1
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
2
|
Lin H, Zhang W, Shen H, Yu H, An Y, Lin T, Zhong L. Control of metal-support interaction for tunable CO hydrogenation performance over Ru/TiO 2 nanocatalysts. NANOSCALE 2024; 16:6151-6162. [PMID: 38445306 DOI: 10.1039/d3nr06208b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The catalytic behavior of CO hydrogenation can be modulated by metal-support interactions, while the role of the support remains elusive. Herein, we demonstrate that the presence of strong metal-support interactions (SMSI) depends strongly on the crystal phase of TiO2 (rutile or anatase) and the treatment conditions for the TiO2 support, which could critically control the activity and selectivity of Ru-based nanocatalysts for CO hydrogenation. High CO conversion and olefin selectivity were observed for Ru/rutile-TiO2 (Ru/r-TiO2), while catalysts supported by anatase (a-TiO2) showed almost no activity. Characterization confirmed that the SMSI effect could be neglected for Ru/r-TiO2, while it is dominant on Ru/a-TiO2 after reduction at 300 °C, resulting in the coverage of Ru nanoparticles by TiOx overlayers. Such SMSI could be suppressed by H2 treatment of the a-TiO2 support and the catalytic activity of the as-obtained Ru/a-TiO2(H2) can be greatly elevated from almost inactive to >50% CO conversion with >60% olefin selectivity. Further results indicated that the surface reducibility of the TiO2 support determines the SMSI state and catalytic performance of Ru/TiO2 in the CO hydrogenation reaction. This work offers an effective strategy to design efficient catalysts for the FTO reaction by regulating the crystal phase of the support.
Collapse
Affiliation(s)
- Heyun Lin
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenzhe Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huachen Shen
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlei An
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Tiejun Lin
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liangshu Zhong
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Zou X, Meng Y, Liu J, Cao Y, Cui L, Shen Z, Xia Q, Li X, Zhang S, Ge Z, Pan Y, Wang Y. Niobium Modification of CeO 2 Tuning Electron Density of Nickel-Ceria Interfacial Sites for Enhanced CO 2 Methanation. Inorg Chem 2024; 63:881-890. [PMID: 38130105 DOI: 10.1021/acs.inorgchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
CO2 methanation has attracted considerable attention as a promising strategy for recycling CO2 and generating valuable methane. This study presents a niobium-doped CeO2-supported Ni catalyst (Ni/NbCe), which demonstrates remarkable performance in terms of CO2 conversion and CH4 selectivity, even when operating at a low temperature of 250 °C. Structural analysis reveals the incorporation of Nb species into the CeO2 lattice, resulting in the formation of a Nb-Ce-O solid solution. Compared with the Ni/CeO2 catalyst, this solid solution demonstrates an improved spatial distribution. To comprehend the impact of the Nb-Ce-O solid solution on refining the electronic properties of the Ni-Ce interfacial sites, facilitating H2 activation, and accelerating the hydrogenation of CO2* into HCOO*, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and density functional theory (DFT) calculations were conducted. These investigations shed light on the mechanism through which the activity of CO2 methanation is enhanced, which differs from the commonly observed CO* pathway triggered by oxygen vacancies (OV). Consequently, this study provides a comprehensive understanding of the intricate interplay between the electronic properties of the catalyst's active sites and the reaction pathway in CO2 methanation over Ni-based catalysts.
Collapse
Affiliation(s)
- Xuhui Zou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxiao Meng
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianqiao Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yunxiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
4
|
Guo C, Tang Y, Yang Z, Zhao T, Liu J, Zhao Y, Wang F. Reinforcing the Efficiency of Photothermal Catalytic CO 2 Methanation through Integration of Ru Nanoparticles with Photothermal MnCo 2O 4 Nanosheets. ACS NANO 2023. [PMID: 37982387 DOI: 10.1021/acsnano.3c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to methane (CH4) is regarded as a promising approach for CO2 utilization, whereas achieving desirable conversion efficiency under mild conditions remains a significant challenge. Herein, we have identified ultrasmall Ru nanoparticles (∼2.5 nm) anchored on MnCo2O4 nanosheets as prospective photothermal catalysts for CO2 methanation at ambient pressure with light irradiation. Our findings revealed that MnCo2O4 nanosheets exhibit dual functionality as photothermal substrates for localized temperature enhancement and photocatalysts for electron donation. As such, the optimized Ru/MnCo2O4-2 gave a high CH4 production rate of 66.3 mmol gcat-1 h-1 (corresponding to 5.1 mol gRu-1 h-1) with 96% CH4 selectivity at 230 °C under ambient pressure and light irradiation (420-780 nm, 1.25 W cm-2), outperforming most reported plasmonic metal-based catalysts. The mechanisms behind the intriguing photothermal catalytic performance improvement were substantiated through a comprehensive investigation involving experimental characterizations, numerical simulations and density functional theory (DFT) calculations, which unveiled the synergistic effects of enhanced charge separation efficiency, improved reaction kinetics, facilitated reactant adsorption/activation and accelerated intermediate conversion under light irradiation over Ru/MnCo2O4. A comparison study showed that, with identical external input energy during the reaction, Ru/MnCo2O4-2 had a much higher catalytic efficiency compared to Ru/TiO2 and Ru/Al2O3. This study underscores the pivotal role played by photothermal supports and is believed to engender a heightened interest in plasmonic metal nanoparticles anchored on photothermal substrates for CO2 methanation under mild conditions.
Collapse
Affiliation(s)
- Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
5
|
Miao W, Hao R, Wang J, Wang Z, Lin W, Liu H, Feng Z, Lyu Y, Li Q, Jia D, Ouyang R, Cheng J, Nie A, Wu J. Architecture Design and Catalytic Activity: Non-Noble Bimetallic CoFe/fe 3 O 4 Core-Shell Structures for CO 2 Hydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205087. [PMID: 36529701 PMCID: PMC9929264 DOI: 10.1002/advs.202205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Indexed: 05/04/2023]
Abstract
Non-noble metal catalysts now play a key role in promoting efficiently and economically catalytic reduction of CO2 into clean energy, which is an important strategy to ameliorate global warming and resource shortage issues. Here, a non-noble bimetallic catalyst of CoFe/Fe3 O4 nanoparticles is successfully designed with a core-shell structure that is well dispersed on the defect-rich carbon substrate for the hydrogenation of CO2 under mild conditions. The catalysts exhibit a high CO2 conversion activity with the rate of 30% and CO selectivity of 99%, and extremely robust stability without performance decay over 90 h in the reverse water gas shift reaction process. Notably, it is found that the reversible exsolution/dissolution of cobalt in the Fe3 O4 shell will lead to a dynamic and reversible deactivation/regeneration of the catalysts, accompanying by shell thickness breathing during the repeated cycles, via atomic structure study of the catalysts at different reaction stages. Combined with density functional theory calculations, the catalytic activity reversible regeneration mechanism is proposed. This work reveals the structure-property relationship for rational structure design of the advanced non-noble metallic catalyst materials with much improved performance.
Collapse
Affiliation(s)
- Wenkang Miao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Ronghui Hao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jingzhou Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Zihan Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Wenxin Lin
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Heguang Liu
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Zhenjie Feng
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Yingchun Lyu
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Qianqian Li
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Dongling Jia
- Collaborative Research CenterShanghai University of Medicine and Health SciencesShanghai201318China
| | - Runhai Ouyang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jipeng Cheng
- School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Anmin Nie
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004China
| | - Jinsong Wu
- Nanostructure Research CenterWuhan University of TechnologyWuhan430070China
| |
Collapse
|
6
|
Robert F, Lecante P, Girardon JS, Wojcieszak R, Marceau É, Briois V, Amiens C, Philippot K. In situ study of the evolution of NiFe nanocatalysts in reductive and oxidative environments upon thermal treatments. Faraday Discuss 2023; 242:353-373. [PMID: 36193838 DOI: 10.1039/d2fd00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The conversion of biomass as a sustainable path to access valuable chemicals and fuels is very attractive for the chemical industry, but catalytic conversions still often rely on the use of noble metals. Sustainability constraints require developing alternative catalysts from abundant and low-cost metals. In this context, NiFe nanoparticles are interesting candidates. In their reduced and supported form, they have been reported to be more active and selective than monometallic Ni in the hydrogenation of the polar functions of organic molecules, and the two metals are very abundant. However, unlike noble metals, Ni and Fe are easily oxidized in ambient conditions, and understanding their transformation in both oxidative and reductive atmospheres is an important though seldom investigated issue to be addressed before their application in catalysis. Three types of NiFe nanoparticles were prepared by an organometallic approach to ensure the formation of ultrasmall nanoparticles (<3.5 nm) with a narrow size distribution, controlled composition and chemical order, while working in mild conditions: Ni2Fe1 and Ni1Fe1, both with a Ni rich core and Fe rich surface, and an alloy with a Ni1Fe9 composition. Supported systems were obtained by the impregnation of silica with a colloidal solution of the preformed nanoparticles. Using advanced characterization techniques, such as wide-angle X-ray scattering (WAXS) and X-ray absorption spectroscopy (XAS) in in situ conditions, this study reports on the evolution of the chemical order and of the oxidation state of the metals upon exposure to air, hydrogen, and/or increasing temperature, all factors that may affect their degree of reduction and subsequent performance in catalysis. We show that if oxidation readily occurs upon exposure to air, the metals can revert to their initial state upon heating in the presence of H2 but with a change in structure and chemical ordering.
Collapse
Affiliation(s)
- François Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CNRS, CEMES (Centre d'Elaboration des Matériaux et d'Etudes Structurales), 29 Rue Jeanne Marvig, BP 4347, F-31055 Toulouse Cedex 4, France
| | - Jean-Sébastien Girardon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Éric Marceau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Valérie Briois
- Synchrotron SOLEIL, CNRS-UR1, L'Orme des Merisiers, BP48, Saint-Aubin, F-91192 Gif-sur Yvette, France
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
7
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
8
|
He Y, Sheng J, Ren Q, Sun Y, Hao W, Dong F. Operando Identification of Dynamic Photoexcited Oxygen Vacancies as True Catalytic Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye He
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qin Ren
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weichang Hao
- School of Physics and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China
| | - Fan Dong
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
9
|
Beck A, Rzepka P, Marshall KP, Stoian D, Willinger MG, van Bokhoven JA. Hydrogen Interaction with Oxide Supports in the Presence and Absence of Platinum. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17589-17597. [PMID: 36304669 PMCID: PMC9589899 DOI: 10.1021/acs.jpcc.2c05478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Oxides are essential catalysts and supports for noble metal catalysts. Their interaction with hydrogen enables, e.g., their use as a hydrogenation catalyst. Among the oxides considered reducible, substantial differences exist in their capability to activate hydrogen and how the oxide structure transforms due to this interaction. Noble metals, like platinum, generally enhance the oxide reduction by hydrogen spillover. This work presents a systematic temperature-programmed reduction study (300 to 873 K) of iron oxide, ceria, titania, zirconia, and alumina, with and without supported platinum. For all catalysts, platinum enhances the reducibility of the oxide. However, there are pronounced differences among all catalysts.
Collapse
Affiliation(s)
- Arik Beck
- Institute
for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
| | - Przemyslaw Rzepka
- Institute
for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Laboratory
for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Kenneth P. Marshall
- The
Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, Grenoble 38043, France
| | - Dragos Stoian
- The
Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, Grenoble 38043, France
| | - Marc G. Willinger
- TUM
Department of Chemistry, Technical University
of Munich, 85748 Garching, Germany
| | - Jeroen A. van Bokhoven
- Institute
for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Laboratory
for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
10
|
Liu Y, Zhang G, Liu S, Zhu J, Liu J, Wang J, Li R, Wang M, Fu Q, Hou S, Song C, Guo X. Promoting n-Butane Dehydrogenation over PtMn/SiO 2 through Structural Evolution Induced by a Reverse Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Shida Liu
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian 116045, People’s Republic of China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Shuandi Hou
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian 116045, People’s Republic of China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, People’s Republic of China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
11
|
Du P, Qi R, Zhang Y, Gu Q, Xu X, Tan Y, Liu X, Wang A, Zhu B, Yang B, Zhang T. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zou X, Shen Z, Li X, Cao Y, Xia Q, Zhang S, Liu Y, Jiang L, Li L, Cui L, Wang Y. Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation. J Colloid Interface Sci 2022; 620:77-85. [DOI: 10.1016/j.jcis.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/30/2023]
|
13
|
Diao F, Wang C, Qiu L, Yin Y, Zhao F, Chang H. Interaction between Nickel Oxide and Support Promotes Selective Catalytic Reduction of NOx with C3H6. Chem Asian J 2022; 17:e202200520. [PMID: 35818889 DOI: 10.1002/asia.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Selective catalytic reduction of NO x by C 3 H 6 (C 3 H 6 -SCR) was investigated over NiO catalysts supported on different metaloxides. A NiAlO x mixed oxide phase was formed over NiO/γ-Al 2 O 3 catalyst, inducing an immediate interaction between NiO x and AlO x species. Such interaction resulted in a charge transfer from Ni to Al site and the formation of Ni species in high oxidation state. In comparison to other NiO-loaded catalysts, NiO/γ-Al 2 O 3 catalyst exhibited the highest NO x conversion at temperature higher than 450 °C, but a poor C 3 H 6 oxidation activity due to the decreased nucleophilicity for surface oxygen species. By temperatureprogramed NO oxidation, it is indicated that nitrate species were rapidly formed and stably maintained at high temperature over NiO/γ-Al 2 O 3 catalyst. In situ transient reactions further verified the LangmuirHinshelwood mechanism for C 3 H 6 -SCR, where both gaseous NO and C 3 H 6 were adsorbed and activated on catalyst surface and reacted to generate N 2 . Due to the strong metal-support interaction over NiO/γ-Al 2 O 3 catalyst, both nitrate and C x H y O z intermediates were well preserved to attain high C 3 H 6 -SCR activity.
Collapse
Affiliation(s)
- Fan Diao
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Chizhong Wang
- Renmin University of China, School of Environment and Natural Resources, Zhongguancun Road 2699, 100872, Beijing, CHINA
| | - Lei Qiu
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Yimeng Yin
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Feilin Zhao
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Huazhen Chang
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| |
Collapse
|
14
|
Dependency of CO2 Methanation on the Strong Metal-Support Interaction for Supported Ni/CeO2 Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Cao F, Gong N, Ma Z, Wang X, Tan M, Wu Y, Tan Y. Controlling CO 2 hydrogenation selectivity by Rh-based catalysts with different crystalline phases of TiO 2. Chem Commun (Camb) 2022; 58:4219-4222. [PMID: 35274644 DOI: 10.1039/d2cc00472k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Rh-based catalysts with various crystalline phases (p25, anatase, and rutile) were prepared via the incipient-wetness impregnation method. It was found that these catalysts had different metal-support interactions. Hence, 1%Rh/p, 1%Rh/r, and 1%Rh/a exhibited methane, CO, and methanol selectivity, respectively.
Collapse
Affiliation(s)
- Fenghai Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nana Gong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Minghui Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Yingquan Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. .,National Engineering Research Centre for Coal-Based Synthesis, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|