1
|
Wu X, Zang R, Ma L, Zi G, Hou G. Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Nitriles: An Access to Chiral 2-Benzocyclic Acetonitriles and Ramelteon. Org Lett 2024; 26:10740-10745. [PMID: 39651536 DOI: 10.1021/acs.orglett.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A highly efficient and enantioselective hydrogenation of exocyclic α,β-unsaturated nitriles catalyzed by the Rh-JosiPhos complex for synthesis of the chiral 2-benzocyclic acetonitriles has been developed. Both (Z)- and (E)-isomers of exocyclic α,β-unsaturated nitriles with various benzocyclic structures, including heterocyclic (chroman and tetrahydroquinoline) scaffolds, were hydrogenated successfully, achieving excellent enantioselectivities (up to 97% ee) and high turnover numbers (TON up to 4000). Furthermore, this methodology provides an efficient, concise, and practical synthetic route to the sleep agent (S)-Ramelteon.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Zang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ling Ma
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Fang Z, Ding Y, Yuan S, Wang L, Wang M, Li F, Wu X, Sun L, Zhang P. Electrocatalytic Hydrogenation and Deuteration of Unsaturated C-N Bonds to Amines with Vacancy-Rich Cu 3P Nanowires as Catalysts in Aqueous Solution. CHEMSUSCHEM 2024:e202401601. [PMID: 39473356 DOI: 10.1002/cssc.202401601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Renewable energy driven electrochemically hydrogenation of unsaturated C-N bonds with water as a hydrogen source provides an eco-friendly route for amine production. However, the potential commercial applications of this strategy were limited by the lack of relevant extended research. Here we demonstrate an efficient electrochemical hydrogenation system for the formation of amines from nitriles by a vacancy-rich copper phosphide catalyst. The catalytic system achieves a yield of 99 % and a Faraday efficiency of 99 % for the hydrogenation of benzonitrile. Mechanism study shows that benzonitrile is spontaneously adsorbed on the electrode surface and the electrogenerated active adsorbed hydrogen is the key reactive intermediate for hydrogenation. Theoretical calculation results show that vacancy-induced active sites chemisorb the N atom, thus accelerating C≡N bond activation for hydrogenation. Encouragingly, good yields of amines (≥99 %) are obtained when benzonitrile is replaced by a series of aromatic nitriles, heterocyclic nitriles, aliphatic nitriles, and imines. These results show the general applicability of this method for the synthesis of various amines.
Collapse
Affiliation(s)
- Zhiyong Fang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Song Yuan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Yamaguchi S, Kiyohira D, Tada K, Kawakami T, Miura A, Mitsudome T, Mizugaki T. Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines. Chemistry 2024:e202303573. [PMID: 38179895 DOI: 10.1002/chem.202303573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Despite its unique physicochemical properties, the catalytic application of nickel carbide (Ni3 C) in organic synthesis is rare. In this study, we report well-defined nanocrystalline Ni3 C (nano-Ni3 C) as a highly active catalyst for the selective hydrogenation of nitriles to primary amines. The activity of the aluminum-oxide-supported nano-Ni3 C (nano-Ni3 C/Al2 O3 ) catalyst surpasses that of Ni nanoparticles. Various aromatic and aliphatic nitriles and dinitriles were successfully converted to the corresponding primary amines under mild conditions (1 bar H2 pressure). Furthermore, the nano-Ni3 C/Al2 O3 catalyst was reusable and applicable to gram-scale experiments. Density functional theory calculations suggest the formation of polar hydrogen species on the nano-Ni3 C surface, which were attributed to the high activity of nano-Ni3 C towards nitrile hydrogenation. This study demonstrates the utility of metal carbides as a new class of catalysts for liquid-phase organic reactions.
Collapse
Affiliation(s)
- Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daiki Kiyohira
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kohei Tada
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Taiki Kawakami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Akira Miura
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido, 060-8628, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
4
|
Zhang S, Zhou R, Duan YN, Zhou Y, Zhang X, Wen J. Homogeneous Dearomative Hydrogenation with a Co/P 4 N 2 Catalyst: A Nucleophilic Approach. Chemistry 2023; 29:e202203189. [PMID: 36401594 DOI: 10.1002/chem.202203189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Arene hydrogenation is the most straightforward method to prepare carbo- and heterocycles. However, the high resonance energy prevents aromatic substrates from hydrogenation. Herein the homogeneous, nucleophilic hydrogenation of less electron-rich arenes and heteroarenes is reported. The Co(P4 N2 )H species that has been demonstrated to be a strong hydride donor could deliver a hydride ion to the cyano (hetero)arene substrates. Deuterium labeling experiments supported a Michael-type reaction pathway. Theoretical analyses have been conducted to investigate the hydricity of the catalytically active CoH species and the electrophilicity of the arene substrates. An outlook for the synthesis of more challenging substituted benzenes was proposed based on the in silico modification of the CoH species.
Collapse
Affiliation(s)
- Shaoke Zhang
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Rong Zhou
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yang Zhou
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Xumu Zhang
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Jialin Wen
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Lu Y, Wang J, Feng X, Li Y, Zhang W, Yamamoto Y, Bao M. Hydrogenation of nitriles to primary amines catalyzed by an unsupported nanoporous palladium catalyst: understanding the essential reason for the high activity and selectivity of the catalyst. NANOSCALE 2022; 14:9341-9348. [PMID: 35704927 DOI: 10.1039/d2nr01722a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An efficient and highly selective heterogeneous catalyst system for nitrile hydrogenation was developed using unsupported palladium nanopores (PdNPore). The PdNPore-catalyzed selective hydrogenation of nitriles proceeded smoothly, without any additives, under mild conditions (low H2 pressure and low temperature) to yield primary amines with satisfactory to excellent yields. Systematic studies demonstrated that the high activity and excellent selectivity of the PdNPore originated from its good Lewis acidity and porous structure. No palladium leached from the PdNPore during the hydrogenation reaction. Moreover, the catalyst was easily recovered and reused without any loss of catalytic activity. A deuterium-hydrogen exchange reaction clearly indicated that the present hydrogenation involves heterolytic H2 splitting on the surface of the PdNPore catalyst.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jixiao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Yanhui Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Wei Zhang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
6
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
7
|
Cantopcu E, Aydinli E, Goksu H. Homogeneous catalyst containing Pd in the reduction of aryl azides to primary amines. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|