1
|
Zhao C, Besset T, Legault CY, Jubault P. Experimental and Computational Studies for the Synthesis of Functionalized Cyclopropanes from 2-Substituted Allylic Derivatives with Ethyl Diazoacetate. Chemistry 2024; 30:e202303070. [PMID: 37985211 DOI: 10.1002/chem.202303070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The catalytic asymmetric synthesis of highly functionalized cyclopropanes from 2-substituted allylic derivatives is reported. Using ethyl diazo acetate, the reaction, catalyzed by a chiral ruthenium complex (Ru(II)-Pheox), furnished the corresponding easily separable cis and trans cyclopropanes in moderate to high yields (32-97 %) and excellent ee (86-99 %). This approach significantly extends the portfolio of accessible enantioenriched cyclopropanes from an underexplored class of olefins. DFT calculations suggest that an outer-sphere mechanism is operative in this system.
Collapse
Affiliation(s)
- Chengtao Zhao
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Claude Y Legault
- Département de Chimie, Université de Sherbrooke, 2500 boul. de l'Université, D1-3029, Sherbrooke, Canada
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| |
Collapse
|
2
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
3
|
Chowdhury R, Elek GZ, Meana-Baamonde B, Mendoza A. Modular Synthesis of (Borylmethyl)silanes through Orthogonal Functionalization of a Carbon Atom. Org Lett 2023; 25:1935-1940. [PMID: 36898045 PMCID: PMC10043938 DOI: 10.1021/acs.orglett.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
(Borylmethyl)trimethylsilanes are important building blocks in organic synthesis displaying a unique reactivity. Yet, the synthesis of more advanced derivatives is limited by the advanced silicon intermediates required for their preparation. Herein, a one-pot synthesis of (borylmethyl)silanes is developed, sourced on available alkyl-, aryl-, alkoxy-, aryloxy-, and silyl-hydrosilane materials. The privileged reactivity of N-hydroxyphthalimidyl diazoacetate (NHPI-DA) in Si-H insertion and α-silyl redox-active esters in different decarboxylative borylation reactions are scrutinized.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
| | - Gábor Zoltán Elek
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Beatriz Meana-Baamonde
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Institute of Molecular Science (ICMol), University of Valencia, 46980 Paterna, Spain
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Institute of Molecular Science (ICMol), University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
4
|
Messori A, Gagliardi A, Cesari C, Calcagno F, Tabanelli T, Cavani F, Mazzoni R. Advances in the homogeneous catalyzed alcohols homologation: the mild side of the Guerbet reaction. A mini-review. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Wei B, Sharland JC, Blackmond DG, Musaev DG, Davies HML. In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers. ACS Catal 2022; 12:13400-13410. [PMID: 37274060 PMCID: PMC10237631 DOI: 10.1021/acscatal.2c04115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed kinetic studies on the functionalization of unactivated hydrocarbon sp3 C-H bonds by dirhodium-catalyzed reaction of aryldiazoacetates revealed that the C-H functionalization step is rate-determining. The efficiency of this step was increased by using the hydrocarbon as solvent and using donor/acceptor carbenes with an electron-withdrawing substituent on the aryl donor group. The optimum catalyst for these reactions is the tetraphenylphthalimido derivative Rh2(R-TPPTTL)4 and a further beneficial refinement was obtained by using N,N'-dicyclohexylcarbodiimide as an additive. Under the optimum conditions with a catalyst loading of 0.001 mol %, effective enantioselective C-H functionalization (66-97% yield, 83-97% ee) was achieved of cycloalkanes with a range of aryldiazoacetates as long as the aryldiazoacetate was not to sterically demanding. The reaction with cyclohexane using a catalyst loading of 0.0005 mol % could be recharged twice with additional aryldiazoacetate, resulting in an overall dirhodium catalyst turnover number of 580,000.
Collapse
Affiliation(s)
- Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, United States
| | - Djamaladdin G. Musaev
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Salgueiro DC, Chi BK, Guzei IA, García‐Reynaga P, Weix DJ. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022; 61:e202205673. [PMID: 35688769 PMCID: PMC9378488 DOI: 10.1002/anie.202205673] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Strained rings are increasingly important for the design of pharmaceutical candidates, but cross-coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all-carbon quaternary centers is the coupling of abundant strained-ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel-catalyzed cross-electrophile approach that couples a variety of strained ring N-hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery that t-Bu BpyCamCN , an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96-well plates.
Collapse
Affiliation(s)
| | - Benjamin K. Chi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Ilia A. Guzei
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | | | - Daniel J. Weix
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
7
|
Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Control of Redox‐Active Ester Reactivity Enables a General Cross‐Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Benjamin K. Chi
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | - Ilia A. Guzei
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | | | - Daniel John Weix
- UW-Madison: University of Wisconsin Madison Chemistry 1101 University Avenue 53706 Madison UNITED STATES
| |
Collapse
|