1
|
Zhao J, Han W, Chen J, Meng Y, Hao B, Liu X, Wang T, Li X. Nanoarchitectured Fe 3C@N-Doped C/FeVO 4 as High-Performance Anode for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406583. [PMID: 39344578 DOI: 10.1002/smll.202406583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Ferric vanadate exhibits potential as an attractive anode material for sodium-ion batteries (SIBs) due to the multiple oxidation states of vanadium and natural abundances of iron. However, the design and fabrication of high-performance ferric vanadate-based SIB anode materials with unique composite nanostructures are still challenging. Herein, a facile self-template method is reported to synthesize 1D nanostructured Fe3C@N-doped C/FeVO4 (Fe3C@NC/FeVO4) anode materials by the combination of morphology regulation with hybrid composite construction, for the first time. To this end, a 1D Fe, N-doped carbon nanotube (FeNC) is used as a template, followed by etching and re-growth to obtain the 1D Fe3C@N-doped C/FeVO4 nanostructure. The introduction of Fe3C can improve its electronic conductivity and enhance capacitive behavior. Additionally, the 1D nanostructure can effectively shorten the ions transport path and alleviate volume expansion during the charge-discharge processes. With these advantages, the SIBs using such anodes show a remarkable rate performance with a capacity of 325.4 mAh g-1 at 0.1 A g-1, 150.6 mAh g-1 at 5 A g-1, and excellent cycling stability with a reversible capacity of 139.6 mAh g-1 at 1 A g-1 after 1500 cycles. This work offers a new strategy for the future development of SIBs with ferric vanadate-based anode.
Collapse
Affiliation(s)
- Jinghao Zhao
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Han
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Chen
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Meng
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Baoqin Hao
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoxiao Liu
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Tiantian Wang
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Li
- State Key Laboratory of Space Power-Sources, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Chu P, Zhang L, Wang Z, Wei L, Liu Y, Dai H, Guo G, Duan E, Zhao Z, Deng J. Regulation Lattice Oxygen Mobility via Dual Single Atoms for Simultaneously Enhancing VOC Oxidation and NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17475-17484. [PMID: 39283811 DOI: 10.1021/acs.est.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Synergistic catalytic removal of multipollutants (e.g., volatile organic compound (VOC) oxidation and nitrogen oxide (NOx) reduction) is highly demanded due to the increasingly strict emission standards. The prevention of the key reactive intermediate species nitrite excessive oxidation over the supported noble-metal catalysts, rather than the traditional low-efficiency transition metal oxide catalysts, remains a great challenge. Herein, a sound strategy of Pd single atoms saturated with acidic transition element ligands is proposed. The coexistence of Pd and V dual single atoms strengthens the adsorption of reactants, while synergistic interaction between dual atoms and surface oxygen weakens activation of lattice oxygen, thus significantly reducing the overoxidation of nitrite. Meanwhile, the neutralization of the active Pd and inert V sites results in a rational decrease in the redox property of Pd and an obvious increase in that of V. The Pd1V1/CeO2 dual single-atom catalyst achieves 90% conversion of NOx and toluene at 238 and 230 °C and has a large temperature window (>150 °C) for NOx reduction. This research makes a breakthrough in the development of efficient supported noble-/transition-metal dual single-atom catalysts for VOC and NOx simultaneous purification.
Collapse
Affiliation(s)
- Peiqi Chu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Long Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang,Hebei 050018, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Yuan X, Wang Y, Zhu X, Zhou B, Song Z, Chen Z, Peng Y, Si W, Li J. Promoting C-Cl Bond Activation via a Preoccupied Anchoring Strategy on Vanadia-Based Catalysts for Multi-Pollutant Control of NO x and Chlorinated Aromatics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16357-16367. [PMID: 39219475 DOI: 10.1021/acs.est.4c06220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Regulating vanadia-based oxides has been widely utilized for fabricating effective difunctional catalysts for the simultaneous elimination of NOx and chlorobenzene (CB). However, the notorious accumulation of polychlorinated species and excessively strong NH3 adsorption on the catalysts lead to the deterioration of multipollutant control (MPC) activity. Herein, protonated sulfate (-HSO4) supported on vanadium-titanium catalysts via a preoccupied anchoring strategy are designed to prevent polychlorinated species and alleviate NH3 adsorption for the multipollutant control. The obtained catalysts with -HSO4 modification achieve an excellent NOx and CB conversion with turnover frequency values of ∼ 3.63 and 17.7 times higher than those of the pristine, respectively. The protonated sulfate promotes the formation of polymeric vanadyl with a higher chemical state and d-band center of V. The modulated catalysts not only substantially alleviate the competitive adsorption of multipollutant via the "V 3d-O 2p-S 3p" network, but also distinctly strengthen the Brønsted acid sites. Besides, the introduced proton donor of the -HSO4 connecting polymeric structure could markedly reduce the reaction barrier of breaking the C-Cl bond. This work paves an advanced way for low-loading vanadium SCR catalysts to achieve highly efficient NOx and CB oxidation at a low temperature.
Collapse
Affiliation(s)
- Xing Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiao Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zijian Song
- China National Institute of Standardization, Beijing 100191, China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Liu Z, Xu H, Fan Y, Huang W, Yu F, Qu Z, Yan N. Asymmetric Coordination of Single-Atom Ru Sites Achieves Efficient N(sp 3)-H Dehydrogenation Catalysis for Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10717-10728. [PMID: 38847549 DOI: 10.1021/acs.est.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.
Collapse
Affiliation(s)
- Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Wang F, Chen A, Lan T, Chen X, Wang M, Hu X, Wang P, Cheng D, Zhang D. Synergistic catalytic removal of NO x and chlorinated organics through the cooperation of different active sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133722. [PMID: 38367433 DOI: 10.1016/j.jhazmat.2024.133722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The synergistic removal of NOx and chlorinated volatile organic compounds (CVOCs) has become the hot topic in the field of environmental catalysis. However, due to the trade-off effects between catalytic reduction of NOx and catalytic oxidation of CVOCs, it is indispensable to achieve well-matched redox property and acidity. Herein, synergistic catalytic removal of NOx and chlorobenzene (CB, as the model of CVOCs) has been originally demonstrated over a Co-doped SmMn2O5 mullite catalyst. Two kinds of Mn-Mn sites existed in Mn-O-Mn-Mn and Co-O-Mn-Mn sites were constructed, which owned gradient redox ability. It has been demonstrated that the cooperation of different active sites can achieve the balanced redox and acidic property of the SmMn2O5 catalyst. It is interesting that the d band center of Mn-Mn sites in two different sites was decreased by the introduction of Co, which inhibited the nitrate species deposition and significantly improved the N2 selectivity. The Co-O-Mn-Mn sites were beneficial to the oxidation of CB and it cooperates with Mn-O-Mn-Mn to promote the synergistic catalytic performance. This work paves the way for synergistic removal of NOx and CVOCs over cooperative active sites in catalysts.
Collapse
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Mengxue Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Zhao H, Meng P, Gao S, Wang Y, Sun P, Wu Z. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167553. [PMID: 37802335 DOI: 10.1016/j.scitotenv.2023.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
NOx and volatile organic compounds (VOCs) are two major pollutants commonly found in industrial flue gas emissions. They play a significant role as precursors in the formation of ozone and fine particulate matter (PM2.5). The simultaneous removal of NOx and VOCs is crucial in addressing ozone and PM2.5 pollution. In terms of investment costs and space requirements, the development of bifunctional catalysts for the simultaneous selective catalytic reduction (SCR) of NOx and catalytic oxidation of VOCs emerges as a viable technology that has garnered considerable attention. This review provides a summary of recent advances in catalysts for the simultaneous removal of NOx and VOCs. It discusses the reaction mechanisms and interactions involved in NH3-SCR and VOCs catalytic oxidation, the effects of catalyst acidity and redox properties. The insufficiency of bifunctional catalysts was pointed out, including issues related to catalytic activity, product selectivity, catalyst deactivation, and environmental concerns. Subsequently, potential solutions are presented to enhance catalyst performance, such as optimizing the redox properties and acidity, enhancing resistance to poisoning, substituting environment friendly metals and introducing hydrocarbon selective catalytic reduction (HC-SCR) reaction. Finally, some suggestions are given for future research directions in catalyst development are prospected.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pu Meng
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shan Gao
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yuejun Wang
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhou B, Bai B, Zhu X, Guo J, Wang Y, Chen J, Peng Y, Si W, Ji S, Li J. Insights into effects of grain boundary engineering in composite metal oxide catalysts for improving catalytic performance. J Colloid Interface Sci 2024; 653:1177-1187. [PMID: 37788585 DOI: 10.1016/j.jcis.2023.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Volatile Organic Compounds (VOCs) have long been a threat to human health. However, designing economical and efficient transition metal composite oxide catalysts for VOCs purification remains a challenge. Herein, this study demonstrates the enormous potential of grain boundary engineering in facilitating VOCs decomposition over ordered mesoporous composite oxide denoted as 3D-MnxCoy (x, y = 1, 3, 5, 7, 9). Specifically, the three-dimensional (3D) Mn7Co1 catalyst shows 100% ethyl acetate removal efficiency for a continuous airflow containing 1000 ppm ethyl acetate over 60000 h-1 space velocity at 160 °C. Mechanism study suggests that the high catalytic performance originates from the lattice distortion caused by the introduction of heteroatoms, along with the size effect of nanopore walls, which leads to the formation of various grain boundaries on the catalyst surface. The presence of grain boundaries facilitates the generation of oxygen vacancies, thus promoting the migration and activation of oxygen species. Furthermore, the near-atmospheric pressure X-ray photoelectron spectroscopy (NAP- XPS) monitoring results reveal that the bimetallic synergy enhanced by grain boundary accelerates the catalytic reaction rate of VOCs through Mn3++Co3+↔Mn4++Co2+ redox cycle. This study may shed light on the great potential of ordered mesoporous bimetallic oxide catalysts in VOCs pollution control.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingyang Bai
- State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaofeng Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingjie Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Dong C, Yang C, Ren Y, Sun H, Wang H, Xiao J, Qu Z. Local Electron Environment Regulation of Spinel CoMn 2O 4 Induced Effective Reactant Adsorption and Transformation of Lattice Oxygen for Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21888-21897. [PMID: 38081063 DOI: 10.1021/acs.est.3c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In contrast to numerous studies on oxygen species, the interaction of volatile organic compounds (VOCs) with oxides is also critical to the catalytic reaction but has hardly been considered. Herein, we develop a highly efficient Pt atom doped spinel CoMn2O4 (Pt-CoMn) for oxidation of toluene at low temperature, and the toluene conversion rate increased by 18.3 times (129.7 versus 7.1 × 10-11 mol/(m2·s)) at 160 °C compared to that of CoMn2O4. Detailed characterizations and density functional theory calculations reveal that the local electron environment of the Co sites is changed after Pt doping, and the formed electron-deficient Co sites in turn strengthen the interaction with toluene. Adsorbed toluene will react with lattice oxygen in Pt-CoMn and CoMn catalysts and convert into benzoate intermediates, and the consumption rate of benzoate is closely related to the activation of gaseous oxygen. Significantly, the abundant bulk defects of Pt-CoMn help to open the reaction channel in the CoMn spinel, which acts as an oxygen pump to promote the transformation of bulk lattice oxygen into surface lattice oxygen at lower temperatures, thus accelerating the conversion rate of benzoate intermediates into CO2 and enhancing low-temperature combustion of toluene. Pt-CoMn developed here emphasizes the regulation of VOCs adsorption strength and lattice oxygen transformation processes on CoMn2O4 by adjusting the local electron environment, which will provide new guidance for the design of efficient oxide catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Chenyu Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hongchun Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jianping Xiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
9
|
Li Z, Xiao J, Gao Y, Gui R, Wang Q. Design of Bifunctional Cu-SSZ-13@Mn 2Cu 1Al 1O x Core-Shell Catalyst with Superior Activity for the Simultaneous Removal of VOCs and NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20326-20338. [PMID: 37955373 DOI: 10.1021/acs.est.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Synchronous control of volatile organic compounds (VOCs) and nitrogen oxides (NOx) is of great importance for ozone and PM2.5 pollution control. Balancing VOC oxidation and the NH3-SCR reaction is the key to achieving the simultaneous removal of these two pollutants. In this work, a vertically oriented Mn2Cu1Al1Ox nanosheet is grown in situ on the surface of Cu-SSZ-13 to synthesize a core-shell bifunctional catalyst (Cu-SSZ-13@Mn2Cu1Al1Ox) with multiple active sites. The optimized Cu-SSZ-13@Mn2Cu1Al1Ox catalyst delivered excellent performance for the simultaneous removal of VOCs and NOx with both 100% conversion at 300 °C in the presence of 5% water vapor. Physicochemical characterization and density functional theory (DFT) calculations revealed that Cu-SSZ-13@Mn2Cu1Al1Ox possesses more surface acidity and oxygen vacancies. The charge transfer between the core and shell is the intrinsic reason for the improved activity for both VOC and NOx removal. The molecular orbital theory is used to explain the different adsorption energies due to the different bonding modes between the core-shell and mixed individual catalysts. This work provides a novel strategy for designing efficient catalysts for the simultaneous removal of VOCs and NOx or other multiple pollutants.
Collapse
Affiliation(s)
- Zhe Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiewen Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanshan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Rongrong Gui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Zhao J, Li C, Yu Q, Zhu Y, Liu X, Li S, Liang C, Zhang Y, Huang L, Yang K, Zhang Z, Zhai Y. Interface engineering of Mn 3O 4/Co 3O 4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131249. [PMID: 36966624 DOI: 10.1016/j.jhazmat.2023.131249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Transition metal oxides have high photothermal conversion capacity and excellent thermal catalytic activity, and their photothermal catalytic ability can be further improved by reasonably inducing the photoelectric effect of semiconductors. Herein, Mn3O4/Co3O4 composites with S-scheme heterojunctions were fabricated for photothermal catalytic degradation of toluene under ultraviolet-visible (UV-Vis) light irradiation. The distinct hetero-interface of Mn3O4/Co3O4 effectively increases the specific surface area and promotes the formation of oxygen vacancies, thus facilitating the generation of reactive oxygen species and migration of surface lattice oxygen. Theoretical calculations and photoelectrochemical characterization demonstrate the existence of a built-in electric field and energy band bending at the interface of Mn3O4/Co3O4, which optimizes the photogenerated carriers' transfer path and retains a higher redox potential. Under UV-Vis light irradiation, the rapid transfer of electrons between interfaces promotes the generation of more reactive radicals, and the Mn3O4/Co3O4 shows a substantial improvement in the removal efficiency of toluene (74.7%) compared to single metal oxides (53.3% and 47.5%). Moreover, the possible photothermal catalytic reaction pathways of toluene over Mn3O4/Co3O4 were also investigated by in situ DRIFTS. The present work offers valuable guidance toward the design and fabrication of efficient narrow-band semiconductor heterojunction photothermal catalysts and provides deeper insights into the mechanism of photothermal catalytic degradation of toluene.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Qi Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Youcai Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caixia Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ying Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Le Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kuang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ziang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
11
|
Chen Y, Sun X, Zheng L, Liu Y, Zhao Y, Huang S, Li S. Synergistic catalysis induced by a multi-component system constructed by DBD plasma combined with α-Fe 2O 3/FeVO 4/HCP and peroxymonosulfate for gatifloxacin removal. CHEMOSPHERE 2023; 332:138838. [PMID: 37150453 DOI: 10.1016/j.chemosphere.2023.138838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The dielectric barrier discharge (DBD) multi-component system containing plasma, α-Fe2O3/FeVO4, and peroxymonosulfate (PMS) with high catalytic activity was successfully constructed. Thereinto, α-Fe2O3/FeVO4 was loaded on the honeycomb ceramic plate (HCP) surface (α-Fe2O3/FeVO4/HCP) and placed under the water surface below the discharge area. The catalytic activity was evaluated by the removal rate of gatifloxacin (GAT), and the DBD+α-Fe2O3/FeVO4+PMS system exhibited the optimal catalytic activity. The enhanced catalytic activity can be attributed to the fact that the occurrence of synergistic catalysis that simultaneously includes plasma oxidation, photocatalysis, PMS oxidation, O3 catalysis, and Fenton reaction. The effect of various initial degradation parameters including input power, PMS dosage, pH, etc. On GAT removal was investigated. DBD+α-Fe2O3/FeVO4+PMS system has a significant increase in the concentration of H2O2 and O3, and the role played in the multi-component system was analyzed. The identification and analysis of organic matters during GAT degradation were visualized with the help of 3D EEMs. HPLC-MS and theoretical calculations identified the major intermediates and further deduced the possible GAT degradation pathways. Additionally, the acute toxicity of the major intermediates was predicted by the QSAR model. Finally, the possible mechanisms of synergistic catalysis to enhance catalytic activity were discussed based on the characteristics of several advanced oxidation processes (AOPs) and the results of experimental and characterization. This work provides a feasible technical route and theoretical basis for wastewater treatment by plasma combined with other AOPs.
Collapse
Affiliation(s)
- Yongyang Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Lijiao Zheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yuan Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yimo Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shimeng Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shanping Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
12
|
Candy-like heterojunction nanocomposite of WO 3/Fe 2O 3-based semiconductor gas sensor for the detection of triethylamine. Mikrochim Acta 2023; 190:139. [PMID: 36930336 DOI: 10.1007/s00604-023-05699-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
A highly efficient gas sensor for the detection of triethylamine based on candy-like WO3/Fe2O3 nanocomposite was prepared. The control of morphology and sensing performance of n-n heterojunction WO3/Fe2O3 nanocomposites were successfully achieved by the modulation of Fe element content. When the ratio of Fe to W is 0.4, the candy-like nanocomposite of WO3/Fe2O3 with great performance is obtained. It is interesting that the candy-like nanocomposite of WO3/Fe2O3 with a large specific surface area exhibits better selectivity and sensitivity for sensing TEA gases at a lower operating temperature (260 °C) compared with the gas sensor prepared by using WO3 alone. To verify the feasibility, the sensing mechanism was investigated and real sample tests were conducted and discussed. Finally, a TEA gas sensor with low limit of detection, short response/recovery time (15/162 s), and high sensitivity was developed. In addition, the prepared gas sensor has satisfactory stability and selectivity and has practical application value.
Collapse
|
13
|
Shi Q, Shen B, Zhang X, Lyu H, Wang J, Li S, Kang D. Insights into synergistic oxidation mechanism of Hg 0 and chlorobenzene over MnCo 2O 4 microsphere with oxygen vacancy and acidic site. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130179. [PMID: 36270190 DOI: 10.1016/j.jhazmat.2022.130179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The simultaneous control of Hg0 and chlorinated organics has become the frontier of environmental engineering but still lacks the understanding of synergistic oxidation mechanism. Herein, we designed a Mn-Co catalyst with abundant oxygen vacancies and acidities, which delivered more than 90 % oxidation performance of Hg0 within 100-325 °C and achieved 90 % conversion of chlorobenzene at 220 °C. A synergistic effect was observed in the oxidation of Hg0 and chlorobenzene. Experimental and computational results revealed that Lewis acid over Mn site weakened C-Cl bands of chlorobenzene by electronic traction. The strong interaction between adsorbed mercury and Cl further promoted dechlorination process to generate HgCl2 gas, while accelerating the nucleophilic substitution of Brønsted acid attacking the benzene ring over Co site, consequently triggering synergistic oxidation of Hg0 and chlorobenzene. Oxygen vacancies enhanced the initial adsorption of Hg0 and chlorobenzene. Meanwhile, the interfacial charge-transfer from Hg-d to Cl-p orbitals alleviated deactivation of Lewis acid and slowed down the consumption of Brønsted acid, which accelerated the conversion of intermediates to CO2/H2O and promoted deep oxidation of chlorobenzene. This work provides a unique insight into the promotion of the synergistic oxidation of Hg0 and chlorobenzene and is expected to guide the industrial applications.
Collapse
Affiliation(s)
- Qiqi Shi
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiao Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jianqiao Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Shuhao Li
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Dongrui Kang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
14
|
Zhang Y, Zhang M, Zang Y, Wang H, Liu C, Wei L, Wang Y, He L, Wang W, Zhang Z, Han R, Ji N, Song C, Lu X, Ma D, Sun Y, Liu Q. Elimination of NH 3 by Interfacial Charge Transfer over the Ag/CeSnO x Tandem Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Min Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yuchao Zang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Huijun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Liehao Wei
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yuhe Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Lijun He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Weichao Wang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation & Pollution Control, MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People’s Republic of China
| | - Ziyin Zhang
- Langfang City Beichen Entrepreneurship Resin Materials Incorporated Company, Langfang 065000, China
- Hebei Province New Resin Material Technology Innovation Center, Langfang 065000, People’s Republic of China
- New Catalytic Materials Engineering Research Center for Air Pollutant Control, Langfang 065000, People’s Republic of China
| | - Rui Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yanrong Sun
- College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, People’s Republic of China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| |
Collapse
|
15
|
He Y, Qian J, Wang P, Lu B, Tang S, Li J, Liu Y, Gao P. Modulating cobalt-iron electron transfer via encapsulated structure for enhanced catalytic activity in photo-peroxymonosulfate coupling system. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129609. [PMID: 35870209 DOI: 10.1016/j.jhazmat.2022.129609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jianfeng Li
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China; Zhejiang Huadong Eco-Environmental Engineering Institute, Hangzhou, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
16
|
Song Z, Peng Y, Zhao X, Liu H, Gao C, Si W, Li J. Roles of Ru on the V 2O 5–WO 3/TiO 2 Catalyst for the Simultaneous Purification of NO x and Chlorobenzene: A Dechlorination Promoter and a Redox Inductor. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zijian Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Zhao
- Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|