1
|
Guan Y, Kümper J, Kumari S, Heiming N, Mürtz SD, Steinmann SN, Palkovits S, Palkovits R, Sautet P. Probing the Electric Double-Layer Capacitance to Understand the Reaction Environment in Conditions of Electrochemical Amination of Acetone. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39746032 DOI: 10.1021/acsami.4c14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes. In this study, initial investigations employed impedance spectroscopy at the potential of zero charge to explore the surface preconfiguration. Here, the capacitance of the EDL was utilized as a primary descriptor to analyze the adsorption tendencies of both acetone and methylamine. Acetone shows an increase in the EDL capacitance, while methylamine shows a decrease. Experiments are interpreted using combined grand canonical density functional theory and ab initio molecular dynamics to delve into the microscopic configurations, focusing on their capacitance and polarizability. Methylamine and acetone have larger molecular polarizability than water. Acetone shows a partial hydrophobic character due to the methyl groups, forming a distinct adlayer at the interface and increasing the polarizability of the liquid interface component. In contrast, methylamine interacts more strongly with water due to its ability to both donate and accept hydrogen bonds, leading to a more significant disruption of the hydrogen bond network. This disruption of the hydrogen network decreases the local polarizability of the interface and decreases the effective capacitance. Our findings underscore the pivotal role of EDL capacitance and polarizability in determining the local reaction environment, shedding light on the fundamental processes important for electro-catalysis.
Collapse
Affiliation(s)
- Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Nick Heiming
- Chair of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Stephan N Steinmann
- CNRS, Laboratoire de Chimie UMR 5182, ENS de Lyon, 46 allée d'Italie, Lyon F-69342, France
| | - Stefan Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich, Marie-Curie-Str. 5, 52428 Jülich, Germany
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Bin Jassar M, Yao Q, Siro Brigiano F, Chen W, Pezzotti S. Chemistry at Oxide/Water Interfaces: The Role of Interfacial Water. J Phys Chem Lett 2024; 15:11961-11968. [PMID: 39579133 DOI: 10.1021/acs.jpclett.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Oxide-water interfaces host many chemical reactions in nature and industry. There, reaction free energies markedly differ from those of the bulk. While we can experimentally and theoretically measure these changes, we are often unable to address the fundamental question: what catalyzes these reactions? Recent studies suggest that surface and electrostatic contributions are an insufficient answer. The interface modulates chemistry in subtle ways. Revealing them is essential to understanding interfacial reactions, hence improving industrial processes. Here, we introduce a thermodynamic approach combined with cavitation free energy analysis to disentangle the driving forces at play. We find that water dictates chemistry via large variations of cavitation free energies across the interface. The resulting driving forces are both large enough to determine reaction output and highly tunable by adjusting interface composition, as showcased for silica-water interfaces. These findings shift the focus from common interpretations based on surface and electrostatics and open exciting perspectives for regulating interfacial chemistry.
Collapse
Affiliation(s)
- Mohammed Bin Jassar
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Qiwei Yao
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Flavio Siro Brigiano
- Laboratoire de Chimie Theorique, Sorbonne Universite, UMR 7616, CNRS, 75005 Paris, France
| | - Wanlin Chen
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Qin X, Li J, Jiang TW, Ma XY, Jiang K, Yang B, Chen S, Cai WB. Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective. Nat Commun 2024; 15:7509. [PMID: 39209883 PMCID: PMC11362458 DOI: 10.1038/s41467-024-51926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Heterogeneous thermocatalysis of formic acid dehydrogenation by metals in solution is of great importance for chemical storage and production of hydrogen. Insightful understanding of the complicated formic acid dehydrogenation kinetics at the metal-solution interface is challenging and yet essential for the design of efficient heterogeneous formic acid dehydrogenation systems. In this work, formic acid dehydrogenation kinetics is initially studied from a perspective of electrochemistry by decoupling this reaction on Pd catalyst into two short-circuit half reactions, formic acid oxidation reaction and hydrogen evolution reaction and manipulating the electrical double layer impact from the solution side. The pH-dependences of formic acid dehydrogenation kinetics and the associated cation effect are attributed to the induced change of electric double layer structure and potential by means of electrochemical measurements involving kinetic isotope effect, in situ infrared spectroscopy as well as grand canonical quantum mechanics calculations. This work showcases how kinetic puzzles on some important heterogeneous catalytic reactions can be tackled by electrochemical theories and methodologies.
Collapse
Affiliation(s)
- Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Jiejie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
5
|
Konstantinovsky D, Yan ECY, Hammes-Schiffer S. Characterizing Interfaces by Voronoi Tessellation. J Phys Chem Lett 2023; 14:5260-5266. [PMID: 37265175 PMCID: PMC10344600 DOI: 10.1021/acs.jpclett.3c01159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The chemistry of interfaces differs markedly from that of the bulk. Calculation of interfacial properties depends strongly on the definition of the interface, which can lead to ambiguous results that vary between studies. There is a need for a method that can explicitly define the interfaces and boundaries in molecular systems. Voronoi tessellation offers an attractive solution to this problem through its ability to determine neighbors among specified groups of atoms. Here we discuss three cases where Voronoi tessellation combined with modeling of vibrational sum frequency generation (SFG) spectroscopy yields relevant insights: the breakdown of the air-water interface into clear and intuitive molecular layers, the study of the hydration shell in biological systems, and the acceleration of difficult spectral calculations where intermolecular vibrational couplings dominate. The utility of Voronoi tessellation has broad applications that extend beyond any single type of spectroscopy or system.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA 06511
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA 06511
| |
Collapse
|
6
|
Wang Y, Zheng M, Zhou X, Pan Q, Li M. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules 2023; 28:4606. [PMID: 37375161 DOI: 10.3390/molecules28124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Electrocatalytic reduction of carbon dioxide (CO2RR) employs electricity to store renewable energy in the form of reduction products. The activity and selectivity of the reaction depend on the inherent properties of electrode materials. Single-atom alloys (SAAs) exhibit high atomic utilization efficiency and unique catalytic activity, making them promising alternatives to precious metal catalysts. In this study, density functional theory (DFT) was employed to predict stability and high catalytic activity of Cu/Zn (101) and Pd/Zn (101) catalysts in the electrochemical environment at the single-atom reaction site. The mechanism of C2 products (glyoxal, acetaldehyde, ethylene, and ethane) produced by electrochemical reduction on the surface was elucidated. The C-C coupling process occurs through the CO dimerization mechanism, and the formation of the *CHOCO intermediate proves beneficial, as it inhibits both HER and CO protonation. Furthermore, the synergistic effect between single atoms and Zn results in a distinct adsorption behavior of intermediates compared to traditional metals, giving SAAs unique selectivity towards the C2 mechanism. At lower voltages, the Zn (101) single-atom alloy demonstrates the most advantageous performance in generating ethane on the surface, while acetaldehyde and ethylene exhibit significant certain potential. These findings establish a theoretical foundation for the design of more efficient and selective carbon dioxide catalysts.
Collapse
Affiliation(s)
- Yixin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
7
|
Romeo E, Illas F, Calle-Vallejo F. Evaluating Adsorbate-Solvent Interactions: Are Dispersion Corrections Necessary? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10134-10139. [PMID: 37284294 PMCID: PMC10241112 DOI: 10.1021/acs.jpcc.3c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Incorporating solvent-adsorbate interactions is paramount in models of aqueous (electro)catalytic reactions. Although a number of techniques exist, they are either highly demanding in computational terms or inaccurate. Microsolvation offers a trade-off between accuracy and computational expenses. Here, we dissect a method to swiftly outline the first solvation shell of species adsorbed on transition-metal surfaces and assess their corresponding solvation energy. Interestingly, dispersion corrections are generally not needed in the model, but caution is to be exercised when water-water and water-adsorbate interactions are of similar magnitude.
Collapse
Affiliation(s)
- Eleonora Romeo
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Federico Calle-Vallejo
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Av. Tolosa 72, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Abidi N, Steinmann SN. An Electrostatically Embedded QM/MM Scheme for Electrified Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25009-25017. [PMID: 37163568 DOI: 10.1021/acsami.3c01430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomistic modeling of electrified interfaces remains a major issue for detailed insights in electrocatalysis, corrosion, electrodeposition, batteries, and related devices such as pseudocapacitors. In these domains, the use of grand-canonical density functional theory (GC-DFT) in combination with implicit solvation models has become popular. GC-DFT can be conveniently applied not only to metallic surfaces but also to semiconducting oxides and sulfides and is, furthermore, sufficiently robust to achieve a consistent description of reaction pathways. However, the accuracy of implicit solvation models for solvation effects at interfaces is in general unknown. One promising way to overcome the limitations of implicit solvents is going toward hybrid quantum mechanical (QM)/molecular mechanics (MM) models. For capturing the electrochemical potential dependence, the key quantity is the capacitance, i.e., the relation between the surface charge and the electrochemical potential. In order to retrieve the electrochemical potential from a QM/MM hybrid scheme, an electrostatic embedding is required. Furthermore, the charge of the surface and of the solvent regions has to be strictly opposite in order to consistently simulate charge-neutral unit cells in MM and in QM. To achieve such a QM/MM scheme, we present the implementation of electrostatic embedding in the VASP code. This scheme is broadly applicable to any neutral or charged solid/liquid interface. Here, we demonstrate its use in the context of GC-DFT for the hydrogen evolution reaction (HER) over a noble-metal-free electrocatalyst, MoS2. We investigate the effect of electrostatic embedding compared to the implicit solvent model for three contrasting active sites on MoS2: (i) the sulfur vacancy defect, which is rather apolar; (ii) a Mo antisite defect, where the active site is a surface bound highly polar OH group; and (iii) a reconstructed edge site, which is generally believed to be responsible for most of the catalytic activity. According to our results, the electrostatic embedding leads to almost indistinguishable results compared to the implicit solvent for the apolar system but has a significant effect on polar sites. This demonstrates the reliability of the hybrid QM/MM, electrostatically embedded solvation model for electrified interfaces.
Collapse
Affiliation(s)
- Nawras Abidi
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| | - Stephan N Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
9
|
Shu Z, Cai Y. Thickness-dependent catalytic activity of hydrogen evolution based on single atomic catalyst of Pt above MXene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:204001. [PMID: 36881922 DOI: 10.1088/1361-648x/acc22a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen as the cleanest energy carrier is a promising alternative renewable resource to fossil fuels. There is an ever-increasing interest in exploring efficient and cost-effective approaches of hydrogen production. Recent experiments have shown that single platinum atom immobilized on the metal vacancies of MXenes allows a high-efficient hydrogen evolution reaction (HER). Here usingab initiocalculations, we design a series of substitutional Pt-doped Tin+ 1CnTx(Tin+ 1CnTx-PtSA) with different thicknesses and terminations (n= 1, 2 and 3, Tx= O, F and OH), and investigate the quantum-confinement effect on the HER catalytic performance. Surprisingly, we reveal a strong thickness effect of the MXene layer on the HER performance. Among the various surface-terminated derivatives, Ti2CF2-PtSAand Ti2CH2O2-PtSAare found to be the best HER catalysts with the change of Gibbs free energy ΔGH*∼ 0 eV, complying with the thermoneutral condition. Theab initiomolecular dynamics simulations reveal that Ti2CF2-PtSAand Ti2CH2O2-PtSApossess a good thermodynamic stability. The present work shows that the HER catalytic activity of the MXene is not solely governed by the local environment of the surface such as Pt single atom. We point out the critical role of thickness control and surface decoration of substrate in achieving a high-performance HER catalytical activity.
Collapse
Affiliation(s)
- Zheng Shu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, People's Republic of China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, People's Republic of China
| |
Collapse
|
10
|
Garcia Carcamo RA, Zhang X, Estejab A, Zhou J, Hare BJ, Sievers C, Sarupria S, Getman RB. Differences in solvation thermodynamics of oxygenates at Pt/Al 2O 3 perimeter versus Pt(111) terrace sites. iScience 2023; 26:105980. [PMID: 36756373 PMCID: PMC9900392 DOI: 10.1016/j.isci.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
A prominent role of water in aqueous-phase heterogeneous catalysis is to modify free energies; however, intuition about how is based largely on pure metal surfaces or even homogeneous solutions. Using multiscale modeling with explicit liquid water molecules, we show that the influence of water on the free energies of adsorbates at metal/support interfaces is different than that on pure metal surfaces. We specifically compute free energies of solvation for methanol and its constituents on a Pt/Al2O3 catalyst and compare the results to analogous values calculated on a pure Pt catalyst. We find that the more hydrophilic Pt/Al2O3 interface leads to smaller (more positive) free energies of solvation due to an increased entropy penalty resulting from the additional work necessary to disrupt the interfacial water structure and accommodate the interfacial species. The results will be of interest in other fields, including adsorption and proteins.
Collapse
Affiliation(s)
| | - Xiaohong Zhang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Ali Estejab
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Jiarun Zhou
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Bryan J. Hare
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Carsten Sievers
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sapna Sarupria
- Department of Chemistry and Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel B. Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Razzaq S, Exner KS. Materials Screening by the Descriptor G max(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal 2023; 13:1740-1758. [PMID: 36776387 PMCID: PMC9903997 DOI: 10.1021/acscatal.2c03997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/05/2022] [Indexed: 01/18/2023]
Abstract
To move from fossil-based energy resources to a society based on renewables, electrode materials free of precious noble metals are required to efficiently catalyze electrochemical processes in fuel cells, batteries, or electrolyzers. Materials screening operating at minimal computational cost is a powerful method to assess the performance of potential electrode compositions based on heuristic concepts. While the thermodynamic overpotential in combination with the volcano concept refers to the most popular descriptor-based analysis in the literature, this notion cannot reproduce experimental trends reasonably well. About two years ago, the concept of G max(η), based on the idea of the free-energy span model, has been proposed as a universal approach for the screening of electrocatalysts. In contrast to other available descriptor-based methods, G max(η) factors overpotential and kinetic effects by a dedicated evacuation scheme of adsorption free energies into an analysis of trends. In the present perspective, we discuss the application of G max(η) to different electrocatalytic processes, including the oxygen evolution and reduction reactions, the nitrogen reduction reaction, and the selectivity problem of the competing oxygen evolution and peroxide formation reactions, and we outline the advantages of this screening approach over previous investigations.
Collapse
Affiliation(s)
- Samad Razzaq
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
12
|
Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts 2022. [DOI: 10.3390/catal12121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties different from alloys and nanoparticles. However, only certain precious metals, such as Pd or Au, can achieve this transformation. Here, the density functional theory (DFT) calculations were performed to show that Zn-based SAAs are promising electrocatalysts for the reduction of CO2 to C1 hydrocarbons. We assume that CO2 reduction in Zn-based SAAs follows a two-step continuous reaction: first Zn reduces CO2 to CO, and then newly generated CO is captured by M and further reduced to C1 products such as methane or methanol. This work screens seven stable alloys from 16 SAAs (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, V, Mo, Ti, Cr). Among them, Pd@Zn (101) and Cu@Zn (101) are promising catalysts for CO2 reduction. The reaction mechanisms of these two SAAs are discussed in detail. Both of them convert CO2 into methane via the same pathway. They are reduced by the pathway: *CO2 → *COOH → *CO + H2O; *CO → *CHO → *CH2O → *CH3O → *O + CH4 → *OH + CH4 → H2O + CH4. However, their potential determination steps are different, i.e., *CO2 → *COOH (ΔG = 0.70 eV) for Cu@Zn (101) and *CO → *CHO (ΔG = 0.72 eV) for Pd@Zn, respectively. This suggests that Zn-based SAAs can reduce CO2 to methane with a small overpotential. The solvation effect is simulated by the implicit solvation model, and it is found that H2O is beneficial to CO2 reduction. These computational results show an effective monatomic material to form hydrocarbons, which can stimulate experimental efforts to explore the use of SAAs to catalyze CO2 electrochemical reduction to hydrocarbons.
Collapse
|
13
|
Clabaut P, Beisert M, Michel C, Steinmann SN. Beyond single-crystal surfaces: The GAL21 water/metal force field. J Chem Phys 2022; 157:194705. [DOI: 10.1063/5.0130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Solvent effects are notoriously difficult to describe for metallic nanoparticles (NPs). Here, we introduce GAL21 which is the first pairwise additive force field that is specifically designed to modulate the near chemisorption energy of water as a function of the coordination numbers of the metallic atoms. We find a quadratic dependence to be most suitable for capturing the dependence of the adsorption energy of water on the generalized coordination number (GCN) of the metal atoms. GAL21 has been fitted against DFT adsorption energies for Cu, Ag, Au, Ni, Pd, Pt, and Co on 500 configurations and validated on about 3000 configurations for each metal, constructed on five surfaces with GCNs varying from 2.5 to 11.25. Depending on the metals, the root mean square deviation is found between 0.7 kcal mol−1 (Au) to 1.6 kcal mol−1 (Ni). Using GAL21, as implemented in the open-source code CP2K, we then evaluate the solvation energy of Au55 and Pt55 NPs in water using thermodynamic integration. The solvation free energy is found to be larger for Pt than for Au and systematically larger than 200 kcal mol−1, demonstrating the large impact of solvent on the surface energetics of NPs. Still, given that the amorphous NPs are both, the most stable and the most solvated ones, we do not predict a change in the preferred morphology between the gas-phase and in water. Finally, based on a linear regression on three sizes of NPs (from 38 to 147), the solvation energy for Au and Pt surface atoms is found to be −5.2 and −9.9 kcal mol−1, respectively.
Collapse
Affiliation(s)
- Paul Clabaut
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Matthieu Beisert
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Carine Michel
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Stephan N. Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| |
Collapse
|