1
|
Ling H, Sun H, Lu L, Zhang J, Liao L, Wang J, Zhang X, Lan Y, Li R, Lu W, Cai L, Bai X, Wang W. Sustainable photocatalytic hydrogen peroxide production over octonary high-entropy oxide. Nat Commun 2024; 15:9505. [PMID: 39489764 PMCID: PMC11532407 DOI: 10.1038/s41467-024-53896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
The direct utilization of solar energy for the artificial photosynthesis of hydrogen peroxide (H2O2) provides a reliable approach for producing this high-value green oxidant. Here we report on the utility of high-entropy oxide (HEO) semiconductor as an all-in-one photocatalyst for visible light-driven H2O2 production directly from H2O and atmospheric O2 without the need of any additional cocatalysts or sacrificial agents. This high-entropy photocatalyst contains eight earth-abundant metal elements (Ti/V/Cr/Nb/Mo/W/Al/Cu) homogeneously arranged within a single rutile phase, and the intrinsic chemical complexity along with the presence of a high density of oxygen vacancies endow high-entropy photocatalyst with distinct broadband light harvesting capability. An efficient H2O2 production rate with an apparent quantum yield of 38.8% at 550 nm can be achieved. The high-entropy photocatalyst can be readily assembled into floating artificial leaves for sustained on-site production of H2O2 from open water resources under natural sunlight irradiation.
Collapse
Affiliation(s)
- Hao Ling
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huacong Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lisha Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jingkun Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lei Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jianlin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yingying Lan
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Renjie Li
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Wengang Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Wenlong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| |
Collapse
|
2
|
Zhang W, Zhao H, Song H, Chou L. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Chem Asian J 2024; 19:e202400503. [PMID: 38842469 DOI: 10.1002/asia.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dry reforming of methane (DRM), the catalytic conversion of CH4 and CO2 into syngas (H2+CO), is an important process closely correlated to the environment and chemical industry. NiAl-based catalysts have been reported to exhibit excellent activity, low cost, and environmental friendliness. At the same time, the rapid deactivation caused by carbon deposition, Ni sintering, and phase transformation exerts great challenges for its large-scale applications. This review summarizes the recent advances in NiAl-based catalysts for DRM, particularly focusing on the strategies to construct efficient and stable NiAl-based catalysts. Firstly, the thermodynamics and elementary steps of DRM, including the activation of reactants and coke formation and elimination, are summarized. The roles of Al2O3 and its mixed oxides as the support, and the influences of the promoters employed in NiAl-based catalysts over the DRM performance, are then illustrated. Finally, the design of anti-coking and anti-sintering NiAl-based catalysts for DRM is suggested as feasible and promising by tailoring the structure and states of Ni and the modification of Al-based supports including small Ni size, high Ni dispersion, proper basicity, strong metal-support interaction (SMSI), active oxygen species as well as high phase stability.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- Wenzheng Zhang, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahua Zhao
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Huanling Song
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Lingjun Chou
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
3
|
Cai L, Han S, Xu W, Chen S, Shi X, Lu J. Formation of a Porous Crystalline Mg 1-xAl 2O y Overlayer on Metal Catalysts via Controlled Solid-State Reactions for High-temperature Stable Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404398. [PMID: 38698730 DOI: 10.1002/anie.202404398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Catalyst deactivation by sintering and coking is a long-standing issue in metal-catalyzed harsh high-temperature hydrocarbon reactions. Ultrathin oxide coatings of metal nanocatalysts have recently appeared attractive to address this issue, while the porosity of the overlayer is difficult to control to preserve the accessibility of embedded metal nanoparticles, thus often leading to a large decrease in activity. Here, we report that a nanometer-thick alumina coating of MgAl2O4-supported metal catalysts followed by high-temperature reduction can transform a nonporous amorphous alumina overlayer into a porous Mg1-xAl2Oy crystalline spinel structure with a pore size of 2-3 nm and weakened acidity. The high porosity stems from the restrained Mg migration from the MgAl2O4 support to the alumina overlayer through solid-state reactions at high temperatures. The resulting Ni/MgAl2O4 and Pt/MgAl2O4 catalysts with a porous crystalline Mg1-xAl2Oy overlayer achieved remarkably high stability while preserving much higher activity than the corresponding alumina-coated Ni and Pt catalysts on MgO and Al2O3 supports in the reactions of dry reforming of methane and propane dehydrogenation, respectively.
Collapse
Affiliation(s)
- Lihua Cai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Shanlei Han
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Wenlong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Si Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Xianxian Shi
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Junling Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Yu J, Le T, Jing D, Stavitski E, Hunter N, Lalit K, Leshchev D, Resasco DE, Sargent EH, Wang B, Huang W. Balancing elementary steps enables coke-free dry reforming of methane. Nat Commun 2023; 14:7514. [PMID: 37980344 PMCID: PMC10657353 DOI: 10.1038/s41467-023-43277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4 with other metals.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Tien Le
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50010, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Nicholas Hunter
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kanika Lalit
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Daniel E Resasco
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA.
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Zhang X, Deng J, Lan T, Shen Y, Zhong Q, Ren W, Zhang D. Promoting Methane Dry Reforming over Ni Catalysts via Modulating Surface Electronic Structures of BN Supports by Doping Carbon. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Qingdong Zhong
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Wei Ren
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
6
|
Zhang X, Deng J, Lan T, Shen Y, Qu W, Zhong Q, Zhang D. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25439-25447. [PMID: 35604327 DOI: 10.1021/acsami.2c04149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methane dry reforming (MDR) has attracted significant attention for effectively consuming greenhouse gases and producing valuable syngas. The development of coking- and sintering-resistant catalysts is still a challenge. Herein, highly active Ni nanocatalysts confined by the active edges of boron nitride have been originally developed, and the coking- and sintering-resistant MDR mechanism has also been unraveled. The active edges of boron nitride consisted of boundary BOx species interact with Ni nanoparticles (NPs), which can contribute to the activation of both CH4 and CO2. The etching of BN is restrained under the buffer of boundary BOx species. Operando spectra reveal that the formation and conversion of active bicarbonate species is accelerated by the boundary BOx species. The complete decomposition of CH4 is suppressed, and thus the coke formation is restricted. The functional groups of active BN edges are confirmed to stabilize the Ni NPs and facilitate the MDR reaction. This work provides a novel approach for the development of coking- and sintering-resistant catalysts for MDR.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Qingdong Zhong
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|