1
|
Gong T, Qiu G, He MR, Safonova OV, Yang WC, Raciti D, Oses C, Hall AS. Atomic Ordering-Induced Ensemble Variation in Alloys Governs Electrocatalyst On/Off States. J Am Chem Soc 2025; 147:510-518. [PMID: 39714265 DOI: 10.1021/jacs.4c11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The catalytic behavior of a material is influenced by ensembles─the geometric configuration of atoms on the surface. In conventional material systems, ensemble effects and the electronic structure are coupled because these strategies focus on varying the material composition, making it difficult to understand the role of ensembles in isolation. This study introduces a methodology that separates geometric effects from the electronic structure. To tune the Pd ensemble size on the catalyst surface, we compared the reactivity of structurally different but compositionally identical Pd3Bi intermetallic and solid solution alloys. Pd3Bi intermetallics display no reactivity for methanol oxidation (MOR), while their solid solution counterparts show significant reactivity (0.5 mA cmPd-2). Intermetallics form smaller ensembles (1, 3, 4, and 5 atoms across all low-energy facets), whereas solid solution Pd3Bi has several facets that support larger Pd ensembles, with an average size of 5.25 atoms and up to 6 atoms. A partially ordered Pd3Bi (a mixed phase of intermetallic and solid solution) alloy shows intermediate MOR activity (0.1 mA cmPd-2), confirming that methanol oxidation activity tracks with the average ensemble size. All Pd3Bi alloys maintained similar electronic structures, as confirmed by X-ray photoelectron spectroscopy (XPS) valence band spectroscopy and X-ray absorption near edge structure (XANES) measurements, indicating that reactivity differences arise from variations in the ensemble size induced by differences in the atomic ordering. Our findings offer an approach for designing materials with controllable active site configurations while maintaining the catalyst's electronic structure, thereby enabling more efficient catalyst design.
Collapse
Affiliation(s)
- Tianyao Gong
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guotao Qiu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mo-Rigen He
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Olga V Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Wei-Chang Yang
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - David Raciti
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Corey Oses
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Huang T, Sun LP, Li X, Guan BO. Lab-on-Fiber Operando Deciphering of a MOF Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411510. [PMID: 39632652 DOI: 10.1002/adma.202411510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Despite the great success in deploying metal-organic frameworks (MOFs) as efficient electrocatalysts, the low adoption of operando methods hinders the understanding of underlying mechanism. By leveraging the subtle refractive index evolution, including both the real and the imaginary parts, an entirely new concept of a lab-on-fiber operando method and its feasibility for "pristine-immersion-operando-post analysis" of electrocatalyts are demonstrated. Concurrent collection of absorption spectra and surface plasmon resonance is achieved by engineering fiber-optic waveguides to simultaneously induce guided light attenuation and plasmonic coupling. In situ-formed Co hydroxide and oxide reactive intermediates in zeolitic imidazolate framework-67 (ZIF-67) electrocatalyst are optically identified, which shows its underlying self-reconstruction conversions at different stages during electrocatalytic oxygen evolution reactions, and address the gap in knowledge concerning whether ZIF-67 is a precatalyst for real catalyst production. This illuminating operando method offers intriguing opportunities to collect all the observables in a single fiber, provides an exciting potential of a new class of device with long-sought integration and miniaturization capability, and is expected to enable the electrocatalysis community to conquer challenges with conducting multimodal operando experiments outside the laboratory.
Collapse
Affiliation(s)
- Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Sun G, Wang Q, Liao YS, Cui Y, Tian L, Chou JP, Zhao Y, Peng YK. Manipulating the H 2O 2 Reactivity on Pristine Anatase TiO 2 with Various Surface Features and Implications in Oxidation Reactions. J Phys Chem Lett 2024; 15:11620-11628. [PMID: 39533860 DOI: 10.1021/acs.jpclett.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Anatase TiO2 is commonly used as a catalyst/support in reactions involving H2O2, yet the understanding of interactions between common TiO2 surfaces and H2O2 remains limited. Herein, we synthesized well-defined TiO2 crystallites with (101), (001), and fluorine-modified (001) [F-(001)] surfaces to examine how surface features, including the arrangement of five-coordinated Ti (Ti5c) sites and the presence of fluorine, influence H2O2 activation. Our findings reveal that these surface features significantly affect the physiochemical properties of adsorbed H2O2. Specifically, fluorine on the F-(001) surface introduces an additional hydrogen bond to the Ti5c-peroxo species, altering the electronic structure of H2O2 compared to those with the (101) and (001) surfaces. Using cyclohexene as a probe substrate, we successfully distinguished the reactivities of the Ti5c-peroxo species. The activity of those on the F-(001) surface was significantly higher than the activity of those on the (001) surface, while the (101) surface showed negligible oxidation activity. These insights can guide the design of TiO2-based catalysts for H2O2-related reactions.
Collapse
Affiliation(s)
- Guohan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Yin-Song Liao
- Tsing Hua Interdisciplinary Program, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yifan Cui
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Jyh-Pin Chou
- Graduate School of Advanced Technology, National Taiwan University, Taipei 106319, Taiwan
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| |
Collapse
|
4
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
5
|
Rabiee H, Li M, Yan P, Wu Y, Zhang X, Dorosti F, Zhang X, Ma B, Hu S, Wang H, Zhu Z, Ge L. Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO 2 Availability for High-Rate and Selective CO 2 Electroreduction to Ethylene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402964. [PMID: 39206751 PMCID: PMC11515925 DOI: 10.1002/advs.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas-diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine-containing microgels-augmented CO2 availability is presented in Cu2O-based GDE for high-rate CO2 reduction to ethylene, owing to the presence of CO2-phil microgels with amine moieties. Microgels as three-dimensional polymer networks act as CO2 micro-reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4-vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine-based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm-2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm-2. A similar trend was observed in zero-gap design, and GDEs showed 58% FE of ethylene at -4.0 cell voltage (>350 mA cm-2 current density), resulting in over 2-fold improvement in ethylene production. This study showcases the use of CO2-phil microgels for a higher rate of CO2RR-to-C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.
Collapse
Affiliation(s)
- Hesamoddin Rabiee
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Mengran Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVIC3052Australia
| | - Penghui Yan
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Yuming Wu
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Fatereh Dorosti
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Xi Zhang
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Beibei Ma
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Zhonghua Zhu
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Lei Ge
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
- School of EngineeringUniversity of Southern QueenslandSpringfieldQLD4300Australia
| |
Collapse
|
6
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Xia D, Lee C, Charpentier NM, Deng Y, Yan Q, Gabriel JP. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309635. [PMID: 38837685 PMCID: PMC11321694 DOI: 10.1002/advs.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing importance of critical metals (CMs) in modern society underscores their resource security and circularity. Waste-printed circuit boards (WPCBs) are particularly attractive reservoirs of CMs due to their gamut CM embedding and ubiquitous presence. However, the recovery of most CMs is out of reach from current metal-centric recycling industries, resulting in a flood loss of refined CMs. Here, 41 types of such spent CMs are identified. To deliver a higher level of CM sustainability, this work provides an insightful overview of paradigm-shifting pathways for CM recovery from WPCBs that have been developed in recent years. As a crucial starting entropy-decreasing step, various strategies of metal enrichment are compared, and the deployment of artificial intelligence (AI) and hyperspectral sensing is highlighted. Then, tailored metal recycling schemes are presented for the platinum group, rare earth, and refractory metals, with emphasis on greener metallurgical methods contributing to transforming CMs into marketable products. In addition, due to the vital nexus of CMs between the environment and energy sectors, the upcycling of CMs into electro-/photo-chemical catalysts for green fuel synthesis is proposed to extend the recycling chain. Finally, the challenges and outlook on this all-round upgrading of WPCB recycling are outlined.
Collapse
Affiliation(s)
- Dong Xia
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
| | - Carmen Lee
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Nicolas M. Charpentier
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| | - Yuemin Deng
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
- Ecologic France15 Avenue du CentreGuyancour78280France
| | - Qingyu Yan
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jean‐Christophe P. Gabriel
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| |
Collapse
|
8
|
DuBose JT, Scott SB, Moss B. Physical Chemistry Education and Research in an Open-Sourced Future. ACS PHYSICAL CHEMISTRY AU 2024; 4:292-301. [PMID: 39069973 PMCID: PMC11274280 DOI: 10.1021/acsphyschemau.3c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 07/30/2024]
Abstract
Proficiency in physical chemistry requires a broad skill set. Successful trainees often receive mentoring from senior colleagues (research advisors, postdocs, etc.). Mentoring introduces trainees to experimental design, instrumental setup, and complex data interpretation. In lab settings, trainees typically learn by customizing experimental setups, and developing new ways of analyzing data. Learning alongside experts strengthens these fundamentals, and places a focus on the clear communication of research problems. However, this level of input is not scalable, nor can it easily be shared with all researchers or students, particularly those that face socioeconomic barriers to accessing mentoring. New approaches to training will therefore progress the field of physical chemistry. Technology is disrupting and democratising scientific education and research. The emergence of free online courses and video resources enables students to learn in a style that suits them. Higher degrees of automation remove cumbersome and sometimes arbitrary technical barriers to learning new techniques, allowing one to collect high quality data quickly. Open sourcing of data and analysis tools has increased transparency, lowered barriers to access, and accelerated scientific dissemination. However, these advances also can lead to "black box" approaches to acquiring and analyzing data, where convenience replaces understanding and errors and misrepresentations become more common. The risk is a breakdown in education: if one does not understand the fundamentals of a technique or analysis, it is difficult to correctly discern the practical limits of an experiment, distinguish signal from noise, troubleshoot problems, or take full advantage of powerful analytical procedures. Our vision of the future of physical chemistry is built around democratized learning, where deep technical and analytical expertise from physical chemists is made freely available. Advancements in technical education through expert-generated educational resources and AI-based tools will enrich physical chemistry education. A holistic approach to education will prepare the physical chemists of 2050 to adapt to rapidly advancing technological tools, which accelerate the pace of research. Technical education will be enhanced by accessible open-source instrumentation and analysis procedures, which will provide instruments and analysis scripts specifically designed for education. High quality, comparable data from standardized open-source instruments will feed into accessible databases and analysis projects, providing others the opportunity to store and analyze both failed and successful experiments. The coupling of open-source education, hardware, and analysis will democratize physical chemistry while addressing risks associated with "black box" approaches.
Collapse
Affiliation(s)
- Jeffrey T. DuBose
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Soren. B Scott
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Benjamin Moss
- Department
of Materials & iX institute, Imperial
College London Exhibition Rd, South Kensington, London SW7 2BX, United
Kingdom
| |
Collapse
|
9
|
Schalenbach M, Tesch R, Kowalski PM, Eichel RA. The electrocatalytic activity for the hydrogen evolution reaction on alloys is determined by element-specific adsorption sites rather than d-band properties. Phys Chem Chem Phys 2024; 26:14171-14185. [PMID: 38713015 DOI: 10.1039/d4cp01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Trends of the electrocatalytic activities for the hydrogen evolution reaction (HER) across transition metals are typically explained by d-band properties such as center or upper edge positions in relation to Fermi levels. Here, the universality of this relation is questioned for alloys, exemplified for the AuPt system which is examined with electrocatalytic measurements and density functional theory (DFT) calculations. At small overpotentials, linear combinations of the pure-metals' Tafel kinetics normalized to the alloy compositions are found to precisely resemble the measured HER activities. DFT calculations show almost neighbor-independent adsorption energies on Au and Pt surface-sites, respectively, as the adsorbed hydrogen influences the electron density mostly locally at the adsorption site itself. In contrast, the density of states of the d-band describe the delocalized conduction electrons in the alloys, which are unable to portray the local electronic environments at adsorption sites and related bonding strengths. The adsorption energies at element-specific surface sites are related to overpotential-dependent reaction mechanisms in a multidimensional reinterpretation of the volcano plot for alloys, which bridges the found inconsistencies between activity and bonding strength descriptors of the common electrocatalytic theory for alloys.
Collapse
Affiliation(s)
- Maximilian Schalenbach
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Rebekka Tesch
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Piotr M Kowalski
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Rüdiger-A Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
- Institute of Physical Chemistry, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
10
|
Lee H, Ren H. Tuning Electrocatalytic Oxygen Reduction Reaction with Dynamic Control of Electrochemical Interfaces. J Am Chem Soc 2024. [PMID: 38607685 DOI: 10.1021/jacs.3c13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Herein, we report the tuning of the activity and selectivity of the oxygen reduction reaction (ORR) through the dynamic regulation of the electrochemical interfaces to surpass the performance of conventional electrocatalysis. This is achieved by applying an oscillating potential between the ORR operating potential and anion adsorbing potential on a gold electrode. Oscillating potential enhances the selectivity for H2O2 by up to 1.35 times compared to the static potential, as confirmed by rotating ring-disk electrode and fluorescence assay measurements. We showed that the enhanced selectivity depends on dynamic adsorption and desorption of anions, and the enhancement occurs in the millisecond time scale or shorter. The transient selectivity to H2O2 can reach ∼97% within the first 5 ms after potential switching. Our results suggest that the dynamic interface can create a transient but unique microenvironment for new reactivity that cannot be reproduced under static conditions, which offers a new dimension in controlling electrocatalysis.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Couce PM, Madsen TK, Plaza-Mayoral E, Kristoffersen HH, Chorkendorff I, Dalby KN, van der Stam W, Rossmeisl J, Escudero-Escribano M, Sebastián-Pascual P. Tailoring the facet distribution on copper with chloride. Chem Sci 2024; 15:1714-1725. [PMID: 38303937 PMCID: PMC10829013 DOI: 10.1039/d3sc05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Electrocatalytic reactions are sensitive to the catalyst surface structure. Therefore, finding methods to determine active surface sites with different geometry is essential to address the structure-electrocatalytic performance relationships. In this work, we propose a simple methodology to tune and quantify the surface structure on copper catalysts. We tailor the distribution and ratio of facets on copper by electrochemically oxidizing and reducing the surface in chloride-rich aqueous solutions. We then address the formation of new facets with voltammetric lead (Pb) underpotential deposition (UPD). We first record the voltammetric lead UPD on different single facets, which have intense peaks at different potential values. We use this data to decouple each facet peak-contribution in the lead (Pb) UPD curves of the tailored and multifaceted copper surfaces and determine the geometry of the active sites. We combine experiments with density functional theory (DFT) calculations to assess the ligand effect of chloride anions on the copper facet distribution during the surface oxidation/electrodeposition treatment. Our experiments and Wulff constructions suggest that chloride preferentially adsorbs on the (310) facet, reducing the number of (111) sites and inducing the growth of (310) or n(100) × (110) domains. Our work provides a tool to correlate active sites with copper geometries, which is needed to assess the structure-performance relationships in electrocatalysis. We also demonstrate an easy method for selectively tailoring the facet distribution of copper, which is essential to design a well-defined nanostructured catalyst.
Collapse
Affiliation(s)
- Pedro Mazaira Couce
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Thor Kongstad Madsen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Elena Plaza-Mayoral
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Henrik H Kristoffersen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark Fysikvej DK-2800 Lyngby Denmark
| | | | - Ward van der Stam
- Utrecht University, Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Netherlands
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - María Escudero-Escribano
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology UAB Campus, 08193 Bellaterra Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Paula Sebastián-Pascual
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
12
|
Fusek L, Samal PK, Keresteš J, Khalakhan I, Johánek V, Lykhach Y, Libuda J, Brummel O, Mysliveček J. A model study of ceria-Pt electrocatalysts: stability, redox properties and hydrogen intercalation. Phys Chem Chem Phys 2024; 26:1630-1639. [PMID: 37850575 DOI: 10.1039/d3cp03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The electrocatalytic properties of advanced metal-oxide catalysts are often related to a synergistic interplay between multiple active catalyst phases. The structure and chemical nature of these active phases are typically established under reaction conditions, i.e. upon interaction of the catalyst with the electrolyte. Here, we present a fundamental surface science (scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction) and electrochemical (cyclic voltammetry) study of CeO2(111) nanoislands on Pt(111) in blank alkaline electrolyte (0.1 M KOH) in a potential window between -0.05 and 0.9 VRHE. We observe a size- and preparation-dependent behavior. Large ceria nanoislands prepared at high temperatures exhibit stable redox behavior with Ce3+/Ce4+ electrooxidation/reduction limited to the surface only. In contrast, ceria nanoislands, smaller than ∼5 nm prepared at a lower temperature, undergo conversion into a fully hydrated phase with Ce3+/Ce4+ redox transitions, which are extended to the subsurface region. While the formation of adsorbed OH species on Pt depends strongly on the ceria coverage, the formation of adsorbed Hads on Pt is independent of the ceria coverage. We assign this observation to intercalation of Hads at the Pt/ceria interface. The intercalated Hads cannot participate in the hydrogen evolution reaction, resulting in the moderation of this reaction by ceria nanoparticles on Pt.
Collapse
Affiliation(s)
- Lukáš Fusek
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - Pankaj Kumar Samal
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
| | - Jiří Keresteš
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
| | - Ivan Khalakhan
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
| | - Viktor Johánek
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
| | - Yaroslava Lykhach
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - Jörg Libuda
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - Olaf Brummel
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - Josef Mysliveček
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
| |
Collapse
|
13
|
Li DH, Zhang XY, Lv JQ, Cai PW, Sun YQ, Sun C, Zheng ST. Photo-Activating Biomimetic Polyoxomolybdate for Boosting Oxygen Evolution in Neutral Electrolytes. Angew Chem Int Ed Engl 2023; 62:e202312706. [PMID: 37793987 DOI: 10.1002/anie.202312706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Inspired by the metal-oxo cluster structural feature and charge separation behaviour of the oxygen evolving center (OEC) in photosystem II (PS-II) under photoirradiation, a new crystalline photochromic polyoxomolybdate, MV2 [β-Mo8 O26 ] (1, MV=methyl viologen cation), is designed as a biomimetic oxygen evolution reaction (OER) catalyst in neutral electrolytes. After photoinduced electron transfer (PIET) with colour change from colourless to grey, it remains in an ultra-stable charge-separated state over a year under ambient conditions. The observed overpotential at 10 mA ⋅ cm-2 and Tafel slope decrease by 49 mV and 62.8 mV ⋅ dec-1 after coloration, respectively. The outstanding OER performance of the coloured state in neutral electrolytes even outperforms the commercial RuO2 benchmark. Experimental and theoretical studies show that oxygen holes within polyanions after irradiation serve as sites for enhancing direct O-O coupling, thus effectively promoting OER. This is the first successful application of electron-transfer photochromism to realize OER activity gain.
Collapse
Affiliation(s)
- Da-Huan Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiang-Quan Lv
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian, 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
14
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Yoo SH, Aota LS, Shin S, El-Zoka AA, Kang PW, Lee Y, Lee H, Kim SH, Gault B. Dopant Evolution in Electrocatalysts after Hydrogen Oxidation Reaction in an Alkaline Environment. ACS ENERGY LETTERS 2023; 8:3381-3386. [PMID: 37588014 PMCID: PMC10425978 DOI: 10.1021/acsenergylett.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
Introduction of interstitial dopants has opened a new pathway to optimize nanoparticle catalytic activity for, e.g., hydrogen evolution/oxidation and other reactions. Here, we discuss the stability of a property-enhancing dopant, B, introduced through the controlled synthesis of an electrocatalyst Pd aerogel. We observe significant removal of B after the hydrogen oxidation reaction. Ab initio calculations show that the high stability of subsurface B in Pd is substantially reduced when H is adsorbed/absorbed on the surface, favoring its departure from the host nanostructure. The destabilization of subsurface B is more pronounced, as more H occupies surface sites and empty interstitial sites. We hence demonstrate that the H2 fuel itself favors the microstructural degradation of the electrocatalyst and an associated drop in activity.
Collapse
Affiliation(s)
- Su-Hyun Yoo
- Max-Planck
Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Department
of Materials, Imperial College London, SW7 2AZ London, United Kingdom
| | | | - Sangyong Shin
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ayman A. El-Zoka
- Department
of Materials, Imperial College London, SW7 2AZ London, United Kingdom
| | - Phil Woong Kang
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yonghyuk Lee
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Hyunjoo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se-Ho Kim
- Max-Planck
Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Baptiste Gault
- Max-Planck
Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Department
of Materials, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
16
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
17
|
Edgington J, Seitz LC. Advancing the Rigor and Reproducibility of Electrocatalyst Stability Benchmarking and Intrinsic Material Degradation Analysis for Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
18
|
van der Heijden O, Park S, Eggebeen JJJ, Koper MTM. Non-Kinetic Effects Convolute Activity and Tafel Analysis for the Alkaline Oxygen Evolution Reaction on NiFeOOH Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202216477. [PMID: 36533712 PMCID: PMC10108042 DOI: 10.1002/anie.202216477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
A large variety of nickel-based catalysts has been investigated for the oxygen evolution reaction (OER) in alkaline media. However, their reported activity, as well as Tafel slope values, vary greatly. To understand this variation, we studied electrodeposited Ni80 Fe20 OOH catalysts with different loadings at varying rotation rates, hydroxide concentrations, with or without sonication. We show that, at low current density (<5 mA cm-2 ), the Tafel slope value is ≈30 mV dec-1 for Ni80 Fe20 OOH. At higher polarization, the Tafel slope continuously increases and is dependent on rotation rate, loading, hydroxide concentration and sonication. These Tafel slope values are convoluted by non-kinetic effects, such as bubbles, potential-dependent changes in ohmic resistance and (internal) OH- gradients. As best practise, we suggest that Tafel slopes should be plotted vs. current or potential. In such a plot, it can be appreciated if there is a kinetic Tafel slope or if the observed Tafel slope is influenced by non-kinetic effects.
Collapse
Affiliation(s)
- Onno van der Heijden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sunghak Park
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jordy J J Eggebeen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Ejsmont A, Kadela K, Grzybek G, Darvishzad T, Słowik G, Lofek M, Goscianska J, Kotarba A, Stelmachowski P. Speciation of Oxygen Functional Groups on the Carbon Support Controls the Electrocatalytic Activity of Cobalt Oxide Nanoparticles in the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5148-5160. [PMID: 36657620 PMCID: PMC9906611 DOI: 10.1021/acsami.2c18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The effective use of the active phase is the main goal of the optimization of supported catalysts. However, carbon supports do not interact strongly with metal oxides, thus, oxidative treatment is often used to enhance the number of anchoring sites for deposited particles. In this study, we set out to investigate whether the oxidation pretreatment of mesoporous carbon allows the depositing of a higher loading and a more dispersed cobalt active phase. We used graphitic ordered mesoporous carbon obtained by a hard-template method as active phase support. To obtain different surface concentrations and speciation of oxygen functional groups, we used a low-temperature oxygen plasma. The main methods used to characterize the studied materials were X-ray photoelectron spectroscopy, transmission electron microscopy, and electrocatalytic tests in the oxygen evolution reaction. We have found that the oxidative pretreatment of mesoporous carbon influences the speciation of the deposited cobalt oxide phase. Moreover, the activity of the electrocatalysts in oxygen evolution is positively correlated with the relative content of the COO-type groups and negatively correlated with the C═O-type groups on the carbon support. Furthermore, the high relative content of COO-type groups on the carbon support is correlated with the presence of well-dispersed Co3O4 nanoparticles. The results obtained indicate that to achieve a better dispersed and thus more catalytically active material, it is more important to control the speciation of the oxygen functional groups rather than to maximize their total concentration.
Collapse
Affiliation(s)
- Aleksander Ejsmont
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Karolina Kadela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Gabriela Grzybek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Termeh Darvishzad
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Grzegorz Słowik
- Department
of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031Lublin, Poland
| | - Magdalena Lofek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Joanna Goscianska
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Paweł Stelmachowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| |
Collapse
|
20
|
Qiu Y, Xie Z, Gao S, Cao H, Zhang S, Liu Q, Liu X, Luo J. Nitrogen Defects in Porous Carbons with Adjacent Silver Nanoclusters for Efficient CO
2
Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuan Qiu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Zhongyuan Xie
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Sanshuang Gao
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Shusheng Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Qian Liu
- Institute for Advanced Study Chengdu University Chengdu 610106 Sichuan China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials School of Resource Environments and Materials Guangxi University Nanning 530004 China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
21
|
Christensen O, Zhao S, Sun Z, Bagger A, Lauritsen JV, Pedersen SU, Daasbjerg K, Rossmeisl J. Can the CO 2 Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | - Siqi Zhao
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Zhaozong Sun
- iNano, Aarhus University, Gustav Wieds Vej 14, Aarhus8000, Denmark
| | - Alexander Bagger
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | | | | | - Kim Daasbjerg
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| |
Collapse
|
22
|
Mapping the kinetics of hydrogen evolution reaction on Ag via pseudo-single-crystal scanning electrochemical cell microscopy. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Feng Y, Chen L, Yuan ZY. Recent Advances in Transition Metal Layered Double Hydroxide Based Materials as Efficient Electrocatalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Moździerz M, Świerczek K, Dąbrowa J, Gajewska M, Hanc A, Feng Z, Cieślak J, Kądziołka-Gaweł M, Płotek J, Marzec M, Kulka A. High-Entropy Sn 0.8(Co 0.2Mg 0.2Mn 0.2Ni 0.2Zn 0.2) 2.2O 4 Conversion-Alloying Anode Material for Li-Ion Cells: Altered Lithium Storage Mechanism, Activation of Mg, and Origins of the Improved Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42057-42070. [PMID: 36094407 PMCID: PMC9501916 DOI: 10.1021/acsami.2c11038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Benefits emerging from applying high-entropy ceramics in Li-ion technology are already well-documented in a growing number of papers. However, an intriguing question may be formulated: how can the multicomponent solid solution-type material ensure stable electrochemical performance? Utilizing an example of nonequimolar Sn-based Sn0.8(Co0.2Mg0.2Mn0.2Ni0.2Zn0.2)2.2O4 high-entropy spinel oxide, we provide a comprehensive model explaining the observed very good cyclability. The material exhibits a high specific capacity above 600 mAh g-1 under a specific current of 50 mA g-1 and excellent capacity retention near 100% after 500 cycles under 200 mA g-1. The stability originates from the conversion-alloying reversible reactivity of the amorphous matrix, which forms during the first lithiation from the initial high-entropy structure, and preserves the high level of cation disorder at the atomic scale. In the altered Li-storage mechanism in relation to the simple oxides, the unwanted aggregated metallic grains are not exsolved from the anode and therefore do not form highly lithiated phases characterized by large volumetric changes. Also, the electrochemical activity of Mg from the oxide matrix can be clearly observed. Because the studied compound was prepared by a conventional solid-state route, implementation of the presented approach is facile and appears usable for any oxide anode material containing a high-entropy mixture of elements.
Collapse
Affiliation(s)
- Maciej Moździerz
- Faculty
of Energy and Fuels, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Konrad Świerczek
- Faculty
of Energy and Fuels, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
- AGH
Centre of Energy, AGH University of Science
and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland
| | - Juliusz Dąbrowa
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Anna Hanc
- Faculty
of Energy and Fuels, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Zhenhe Feng
- State
Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, No. 2965 Dongchuan Road, Shanghai 200245, China
| | - Jakub Cieślak
- Faculty of
Physics and Applied Computer Science, AGH
University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mariola Kądziołka-Gaweł
- Institute
of Physics, University of Silesia, ul. 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Justyna Płotek
- Faculty
of Energy and Fuels, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mateusz Marzec
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Andrzej Kulka
- Faculty
of Energy and Fuels, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
25
|
Godeffroy L, Lemineur JF, Shkirskiy V, Miranda Vieira M, Noël JM, Kanoufi F. Bridging the Gap between Single Nanoparticle Imaging and Global Electrochemical Response by Correlative Microscopy Assisted By Machine Vision. SMALL METHODS 2022; 6:e2200659. [PMID: 35789075 DOI: 10.1002/smtd.202200659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, 75013, Paris, France
| | | |
Collapse
|
26
|
Cong Y, Shen L, Wang B, Cao J, Pan Z, Wang Z, Wang K, Li Q, Li X. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling. WATER RESEARCH 2022; 222:118919. [PMID: 35933816 DOI: 10.1016/j.watres.2022.118919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of toxic hexavalent chromium (Cr(VI)) under alkaline conditions is still a challenge due to the relatively low reactivity of CrO42-. This study proposed a new sulfite/iodide/UV process to remove Cr(VI). The removal of Cr(VI) followed pseudo-zero-order kinetics at alkaline pHs, and was enhanced by sulfite and iodide with synergy. Compared with sulfite/UV, iodide in sulfite/iodide/UV showed about 40 times higher concentration-normalized enhancement for Cr(VI) removal, and reduced the requirement of sulfite ([S(IV)]0/[Cr(VI)]0 of about 2.1:1) by more than 90%. The Cr(VI) removal was accelerated by decreasing pH and by increasing temperature, and was slightly influenced by dissolved oxygen, carbonate, and humic acid. The process was still effective in real surface water and industrial wastewater. Mechanism and pathways of Cr(VI) removal were revealed by quenching experiments, competition kinetic analysis, product identification and quantification, and mass and electron balance. Both eaq- and SO3•- were responsible for Cr(VI) removal, making contributions of about 75% and 25%, respectively. When eaq- mainly reacted with Cr(VI), SO3•- participated in reduction of Cr(V) and Cr(IV) intermediates, with Cr(III), S2O62-, and SO42- as the final products. A model was developed to predict removal kinetics of Cr(VI), and well interpreted the roles of S(IV) and iodide in the process. This study sheds light on mechanism of Cr(VI) removal at alkaline pHs by kinetic modeling, and thus advances the applicability of this promising process for water decontamination.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lidong Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Baimei Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianlai Cao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ziyu Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kai Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiangbiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
27
|
Gutiérrez-Sánchez O, de Mot B, Bulut M, Pant D, Breugelmans T. Engineering Aspects for the Design of a Bicarbonate Zero-Gap Flow Electrolyzer for the Conversion of CO 2 to Formate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30760-30771. [PMID: 35764406 DOI: 10.1021/acsami.2c05457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 electrolyzers require gaseous CO2 or saturated CO2 solutions to achieve high energy efficiency (EE) in flow reactors. However, CO2 capture and delivery to electrolyzers are in most cases responsible for the inefficiency of the technology. Recently, bicarbonate zero-gap flow electrolyzers have proven to convert CO2 directly from bicarbonate solutions, thus mimicking a CO2 capture medium, obtaining high Faradaic efficiency (FE) and partial current density (CD) toward carbon products. However, since bicarbonate electrolyzers use a bipolar membrane (BPM) as a separator, the cell voltage (VCell) is high, and the system becomes less efficient compared to analogous CO2 electrolyzers. Due to the role of the bicarbonate both as a carbon donor and proton donor (in contrast to gas-fed CO2 electrolyzers), optimization by using know-how from conventional gas-fed CO2 electrolyzers is not valid. In this study, we have investigated how different engineering aspects, widely studied for upscaling gas-fed CO2 electrolyzers, influence the performance of bicarbonate zero-gap flow electrolyzers when converting CO2 to formate. The temperature, flow rate, and concentration of the electrolyte are evaluated in terms of FE, productivity, VCell, and EE in a broad range of current densities (10-400 mA cm-2). A CD of 50 mA cm-2, room temperature, high flow rate (5 mL cm-2) of the electrolyte, and high carbon load (KHCO3 3 M) are proposed as potentially optimal parameters to benchmark a design to achieve the highest EE (27% is obtained this way), one of the most important criteria when upscaling and evaluating carbon capture and conversion technologies. On the other hand, at high CD (>300 mA cm-2), low flow rate (0.5 mL cm-2) has the highest interest for downstream processing (>40 g L-1 formate is obtained this way) at the cost of a low EE (<10%).
Collapse
Affiliation(s)
- Oriol Gutiérrez-Sánchez
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Bert de Mot
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Metin Bulut
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Zwijnaarde, Belgium
| | - Tom Breugelmans
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Zwijnaarde, Belgium
| |
Collapse
|
28
|
Singstock NR, Musgrave CB. How the Bioinspired Fe 2Mo 6S 8 Chevrel Breaks Electrocatalytic Nitrogen Reduction Scaling Relations. J Am Chem Soc 2022; 144:12800-12806. [PMID: 35816127 DOI: 10.1021/jacs.2c03661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrogen reduction reaction (NRR) is a renewable alternative to the energy- and CO2-intensive Haber-Bosch NH3 synthesis process but is severely limited by the low activity and selectivity of studied electrocatalysts. The Chevrel phase Fe2Mo6S8 has a surface Fe-S-Mo coordination environment that mimics the nitrogenase FeMo-cofactor and was recently shown to provide state-of-the-art activity and selectivity for NRR. Here, we elucidate the previously unknown NRR mechanism on Fe2Mo6S8 via grand-canonical density functional theory (GC-DFT) that realistically models solvated and biased surfaces. Fe sites of Fe2Mo6S8 selectively stabilize the key *NNH intermediate via a narrow band of free-atom-like surface d-states that selectively hybridize with p-states of *NNH, which results in Fe sites breaking NRR scaling relationships. These sharp d-states arise from an Fe-S bond dissociation during N2 adsorption that mimics the mechanism of the nitrogenase FeMo-cofactor. Furthermore, we developed a new GC-DFT-based approach for calculating transition states as a function of bias (GC-NEB) and applied it to produce a microkinetic model for NRR at Fe2Mo6S8 that predicts high activity and selectivity, in close agreement with experiments. Our results suggest new design principles that may identify effective NRR electrocatalysts that minimize the barriers for *N2 protonation and *NH3 desorption and that may be broadly applied to the rational discovery of stable, multinary electrocatalysts for other reactions where narrow bands of surface d-states can be tuned to selectively stabilize key reaction intermediates and guide selectivity toward a target product. Furthermore, our results highlight the importance of using GC-DFT and GC-NEB to accurately model electrocatalytic reactions.
Collapse
Affiliation(s)
- Nicholas R Singstock
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
29
|
Coronas M, Holade Y, Cornu D. Review of the Electrospinning Process and the Electro-Conversion of 5-Hydroxymethylfurfural (HMF) into Added-Value Chemicals. MATERIALS 2022; 15:ma15124336. [PMID: 35744395 PMCID: PMC9229014 DOI: 10.3390/ma15124336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Electrochemical converters (electrolyzers, fuel cells, and batteries) have gained prominence during the last decade for the unavoidable energy transition and the sustainable synthesis of platform chemicals. One of the key elements of these systems is the electrode material on which the electrochemical reactions occur, and therefore its design will impact their performance. This review focuses on the electrospinning method by examining a number of features of experimental conditions. Electrospinning is a fiber-spinning technology used to produce three-dimensional and ultrafine fibers with tunable diameters and lengths. The thermal treatment and the different analyses are discussed to understand the changes in the polymer to create usable electrode materials. Electrospun fibers have unique properties such as high surface area, high porosity, tunable surface properties, and low cost, among others. Furthermore, a little introduction to the 5-hydroxymethylfurfural (HMF) electrooxidation coupled to H2 production was included to show the benefit of upgrading biomass derivates in electrolyzers. Indeed, environmental and geopolitical constraints lead to shifts towards organic/inorganic electrosynthesis, which allows for one to dispense with polluting, toxic and expensive reagents. The electrooxidation of HMF instead of water (OER, oxygen evolution reaction) in an electrolyzer can be elegantly controlled to electro-synthesize added-value organic chemicals while lowering the required energy for CO2-free H2 production.
Collapse
|
30
|
Pang X, Zhao H, Huang Y, Liu Y, Bai H, Fan W, Shi W. In Situ Electrochemical Reconstitution of CF-CuO/CeO 2 for Efficient Active Species Generation. Inorg Chem 2022; 61:8940-8954. [PMID: 35653625 DOI: 10.1021/acs.inorgchem.2c01338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Achievement of the intrinsic activity by in situ electrochemical reconstruction has been becoming a great challenge for designing a catalyst. Herein, an effective electrochemical strategy is proposed to reconstruct the surface of the CF-CuO/CeO2 precursor. Under the stimulation of oxidative/reductive potential, abundant active sites were successfully generated on the surface of CF-CuO/CeO2. Remarkably, the implantation of oxygen vacancy-rich CeO2 synergistically optimizes the chemical composition and electronic structure of CF-CuO/CeO2, greatly promoting the generation of active species. Systematic electrochemical experiments indicate that the superior catalytic performance of reconstructed CF-CuO/CeO2 could be attributed to CuOOH/CeO2 and Cu2O/Ce2O3 active species, respectively. The oxidative-/reductive-activated CF-CuO/CeO2 was further employed in a paired cell for the synergistic catalysis of hydroxymethylfurfural oxidation with 4-nitrophenol hydrogenation. As a result, nearly 100% Faraday efficiency for furandicarboxylic acid/4-aminophenol production was achieved in the paired system (-0.9 V vs Ag/AgCl, 1.5 h). Therefore, the electrochemical reconstruction via oxidative/reductive activation has been confirmed as a feasible approach to significantly excite the intrinsic activity of a catalyst.
Collapse
Affiliation(s)
- Xuliang Pang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaiquan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yifei Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Youchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
31
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|