1
|
Jia K, Sun H, Zhou Y, Zhang W. Biosynthesis of isonitrile lipopeptides. Curr Opin Chem Biol 2024; 81:102470. [PMID: 38788523 PMCID: PMC11323250 DOI: 10.1016/j.cbpa.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Isonitrile lipopeptides discovered from Actinobacteria have attracted wide attention due to their fascinating biosynthetic pathways and relevance to the virulence of many human pathogens including Mycobacterium tuberculosis. Specifically, the identification of the new class of isonitrile-forming enzymes that belong to non-heme iron (II) and α-ketoglutarate dependent dioxygenases has intrigued several research groups to investigate their catalytic mechanism. Here we summarize the recent studies on the biosynthesis of isonitrile lipopeptides from Streptomyces and Mycobacterium. The latest research on the core and tailoring enzymes involved in the pathway as well as the isonitrile metabolic enzymes are discussed in this review.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States
| | - Helen Sun
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Yiyan Zhou
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
2
|
Zheng Z, Clardy J, Liu HW. Biosynthesis of the Unusual Epoxy Isonitrile-Containing Antibiotics Aerocyanidin and Amycomicin. J Am Chem Soc 2024; 146:21061-21068. [PMID: 39039999 PMCID: PMC11334264 DOI: 10.1021/jacs.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Aerocyanidin and amycomicin are two antibiotics derived from long-chain acids with a rare epoxy isonitrile moiety, the complexity of which renders the total synthesis of these two natural products rather challenging. How this functionality is biosynthesized has also remained obscure. While the biosynthetic gene clusters for these compounds have been identified, both appear to be deficient in genes encoding enzymes seemingly necessary for the oxidative modifications observed in these antibiotics. Herein, the biosynthetic pathways of aerocyanidin and amycomicin are fully elucidated. They share a conserved pathway to isonitrile intermediates that involves a bifunctional thioesterase and a nonheme iron α-ketoglutarate-dependent enzyme. In both cases, the isonitrile intermediates are then loaded onto an acyl carrier protein (ACP) catalyzed by a ligase. The isonitrile-tethered ACP is subsequently processed by polyketide synthase(s) to undergo chain extension, thereby assembling a long-chain γ-hydroxy isonitrile acid skeleton. The epoxide is installed by the cupin domain-containing protein AecF to conclude the biosynthesis of aerocyanidin. In contrast, three P450 enzymes AmcB, AmcC, and AmcQ are involved in epoxidation and keto formation to finalize the biosynthesis of amycomicin. These results thus explain the sequence of oxidation events that result in the final structures of aerocyanidin and amycomicin as well as the biosynthesis of the key γ-hydroxy epoxy isonitrile functional group.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Xue S, Tang Y, Kurnikov IV, Liao HJ, Li J, Chan NL, Kurnikova MG, Chang WC, Guo Y. Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ. Methods Enzymol 2024; 704:199-232. [PMID: 39300648 PMCID: PMC11415609 DOI: 10.1016/bs.mie.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.
Collapse
Affiliation(s)
- Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Igor V Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan.
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Chen TY, Chen J, Ruszczycky MW, Hilovsky D, Hostetler T, Liu X, Zhou J, Chang WC. Variation in biosynthesis and metal-binding properties of isonitrile-containing peptides produced by Mycobacteria versus Streptomyces. ACS Catal 2024; 14:4975-4983. [PMID: 38895101 PMCID: PMC11185824 DOI: 10.1021/acscatal.4c00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mark W Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Tyler Hostetler
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jiahai Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
5
|
Matsuda K, Maruyama H, Imachi K, Ikeda H, Wakimoto T. Actinobacterial chalkophores: the biosynthesis of hazimycins. J Antibiot (Tokyo) 2024; 77:228-237. [PMID: 38378905 DOI: 10.1038/s41429-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Copper is a transition metal element with significant effects on the morphological development and secondary metabolism of actinobacteria. In some microorganisms, copper-binding natural products are employed to modulate copper homeostasis, although their significance in actinobacteria remains largely unknown. Here, we identified the biosynthetic genes of the diisocyanide natural product hazimycin in Kitasatospora purpeofusca HV058, through gene knock-out and heterologous expression. Biochemical analyses revealed that hazimycin A specifically binds to copper, which diminishes its antimicrobial activity. The presence of a set of putative importer/exporter genes surrounding the biosynthetic genes suggested that hazimycin is a chalkophore that modulates the intracellular copper level. A bioinformatic survey of homologous gene cassettes, as well as the identification of two previously unknown hazimycin-producing Streptomyces strains, indicated that the isocyanide-based mechanism of copper homeostasis is prevalent in actinobacteria.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hiroto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Imachi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Haruo Ikeda
- Technology Research Association for Next generation natural products chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
6
|
Wang B, Lu Y, Cha L, Chen TY, Palacios PM, Li L, Guo Y, Chang WC, Chen C. Repurposing Iron- and 2-Oxoglutarate-Dependent Oxygenases to Catalyze Olefin Hydration. Angew Chem Int Ed Engl 2023; 62:e202311099. [PMID: 37639670 PMCID: PMC10592062 DOI: 10.1002/anie.202311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yong Lu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lide Cha
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Philip M Palacios
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Liping Li
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
8
|
Hausinger RP. Five decades of metalloenzymology. Enzymes 2023; 54:71-105. [PMID: 37945178 DOI: 10.1016/bs.enz.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
Collapse
Affiliation(s)
- Robert P Hausinger
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
9
|
Del Rio Flores A, Narayanamoorthy M, Cai W, Zhai R, Yang S, Shen Y, Seshadri K, De Matias K, Xue Z, Zhang W. Biosynthesis of Isonitrile Lipopeptide Metallophores from Pathogenic Mycobacteria. Biochemistry 2023; 62:824-834. [PMID: 36638317 PMCID: PMC9905339 DOI: 10.1021/acs.biochem.2c00611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Isonitrile lipopeptides (INLPs) are known to be related to the virulence of pathogenic mycobacteria by mediating metal transport, but their biosynthesis remains obscure. In this work, we use in vitro biochemical assays, site-directed mutagenesis, chemical synthesis, and spectroscopy techniques to scrutinize the activity of core enzymes required for INLP biosynthesis in mycobacteria. Compared to environmental Streptomyces, pathogenic Mycobacterium employ a similar chemical logic and enzymatic machinery in INLP biosynthesis, differing mainly in the fatty-acyl chain length, which is controlled by multiple enzymes in the pathway. Our in-depth study on the non-heme iron(II) and α-ketoglutarate-dependent dioxygenase for isonitrile generation, including Rv0097 from Mycobacterium tuberculosis (Mtb), demonstrates that it recognizes a free-standing small molecule substrate, different from the recent hypothesis that a carrier protein is required for Rv0097 in Mtb. A key residue in Rv0097 is further identified to dictate the varied fatty-acyl chain length specificity between Streptomyces and Mycobacterium.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Siyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Kyle De Matias
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Zhaoqiang Xue
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Fu Y, Wang B, Cao Z. Biodegradation of 2,5-Dihydroxypyridine by 2,5-Dihydroxypyridine Dioxygenase and Its Mutants: Insights into O–O Bond Activation and Flexible Reaction Mechanisms from QM/MM Simulations. Inorg Chem 2022; 61:20501-20512. [DOI: 10.1021/acs.inorgchem.2c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Del Rio Flores A, Kastner DW, Du Y, Narayanamoorthy M, Shen Y, Cai W, Vennelakanti V, Zill NA, Dell LB, Zhai R, Kulik HJ, Zhang W. Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. J Am Chem Soc 2022; 144:5893-5901. [PMID: 35254829 PMCID: PMC8986608 DOI: 10.1021/jacs.1c12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isonitrile moiety is an electron-rich functionality that decorates various bioactive natural products isolated from diverse kingdoms of life. Isonitrile biosynthesis was restricted for over a decade to isonitrile synthases, a family of enzymes catalyzing a condensation reaction between l-Trp/l-Tyr and ribulose-5-phosphate. The discovery of ScoE, a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase, demonstrated an alternative pathway employed by nature for isonitrile installation. Biochemical, crystallographic, and computational investigations of ScoE have previously been reported, yet the isonitrile formation mechanism remains obscure. In the present work, we employed in vitro biochemistry, chemical synthesis, spectroscopy techniques, and computational simulations that enabled us to propose a plausible molecular mechanism for isonitrile formation. Our findings demonstrate that the ScoE reaction initiates with C5 hydroxylation of (R)-3-((carboxymethyl)amino)butanoic acid to generate 1, which undergoes dehydration, presumably mediated by Tyr96 to synthesize 2 in a trans configuration. (R)-3-isocyanobutanoic acid is finally generated through radical-based decarboxylation of 2, instead of the common hydroxylation pathway employed by this enzyme superfamily.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - David W. Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Nicholas A. Zill
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Luisa B. Dell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
- Chan Zuckerberg Biohub, San Francisco, California, United States 94158
| |
Collapse
|