:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Xin X, Sheng W, Zhang Q, Qi R, Zhu Q, Zhu C. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions. Dalton Trans 2024; 53:15696-15702. [PMID: 39248639 DOI: 10.1039/d4dt01301h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Complexes featuring metal-metal bonds play crucial roles in catalysis and small molecule activation due to the synergistic effects between the metals. Here, we report a series of homometallic cobalt complexes with metal-metal interactions that have been successfully stabilized by a multidentate ligand platform. Theoretical studies on metal-metal interactions in these cobalt complexes are discussed.
Collapse
Affiliation(s)
- Xiaoqing Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Pan FC, Jia J, Gong F, Liu Y, Liu S, Jun SC, Lin D, Guo Y, Yamauchi Y, Huo Y. Heterometallic Electrocatalysts Derived from High-Nuclearity Metal Clusters for Efficient Overall Water Splitting. ACS NANO 2024; 18:6202-6214. [PMID: 38345913 DOI: 10.1021/acsnano.3c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The development of cost-effective electrocatalysts with an optimal surface affinity for intermediates is essential for sustainable hydrogen fuel production, but this remains insufficient. Here we synthesize Ni2P/MoS2-CoMo2S4@C heterometallic electrocatalysts based on the high-nuclearity cluster {Co24(TC4A)6(MoO4)8Cl6}, in which Ni2P nanoparticles were anchored to the surface of the MoS2-CoMo2S4@C nanosheets via strong interfacial interactions. Theoretical calculations revealed that the introduction of Ni2P phases induces significant disturbances in the surface electronic configuration of Ni2P/MoS2-CoMo2S4@C, resulting in more relaxed d-d orbital electron transfers between the metal atoms. Moreover, continuous electron transport was established by the formation of multiple heterojunction interfaces. The optimized Ni2P/MoS2-CoMo2S4@C electrocatalyst exhibited ultralow overpotentials of 198 and 73 mV for oxygen and hydrogen evolution reactions, respectively, in alkaline media, at 10 mA cm-2. The alkali electrolyzer constructed using Ni2P/MoS2-CoMo2S4@C required a cell voltage of only 1.45 V (10 mA cm-2) to drive overall water splitting with excellent long-term stability.
Collapse
Affiliation(s)
- Fu-Chun Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jun Jia
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yonghui Liu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| |
Collapse
|
8
|
Jia J, Luo J, Li W, Cui F, Pan Y, Tang H. Copper-Metallized Porous N-Heterocyclic Carbene Ligand Polymer-Catalyzed Regio- and Stereoselective 1,2-Carboboration of Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308238. [PMID: 38064182 PMCID: PMC10870022 DOI: 10.1002/advs.202308238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Alkenylboronates are highly versatile building blocks and valuable reagents in the synthesis of complex molecules. Compared with that of monosubstituted alkenylboronates, the synthesis of multisubstituted alkenylboronates is challenging. The copper-catalyzed carboboration of alkynes is an operationally simple and straightforward method for synthesizing bis/trisubstituted alkenylboronates. In this work, a series of copper-metallized N-Heterocyclic Carbene (NHC) ligand porous polymer catalysts are designed and synthesized in accordance with the mechanism of carboboration. By using CuCl@POL-NHC-Ph as the optimal nanocatalyst, this study realizes the β-regio- and stereoselective (syn-addition) 1,2-carboboration of alkynes (regioselectivity up to >99:1) with satisfactory yields and a wide range of substrates. This work not only overcomes the selectivity of carboboration but also provides a new strategy for the design of nanocatalysts and their application in organic synthesis.
Collapse
Affiliation(s)
- Jun‐Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Jin‐Rong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Wen‐Hao Li
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Fei‐Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| |
Collapse
|
9
|
Ito T, Sunada Y. A Cobalt-Containing Polysilane as an Effective Solid-State Catalyst for the Hydrosilylation of Alkenes. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Chen S, Li J, Haddad R, Sadeghzadeh SM. Cycloaddition of allylic chlorides, aryl alkynes, and carbon dioxide using nanoclusters of polyoxomolybdate buckyball supported by ionic liquid on dendritic fibrous nanosilica. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Moghadam NCZ, Jasim SA, Ameen F, Alotaibi DH, Nobre MAL, Sellami H, Khatami M. Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng 2022; 45:1201-1210. [PMID: 35704072 DOI: 10.1007/s00449-022-02736-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022]
Abstract
Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time. Nanomaterials with suitable functionality, high permeability, extremely large surface area, significant reactivity, unique mechanical features, and non-bacterial resistance can be considered as promising agents for antimicrobial and antiviral applications. In this study, nickel oxide (NiO) nanoparticles with size range from 2 to 16 nm containing Stevia natural sweetener were eco-friendly synthesized via a simple method. Additionally, their various concentrations were evaluated on S. mutans bacteria by applying the broth dilution method. The results demonstrated that these spherical NiO nanoparticles had efficient bacteriostatic activity on this gram-positive coccus.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Dalal H Alotaibi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| | - Hanen Sellami
- Water Research and Technologies Center (CERTE), Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China.
| |
Collapse
|
13
|
Potential application of BC3 nanotube for removal of bisphenol from water; density functional theory study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Synthesis and Characterizations of Novel Spinel Ferrites Nanocomposites Al0.5Cr0.5Zn0Fe2O4 and Zn0.5Cr0.5Al0Fe2O4. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractIn this study, novel spinel ferrites nanocomposites containing aluminum chromium zinc nanoferrites, Al0.5Cr0.5Zn0Fe2O4 and Zn0.5Cr0.5Al0Fe2O4 have been fabricated and characterized to determine the properties of highly stable conduction materials. The nanocomposites have been synthesized through the sol–gel method. Zinc and aluminum-doped chromium ferrites were prepared with the stoichiometric composition ZnxAlx-0.5Cr0.5Fe2O4 with ammonium hydroxide solution (NH4OH) and polyethylene glycol (PEG) at different temperatures with consecutive steps. After sintering the final nanoferrites, characterizations for morphological, spectral properties, and crystallinity have been determined through scanning electron microscope (SEM), Fourier transformation infrared spectroscopy, and X-ray diffraction spectrometer, respectively. SEM micrographs presented that higher sample density and agglomeration of the nanocomposite outer surface with temperature increase. The investigation of the dielectric and conduction properties presented with varying sintering temperature and Al–Zn doping greatly influenced the dielectric properties of spinel nanoferrites dielectric properties: dielectric loss tangent and dielectric constant. The effects of various sintering temperatures provide synergistic effects on the morphology and dielectric conductivity features. The characterizations presented that the dopants (Al, Zn) enhanced the magnetic and electrical properties of both chromium nanoferrites which can be implemented in high frequency single-layered electromagnetic waves absorbing devices in electrical and medical appliances in future.
Collapse
|
15
|
Simulation Research of the n-Butanol Proportion Influence on HCCI Combustion of Free-Piston Diesel Engine Generators. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/9217918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For researching the influence of n-butanol proportion in diesel fuel on homogeneous charge compression ignition (HCCI) combustion of the free-piston diesel engine generator (FPDEG), a three-dimensional (3D) moving mesh computational fluid dynamics (CFD) simulation model of a FPDEG prototype was developed. A detailed chemical reaction mechanism of diesel fuel was selected as the HCCI combustion mechanism and coupled in the established HCCI combustion simulation model of the FPDEG prototype. The validity of the established HCCI combustion simulation model is proved by comparing the simulation and experimental pressure curves under the condition of pure diesel fuel. The simulation results of different n-butanol proportions in diesel fuel showed that as the n-butanol proportion increased from 0 to 60%, the maximum heat release rate decreased to 59.6 J/deg, the calculated indicated thermal efficiency augmented to 4.6%, the calculated indicated mean effective pressure increased to 0.057 MPa, and the final NOx and CO content decreased to 0.239 and 0.57 g/kg fuel, respectively, but the final soot content increased to 0.000562 g/kg fuel. Therefore, the n-butanol proportion of diesel fuel played a vital role in combustion and emission progress of the FPDEG.
Collapse
|
16
|
Xu J, Liu C, Mohsen Sadeghzadeh S. Green synthesis and characterization of Nd2Ti2O7 ceramic nanocomposites for the elimination of organic dyes in water. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Waghchaure RH, Jagdale BS, Koli PB, Adole VA. Nano 5% Fe–ZnO: A highly efficient and recyclable heterogeneous solid nano catalyst for the Biginelli reaction. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Velsankar K, Parvathy G, Mohandoss S, Sudhahar S. Effect of green synthesized ZnO nanoparticles using Paspalum scrobiculatum grains extract in biological applications. Microsc Res Tech 2022; 85:3069-3094. [PMID: 35611771 DOI: 10.1002/jemt.24167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
In this report, ZnO nanoparticles were biosynthesized using Paspalum scrobiculatum grains extract for the first time. GC-MS analysis explicated that diethyl phthalate was the major phytocompound with 94.09% in aqueous extract. ZnO nanoparticles formation was confirmed by various physicochemical analyses. HR-TEM images showed the hexagonal, rectangular shaped nanoparticles in 15-30 nm size. The antioxidant, anti-inflammatory, and anti-diabetic analyses showed the effective bioactivity of ZnO nanoparticles in 80 μg/ml concentration with 95.36%, 94.08%, and 91.96%, respectively. The morphological and tissue changes witnessed in larvicidal and insecticidal activities against Culex tritaeniorhynchus and Tribolium castaneum revealed the efficient nature of ZnO nanoparticles in 100 ppm at 48 h and 100 μg/kg at 72 h, respectively. The morphological changes in antibacterial activity demonstrated the bactericidal nature of ZnO nanoparticles against Salmonella typhi and Staphylococcus aureus in 150 μg/ml concentration. The morphological observations in anticancer activity against HepG2 liver cancer cells showed the potent drug features of ZnO nanoparticles in 100 μg/ml concentration with 97.18% of cytotoxicity. The ZnO nanoparticles showed no toxicity against HDF normal cells in lower concentrations and it explicated the biocompatible features of nanoparticles. The Vigna radiata plant growth was efficiently promoted by low (60 ppm) concentration of nanoparticles. The ZnO nanoparticles divulged effective degradation of IPA, EDTA, BQ, and DPBF in 75%, 45%, 55%, and 80% through ROS formation, respectively. Thus, the synthesized ZnO nanoparticles are biocompatible and inexpensive material compared to the traditional one and can be utilized as an efficient material in biological fields.
Collapse
Affiliation(s)
- K Velsankar
- Department of Physics, Alagappa University, Karikudi, India
| | - G Parvathy
- Department of Physics, Alagappa University, Karikudi, India
| | - S Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
19
|
A Novel and Versatile Copper-Nanomagnetic Catalyst for Synthesis of Propargylamines and Diaryl Sulfides. Catal Letters 2022. [DOI: 10.1007/s10562-022-04029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Menazea AA, Mostafa MS, Awwad NS, Elhosiny Ali H, Moustapha ME, Bajaber MA. Improvement of Medical Applicability of Hydroxyapatite/Antimonous Oxide/Graphene Oxide Mixed Systems for Biomedical Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Skrodzki M, Ortega Garrido V, Csáky AG, Pawluć P. Searching for Highly Active Cobalt Catalysts Bearing Schiff Base Ligands for Markovnikov-Selective Hydrosilylation of Alkynes with Tertiary Silanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|
23
|
Cycloaddition of propylene oxide and carbon dioxide using CoMn2O4 nanoparticles supported onto dendritic fibrous nanosilica. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Abdusalamovich Khalikov A, Kamal Abdelbasset W, Potrich E, Xu T. Investigation of reaction mechanisms of CO2 reduction to methanol by Ni-C80 and Co-Si60 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
|
26
|
Umair M, Jabeen S, Ke Z, Jabbar S, Javed F, Abid M, Rehman Khan KU, Ji Y, Korma SA, El-Saadony MT, Zhao L, Cacciotti I, Mariana Gonçalves Lima C, Adam Conte-Junior C. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. ULTRASONICS SONOCHEMISTRY 2022; 86:105999. [PMID: 35436672 PMCID: PMC9036140 DOI: 10.1016/j.ultsonch.2022.105999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Sidra Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zekai Ke
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Faiqa Javed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Kashif-Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China.
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma 00166, Italy
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
27
|
Jia J, Wu T, Fu Y, Hu Z, Tang H, Pan Y, Huang F. Integrating Terminal CoBr
n
Salts into a 2D Cobalt(II) Coordination Polymer to Promote the
β
‐(
E)−
Selective Hydroboration of Alkynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun‐Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Tai‐Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yi‐Jia Fu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zhi‐Rong Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Fu‐Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
28
|
Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int J Biol Macromol 2022; 209:1573-1585. [PMID: 35447267 DOI: 10.1016/j.ijbiomac.2022.04.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
Abstract
A novel heterogeneous catalyst has been developed using chitosan-zeolite supported Pd nanoparticles (PdNPs@CS-Zeo) and used in an efficient synthesis of 5-substituted-1H-tetrazoles from aryl halides with high yields for relatively short reaction times with an easy work-up procedure. In this method, highly effective and reusable PdNPs@CS-Zeo catalyst was used in the reaction of various aryl iodides/bromides with K4[Fe(CN)6] as a non-toxic cyanide source to catalyze the [2 + 3] cycloaddition of the corresponding aryl nitriles with NaN3 in the sequential one-pot preparation of 5-substituted-1H-tetrazoles. The synthesized PdNPs@CS-Zeo nanocatalyst was characterized using XRD, FTIR, TEM, HRTEM, XPS, Raman, TG-DTG, ICP-OES, BET, and EDS mapping. Additionally, the nanocatalyst could be effectively separated by filtration and reused for multiple times without significant decrease of catalytic activity.
Collapse
|
29
|
Al-Areqi NAS, Umair M, Senan AM, Al-Alas A, Alfaatesh AMA, Beg S, Khan KUR, Korma SA, El-Saadony MT, Alshehri MA, Ahmed AE, Abbas AM, Alokab RA, Cacciotti I. Mesoporous Nano-Sized BiFeVOx.y Phases for Removal of Organic Dyes from Wastewaters by Visible Light Photocatalytic Degradation. NANOMATERIALS 2022; 12:nano12081383. [PMID: 35458091 PMCID: PMC9024765 DOI: 10.3390/nano12081383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
With an increasing demand for industrial dyes in our daily lives, water conditions have become worse. Recently, the removal of such environmentally hazardous pollutants from wastewaters through photocatalytic degradation has been drawing increased attention. Three mesoporous nanophases of BiFeVOx.y as (Bi2FeIIIV1−yO5.5−y) visible light photocatalysts were synthesized in this study using ethylene glycol-citrate sol-gel synthesis combined with microwave- assisted calcination. X-ray diffraction (XRD), differential thermal analysis (DTA), FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), nitrogen adsorption-desorption isotherms, and UV-Vis diffuse reflectance spectrophotometry (UV-Vis/DRS) were used to characterize the BiFeVOx.y photocatalysts. The visible light-induced photocatalytic activities of the BiFeVOx.y phases were evaluated by the degradation of methylene blue (MB) dye in aqueous solution at pH ~10.0. The results of this study show that the combination of doping strategy with the utilization of advanced synthesis methods plays an important role in improving the structure and surface properties of BiFeVOx.y phases, and thereby enhancing their adsorption and photocatalytic efficiencies. The synthesized mesoporous tetragonal γ-BiFeVOx.y nanophase has been proven to be a potential visible-light photocatalyst for the degradation of organic dyes.
Collapse
Affiliation(s)
- Niyazi A. S. Al-Areqi
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen; (A.A.-A.); (A.M.A.A.); (R.A.A.)
- Correspondence: (N.A.S.A.-A.); (M.U.); Tel.: +967-775-707-172 (N.A.A.-A.); +86-177-1291-5202 (M.U.)
| | - Muhamad Umair
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (N.A.S.A.-A.); (M.U.); Tel.: +967-775-707-172 (N.A.A.-A.); +86-177-1291-5202 (M.U.)
| | - Ahmed M. Senan
- Glycomics and Glycan Bioengineering Research Center, School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ahlam Al-Alas
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen; (A.A.-A.); (A.M.A.A.); (R.A.A.)
| | - Afraah M. A. Alfaatesh
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen; (A.A.-A.); (A.M.A.A.); (R.A.A.)
| | - Saba Beg
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohammed A. Alshehri
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.A.A.); (A.E.A.); (A.M.A.)
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.A.A.); (A.E.A.); (A.M.A.)
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Ahmed M. Abbas
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.A.A.); (A.E.A.); (A.M.A.)
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Riyad A. Alokab
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen; (A.A.-A.); (A.M.A.A.); (R.A.A.)
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Via Don Carlo Gnocchi 3, 00166 Roma, Italy;
| |
Collapse
|
30
|
Asnaashariisfahani M, Mahmood EA, Poor Heravi MR, Habibzadeh S, Ebadi AG, Mohammadi‐Aghdam S. Solvent effect on cycloaddition of C
20
nanofullerene with indoline‐2‐one, at DFT. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Evan Abdulkareem Mahmood
- Medical Laboratory Sciences Department, College of Health Sciences University of Human Development Sulaymaniyah Iraq
| | | | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch Islamic Azad University Jouybar Iran
| | | |
Collapse
|
31
|
Controlling the charge carriers recombination kinetics on the g-C3N4-BiSI n-n heterojunction with efficient photocatalytic activity in N2 fixation and degradation of MB and phenol. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
The electronic response of the aluminum phosphide nanotube to different concentrations of carbon disulfide molecules. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Cao Y, Poor Heravi MR, Habibzadeh S, Ebadi AG, Shoaei SM, Vessally E. The effects of heteroatom substituents on structure, stability, and electronic properties of remote
N
‐heterocyclic germylenes (rNHGes), at DFT. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Cao
- School of Mechatronic Engineering Xi’an Technological University Xi’an China
| | | | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch Islamic Azad University Jouybar Iran
| | | | - Esmail Vessally
- Department of Chemistry Payame Noor University (PNU) Tehran Iran
| |
Collapse
|
34
|
Dong L, Wang Y, Zhang W, Mo L, Zhang Z. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Dong
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Ya‐Meng Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Wan‐Lu Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| |
Collapse
|
35
|
Optimizing the mechanical and surface topography of hydroxyapatite/Gd2O3/Graphene oxide nanocomposites for medical applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Yang G, Xiong Z, Nie H, He M, Feng Q, Li X, Huang H, Wang S, Ji F, Jiang G. Copper-Catalyzed Divergent C–H Functionalization Reaction of Quinoxalin-2(1 H)-ones and Alkynes Controlled by N1-Substituents for the Synthesis of ( Z)-Enaminones and Furo[2,3- b]quinoxalines. Org Lett 2022; 24:1859-1864. [DOI: 10.1021/acs.orglett.2c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guang Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Meiqin He
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Qiong Feng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Huabin Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| |
Collapse
|
37
|
Salah Aldeen ODA, Mahmoud MZ, Majdi HS, Mutlak DA, Fakhriddinovich Uktamov K, kianfar E. Investigation of Effective Parameters Ce and Zr in the Synthesis of H-ZSM-5 and SAPO-34 on the Production of Light Olefins from Naphtha. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING 2022; 2022:1-22. [DOI: 10.1155/2022/6165180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this paper, Ce and Zr modified commercial SAPO-34 and H-ZSM-5 catalysts were synthesized via a wet impregnation method and used as catalysts for the production of light olefins from naphtha. The synthesized catalysts were characterized using SEM, TGA, XRD, BET, and NH3-TPD. Thermal catalytic cracking of parent catalysts (SAPO-34 and H-ZSM-5) and modified catalysts with Ce and Zr on the production of light olefins from naphtha has been studied. The effects of different loading of Ce (2–8 wt.%), Zr (2–5 wt.%), and different temperatures on the yield of ethylene and propylene were also investigated. The yield of ethylene and propylene improved by 21.78 wt% and 23.8 wt%, respectively, over 2% Ce and 2% Zr on SAPO-34 catalyst. This is due to the higher acid sites on the surface of modified catalysts. It was found that H-ZSM-5 with 2% Zr loading has the highest yield of light olefins (40.4%) at 650°C in comparison with unmodified parent catalysts, while Ce loading has less effect on the olefin yield compared to Zr loading. Finally, simultaneous loading of Ce and Zr showed no effect on the light olefin yield owing to the significant decline of acid sites.
Collapse
Affiliation(s)
| | - Mustafa Z. Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | | | - Ehsan kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| |
Collapse
|
38
|
Chaabane L, Baouab MHV, Beyou E. Reduced zwitterionic graphene oxide sheets decorated with Nickel nanoparticles as magnetically and efficient catalyst for A
3
‐coupling reactions under optimized green experimental conditions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Laroussi Chaabane
- Univ Lyon, Université Lyon 1, UMR CNRS 5223, Ingénierie des Matériaux Polymères Lyon France
| | - Mohamed Hassen V. Baouab
- Materials and Organic Synthesis Research Unit (UR17ES31) Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Bd. De l'Environnement Monastir Tunisie
| | - Emmanuel Beyou
- Univ Lyon, Université Lyon 1, UMR CNRS 5223, Ingénierie des Matériaux Polymères Lyon France
| |
Collapse
|
39
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|