1
|
Lu F, Zhang B, Shen L, Chen A, Chen Y, Zhou Y, Zhang X, Liu B, Zhou M. Enhancing the Kinetics of Glucose Electro-Oxidation by Modulating the Binding Energy of Hydroxyl on Cobalt-Based Catalysts. Inorg Chem 2025; 64:2245-2255. [PMID: 39853310 DOI: 10.1021/acs.inorgchem.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Replacing the sluggish anodic water oxidation reaction with the glucose oxidation reaction (GOR) offers an energy-saving strategy to obtain value-added products during the hydrogen production process. However, rational design of the GOR electrocatalyst with an explicit structure-property relationship remains a challenge. In this study, by using cobalt chalcogenides as model catalysts, we performed an in-depth study of the GOR catalytic mechanism of CoS and CoSe nanosheets. Experimental and theoretical results revealed that the reaction pathway on cobalt chalcogenides strongly depends on their binding energy to hydroxyl (OHBE). For CoS with a weak OHBE, the reaction proceeds through an "electrophilic oxygen" route. While for CoSe, due to the strong OHBE, a surface reconstruction occurs before the GOR and therefore follows the "electrochemical-chemical" route. Inspired by these findings, a customized strategy was proposed to regulate the OHBE of the catalysts, which involved introducing F atoms into CoS to enhance its OHBE, and weakening the OHBE of CoSe by doping with Zn atoms. The optimized F-doped CoS and Zn-doped CoSe catalysts both exhibited significantly improved performance for GOR. This study thus provides a verifiable paradigm for improving the GOR performance via a customized strategy and sheds light on the design of novel catalysts in the future.
Collapse
Affiliation(s)
- Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Bin Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Lifeng Shen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Anjie Chen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Yuhe Chen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Yuxue Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Xiuyun Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Bitao Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
2
|
Liu H, Huang J, Wen Y, Li J, Wang J, Saravanamurugan S, Li H. Triazole Drives Hole Localization and Superoxide Radical Formation for Enhancive Photocatalytic Cascade Isomerization/C─C Bond Scission of Biomass to Lactic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411758. [PMID: 39887872 DOI: 10.1002/smll.202411758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Chemocatalytic synthesis of lactic acid (LA) from biomass sugars involves heat-absorbing multistep cascade reactions mediated by different active sites, often encountering unsatisfactory selectivity. Here, a hole-localized carbon nitride-based photocatalyst (C-CNN) is constructed by covalent binding of heptazine and triazole skeleton via C─N bonds and further conjugated interaction with activated carbon, achieving the complete conversion of various biomass sugars to LA (up to 98.6% selectivity) at room temperature for 2 h. The introduced triazole electron donor in C-CNN can not only enhance the adsorption of sugar for the enhanced aldose-to-ketose isomerization over the localized hole (Lewis acid) on the triazole skeleton, but also modulate the valence band oxidation to circumvent the formation of •OH but only •O2 ‒ for selective C3‒C4 cleavage of ketose, thus realizing the exclusive synthesis of LA. Moreover, near-infrared light absorption endowed by activated carbon can supply sufficient interface photothermal effect for ambient LA production. Life cycle assessment shows that the photocatalytic system has good prospects for industrialization in terms of both energy and environment. This work offers novel insights into the multidirectional utilization of solar energy for the value-added conversion of biomass through rational modulation of photothermal active sites.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jinshu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yu Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jie Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Junqi Wang
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Centre of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, 140306, India
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
3
|
Hu X, Zhang Z, Lu P, Zhou Y, Zhou Y, Bai Y, Yao J. Cyano-deficient g-C 3N 4 for round-the-clock photocatalytic degradation of tetracycline: Mechanism and application prospect evaluation. WATER RESEARCH 2024; 260:121936. [PMID: 38917504 DOI: 10.1016/j.watres.2024.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Without light at night, the system for photocatalytic degradation of refractory organic pollutants in aquatic environments based on free radicals will fall into a dormant state. Hence, a round-the-clock photocatalyst (CCN@SMSED) was prepared by in situ growth of cyanide-deficient g-C3N4 on the surface of Sr2MgSi2O7:Eu2+,Dy3+ through a simple calcination method. The CCN@SMSED exhibits an outstanding oxidative degradation ability for refractory tetracycline (TC) in water under both light and dark conditions, which is attributed to the synergistic effect of free radical (•O2- and •OH) and non-radical (h+ and 1O2). Electrochemical analyses further indicate that direct electron transfer (DET) is also one of the reasons for the efficient degradation of TC. Remarkably, the continuous working time of the round-the-clock photocatalyst in a dark environment was estimated for the first time (about 2.5 h in this system). The degradation pathways of TC mainly include demethylation, ring opening, deamination and dehydration, and the growth of Staphylococcus aureus shows that the process is biosafe. More importantly, CCN@SMSED holds significant promise for practical application due to its low energy consumption and suitability for removing TC from a variety of complex water bodies. This work provides an energy consumption reference for the practical application of round-the-clock photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Xueli Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian Province 350118, China.
| | - Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Liu R, Liu S, Lin J, Zhang X, Li Y, Pan H, Kong L, Zhu S, Wang J. Bi-directional charge transfer channels in highly crystalline carbon nitride enabling superior photocatalytic hydrogen evolution. NANOSCALE 2024; 16:9802-9810. [PMID: 38712434 DOI: 10.1039/d4nr00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introducing a donor-acceptor (D-A) unit is an effective approach to facilitate charge transfer in polymeric carbon nitride (PCN) and enhance photocatalytic performance. However, the introduction of hetero-molecules can lead to a decrease in crystallinity, limiting interlayer charge transfer and inhibiting further improvement. In this study, we constructed a novel D-A type carbon nitride with significantly higher crystallinity and a bi-directional charge transfer channel, which was achieved through 2,5-thiophenedicarboxylic acid (2,5-TDCA)-assisted self-assembly followed by KCl-templated calcination. The thiophene and cyano groups introduced serve as the electron donor and acceptor, respectively, enhancing in-plane electron delocalization. Additionally, introduced potassium ions are intercalated among the adjacent layers of carbon nitride, creating an interlayer charge transfer channel. Moreover, the highly ordered structure and improved crystallinity further facilitate charge transfer. As a result, the as-prepared photocatalyst exhibits superior photocatalytic hydrogen evolution (PHE) activity of 7.449 mmol h-1 g-1, which is 6.03 times higher than that of pure carbon nitride. The strategy of developing crystalline D-A-structured carbon nitride with controlled in-plane and interlayer charge transfer opens new avenues for the design of carbon nitride with enhanced properties for PHE.
Collapse
Affiliation(s)
- Runlu Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyuan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingyi Lin
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoxiao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lingti Kong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
5
|
Khan AA, Khan A, Khan S, Shah N, Khan A, Nawaz F, Khalid A, Jan A, Al-Harrasi A. Preparation and characterization of sulphur and zinc oxide Co-doped graphitic carbon nitride for photo-assisted removal of Safranin-O dye. RSC Adv 2024; 14:8871-8884. [PMID: 38495991 PMCID: PMC10941262 DOI: 10.1039/d3ra07247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Recently, there has been significant interest in photocatalytic reactions involving graphitic carbon nitride (g-C3N4) due to its sp2-hybridized carbon and nitrogen content and it is an ideal candidate for blending with other materials to enhance performance. Here, we have synthesized and analyzed both doped and undoped g-C3N4 nanoparticles. Specifically, we co-doped sulfur (S) into g-C3N4, integrated it with ZnO particles, and investigated the photocatalytic potential of these nanocomposites to remove Safranin-O dye. The initial step involved the preparation of pure g-C3N4 through calcination of urea. Subsequently, S-g-C3N4 was synthesized by calcining a mixture of urea and thiourea with a 3 : 1 ratio. Finally, the ZnO-S-g-C3N4 composite was synthesized using the liquid exfoliation technique, with distilled water serving as the exfoliating solvent. These samples were characterized by advanced techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), energy dispersive X-ray (EDX) and scanning electron microscopy (SEM), to assess their crystallinity, morphology, optical properties, and phase purity. Subsequently, these nanocomposites were employed in catalytic and photocatalytic processes to remove the Safranin-O dye (SO). The results highlighted the formation of Z-scheme junction responsible for ZnO-S-g-C3N4's significant performance improvement. The comparison of results demonstrated that S-g-C3N4 and ZnO-S-g-C3N4 composites revealed an effective removal of Safranin-O dye in the presence of UV-light as compared to pure g-C3N4, as it was attributed to the phenomenon of improved separation of photogenerated charge carriers as a result of heterojunction formation between S-g-C3N4 and ZnO interfaces. In addition to improving photocatalytic performance, this study presents a facile route for producing ZnO-S-g-C3N4 composite with superior adsorption capabilities and selectivity.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Sumayya Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Faheem Nawaz
- Department of Environmental Science, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University PO Box: 114 Jazan 45142 Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University Makkah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| |
Collapse
|
6
|
Jing L, Xu Y, Xie M, Li Z, Wu C, Zhao H, Zhong N, Wang J, Wang H, Yan Y, Li H, Hu J. Cyano-Rich g-C 3 N 4 in Photochemistry: Design, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304404. [PMID: 37670529 DOI: 10.1002/smll.202304404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/07/2023]
Abstract
Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .
Collapse
Affiliation(s)
- Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zheng Li
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chongchong Wu
- CNOOC Institute of Chemicals & Advanced Materials (CICM), Beijing, 102200, P. R. China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Na Zhong
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yubo Yan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, P. R. China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
7
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Coloma A, Velty A, Díaz U. Hybrid organic-inorganic nanoparticles with associated functionality for catalytic transformation of biomass substrates. RSC Adv 2023; 13:10144-10156. [PMID: 37006368 PMCID: PMC10061267 DOI: 10.1039/d3ra01486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
We present the one-pot synthesis of functionalized organosilica nanoparticles to generate multi-functional hybrid catalysts. Octadecyl, alkyl-thiol and alkyl-amino moieties were used separately and in different combinations, to generate different hybrid spherical nanoparticles with tunable acidic, basic and amphiphilic properties, covalently incorporating up to three organic functional elements onto the surface of the nanoparticles. Several parameters were optimised such as the concentration of the base employed during the hydrolysis and condensation synthesis process that showed a strong influence on the particle size. The physico-chemical properties of the hybrid materials were fully characterized by XRD, elemental and thermogravimetric analysis, electron microscopy, nitrogen adsorption isotherms and 13C and 29Si NMR spectroscopy. Finally, the potential uses of the prepared materials as amphiphilic catalysts, with acidic or basic properties for the conversion of biomass molecules into platform chemicals were evaluated.
Collapse
Affiliation(s)
- Alicia Coloma
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas 46022 Valencia Spain
| | - Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas 46022 Valencia Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas 46022 Valencia Spain
| |
Collapse
|
9
|
Wang J, Zhao H, Larter SR, Kibria MG, Hu J. One-pot sequential cascade reaction for selective gluconic acid production from cellulose photobiorefining. Chem Commun (Camb) 2023; 59:3451-3454. [PMID: 36866729 DOI: 10.1039/d2cc06462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We demonstrate the feasibility of cellulose photobiocatalytic conversion with >75% cellulose conversion and >75% gluconic acid selectivity from converted glucose. This process is realized via a one-pot sequential cascade reaction by cellulase enzymes and a carbon nitride photocatalyst that can realize selective glucose photoreforming into gluconic acid. Cellulase enzymes breakdown cellulose into glucose, which will subsequently be converted into gluconic acid by essential oxidative species (˙O2- and ˙OH) via a selective photocatalysis process with simultaneous H2O2 formation. This work demonstrates a good example to realize direct cellulose photobiorefining into value-added chemicals via the photo-bio hybrid system.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephen R Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
10
|
Wang J, Chen L, Zhao H, Kumar P, Larter SR, Kibria MG, Hu J. In Situ Photo-Fenton-Like Tandem Reaction for Selective Gluconic Acid Production from Glucose Photo-Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Lin Chen
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96Göteborg, Sweden
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Stephen R. Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, CalgaryAlberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| |
Collapse
|
11
|
Wang R, Cao X, Huang H, Ji X, Chen X, Liu J, Yan P, Wei S, Chen L, Wang Y. Facile Chemical Vapor Modification Strategy to Construct Surface Cyano-Rich Polymer Carbon Nitrides for Highly Efficient Photocatalytic H 2 Evolution. CHEMSUSCHEM 2022; 15:e202201575. [PMID: 36149300 DOI: 10.1002/cssc.202201575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The surface grafting of electro-negative cyano groups on polymer carbon nitrides (PCNs) is an effective way to tail their electronic structure. Despite the significant progress in the synthesis of cyano group-enriched PCN, developing a simple and efficient method remains challenging. Here, a facile strategy was developed for fabricating surface cyano-rich PCN (PCN-DM) with a porous structure via chemical vapor modification using diaminomaleonitrile. The cyano groups of diaminomaleonitrile substituted the amino groups on PCN surface via a deamination. The hydrogen production rate of the PCN-DM was approximately 17 times higher than that of pristine PCN. This significant increase in photocatalytic performance could be assigned to the fusion of cyano groups in the surface of PCN, forming new gap states that broadened the visible-light harvesting and accelerated charge separation for photoredox reactions. This study unveils a promising approach for incorporating functional units in the design of novel photocatalysts for efficient hydrogen production.
Collapse
Affiliation(s)
- Ruirui Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xiaohua Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Huanan Huang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xingtao Ji
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Jinhang Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Ping Yan
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Shunhang Wei
- School of Mathematical Information, Shaoxing University, 312000, Shaoxing, Zhejiang, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P. R. China
| | - Yawei Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| |
Collapse
|
12
|
Wang J, Wang X, Zhao H, Van Humbeck JF, Richtik BN, Dolgos MR, Seifitokaldani A, Kibria MG, Hu J. Selective C3–C4 Cleavage via Glucose Photoreforming under the Effect of Nucleophilic Dimethyl Sulfoxide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Xiao Wang
- Department of Chemical Engineering, McGill University, Montreal, QuebecH3A 0C5, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Jeffrey F. Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Brooke N. Richtik
- Department of Chemistry, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Michelle R. Dolgos
- Department of Chemistry, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, Montreal, QuebecH3A 0C5, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| |
Collapse
|
13
|
Palma B, Cheng X, Liu L, Zhong N, Zhao H, Renneckar S, Larter S, Kibria M, Hu J. Visible‐light Driven Lignin Valorization into Value‐added Chemicals and Sustainable Hydrogen Using Zn1‐xCdxS Solid Solutions as Photocatalyst. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bruna Palma
- University of Calgary Schulich School of Engineering Chemical and Petroleum Engineering CANADA
| | - Xi Cheng
- University of Calgary Chemical and Petroleum Engineering CANADA
| | - Liyang Liu
- The University of British Columbia Department of Wood Science CANADA
| | - Na Zhong
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Heng Zhao
- University of Calgary Chemical and Petroleum Engineering 3535 Research RD NW T2L 2K8 Calgary CANADA
| | - Scott Renneckar
- The University of British Columbia Department of Wood Science CANADA
| | | | - Md Kibria
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Jinguang Hu
- University of Calgary Chemical and Petroleum Engineering CANADA
| |
Collapse
|
14
|
Wang Q, Miao Z, Zhang Y, Yan T, Meng L, Wang X. Photocatalytic Reduction of CO 2 with H 2O Mediated by Ce-Tailored Bismuth Oxybromide Surface Frustrated Lewis Pairs. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingli Wang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zerui Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yanfeng Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Tingjiang Yan
- The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Lingpeng Meng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|
15
|
Li X, Chen Z, Huang Z, Long J. Aqueous Isomerization of Glucose to Fructose Catalyzed by Guanidinium Ionic Liquids. ChemistrySelect 2022. [DOI: 10.1002/slct.202103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Li
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou China 510640
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Zhuhai China 519003
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Zhuhai China 519003
| | - Zhechao Huang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou China 510640
| | - Jinxing Long
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou China 510640
| |
Collapse
|