1
|
Suri Babu U, Naveen Kumar M, Mahesh S, Nanubolu JB, Sridhar Reddy M. Pd-catalyzed ortho-/ meta-C-H-annulation of biphenyl amines with enynes through non-rollover cyclometallation. Org Biomol Chem 2025; 23:292-296. [PMID: 39552200 DOI: 10.1039/d4ob01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Annulations through dual C-H activation represent a powerful tool to selectively assemble multi-cyclic scaffolds. We present herein a palladium-catalyzed ortho-/meta-C-H-annulation of biphenyl amines with 1,6-enynes. This regioselective non-rollover cyclometallation was achieved through meticulous tuning of electronic factors of both the partners. This method is applicable to a wide range of protected o-arylanilines and enynes, and results in the regioselective preparation of benzo[f]isoindolyl derivatives in high yields with good diastereoselectivity (with respect to two types of stereogenic elements). Certain essential control experiments and kinetic isotope effect (KIE) studies were undertaken to elucidate the reaction mechanism, while subsequent transformations and a scale-up reaction were performed to substantiate the sturdiness of the transformation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shivunapuram Mahesh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
2
|
Thorat RA, Parganiha D, Jain S, Choudhary V, Shakir B, Rohilla K, Jha RK, Kumar S. Temperature-Dependent Diastereodivergent [4 + 3] Annulation: Synthesis of Ferrocene-Fused Azepines via Rh(III) Catalysis. Org Lett 2024. [PMID: 39639509 DOI: 10.1021/acs.orglett.4c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we disclose the first temperature-dependent diastereodivergent [4 + 3] annulation of ferrocene-p-tosylamides via C-H activation with allenes by a Rh catalyst. At room temperature, Rh-catalyzed [4 + 3] annulation selectively offered a kinetically controlled diastereomer [>20:1 diastereomeric ratio (dr)], whereas at 60 °C, a thermodynamically controlled diastereomer was obtained exclusively with >20:1 dr.
Collapse
Affiliation(s)
- Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Batul Shakir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Huang H, Jiang Y, Yuan W, Lin YM. Modular Assembly of Acridines by Integrating Photo-Excitation of o-Alkyl Nitroarenes with Copper-Promoted Cascade Annulation. Angew Chem Int Ed Engl 2024; 63:e202409653. [PMID: 39039028 DOI: 10.1002/anie.202409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine derivatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red=2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.
Collapse
Affiliation(s)
- Haichao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Huertas-Morales I, Cendón B, Costa D, Mascareñas JL, Gulías M. Assembly of 2-Substituted Tetrahydroquinolines from ortho-Methylbenzenesulfamides and Dienes, Using a C(sp 3)-H Activation/Annulation Sequence. Org Lett 2024; 26:7789-7794. [PMID: 39258816 DOI: 10.1021/acs.orglett.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
1,2,3,4-Tetrahydroquinolines (THQs) are essential structural cores in many natural products and pharmaceutical drugs. Especially relevant are those presenting substitutions at position 2, yet practical methods for their one-step assembly from acyclic precursors are very scarce. Herein, we present a straightforward approach to assembling these skeletons from ortho-methylanilines using a palladium-catalyzed C(sp3)-H activation/formal cycloaddition sequence. Key for the success of the approach is the use of dienes as partners, since they lead to stable π-allyl palladium intermediates that prevent β-hydride elimination processes and allow installation of versatile alkenyl handles at position 2. Moreover, installing a perfluorobenzenesulfonyl substituent at the amine not only facilitates the C-H activation but also allows for an easy recovery of the free amine.
Collapse
Affiliation(s)
- Iván Huertas-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Borja Cendón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Domingo Costa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Díaz-Vázquez ED, Cuellar MA, Heredia MD, Barolo SM, González-Bakker A, Padrón JM, Budén ME, Martín SE, Uberman PM. Palladium nanoparticles for the synthesis of phenanthridinones and benzo[ c]chromenes via C-H activation reaction. RSC Adv 2024; 14:18703-18715. [PMID: 38863826 PMCID: PMC11166021 DOI: 10.1039/d4ra02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
In the present work, derivatives of phenanthridine-6(5H)-ones and benzo[c]chromenes were efficiently prepared through an intramolecular C-H bond functionalization reaction catalyzed by photochemically synthesized Pd-PVP nanoparticles. The heterocycles were obtained via intramolecular arylation of the corresponding N-methyl-N-aryl-2-halobenzamide or aryl-(2-halo)benzyl ethers using K2CO3 as base in a mixture of H2O : DMA as solvent without additives or ligands. High yields of the heterocyclic compounds were achieved (up to 95%) using a moderately low catalyst loading (1-5 mol%) under an air atmosphere at 100 °C. The reaction exhibited very good tolerance to diverse functional groups (OMe, Me, t Bu, Ph, OCF3, CF3, F, Cl, -CN, Naph), and both bromine and iodine substrates showed great reactivity. Finally, the in vitro antiproliferative activity of phenanthridine-6(5H)-ones and benzo[c]chromenes was evaluated against six human solid tumor cell lines. The more active compounds exhibit activity in the low micromolar range. 1-Isopropyl-4-methyl-6H-benzo[c]chromene was identified as the best compound with promising values of activity (GI50 range 3.9-8.6 μM). Thus, the benzochromene core was highlighted as a novel organic building block to prepare potential antitumor agents.
Collapse
Affiliation(s)
- Eva D Díaz-Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Micaela A Cuellar
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Micaela D Heredia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Silvia M Barolo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 E-38206 La Laguna Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 E-38206 La Laguna Spain
| | - María E Budén
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Sandra E Martín
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Paula M Uberman
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba Haya de La Torre y Medina Allende, Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
6
|
Bauri S, Ramachandran A, Rit A. (Benz)imidazo[1,2-a]quinolinium Salts: Access via Unprecedented Regiospecific non-AAIPEX Strategy and Study of Their Tunable Properties. Chemistry 2024; 30:e202303744. [PMID: 38226763 DOI: 10.1002/chem.202303744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
An unprecedented non-AAIPEX protocol has been developed to access diverse monosubstituted cationic polycyclic heteroaromatic compounds (cPHACs) from the readily available azolium salts and phenacyl bromides via Ru(II)-catalyzed tandem annulation cum aromatization. This atom-economic protocol executes a range of intermediate steps e. g. double C-H activation, nucleophilic addition, annulation, and dehydration cum aromatization in one-pot manner under the generation of H2O as the sole byproduct. Moreover, the systematic tunability of photo-physical and electrochemical properties of these new class of cPHACs can be authenticated from the DFT calculated frontier molecular orbital energies that might be beneficial for their potential applications in optoelectronics and DNA intercalation.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
7
|
Naveen J, Satyanarayana G. Palladium-Catalyzed [3 + 2] Annulation of ortho-Substituted Iodoarenes with Maleimides via a Consecutive Double Heck-type Strategy. J Org Chem 2023; 88:16229-16247. [PMID: 37965816 DOI: 10.1021/acs.joc.3c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report an efficient [3 + 2] annulation of ortho-substituted iodoarenes with maleimides via a palladium-catalyzed consecutive double Heck-type strategy, leading to fused tricyclic frameworks of pharmaceutical relevance. The protocol ensued through consecutive inter- and intramolecular Heck couplings effectively. This approach was compatible with a large variety of substrates and functional groups, and it was remarkably tolerated with unprotected maleimide.
Collapse
Affiliation(s)
- Jakkula Naveen
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| |
Collapse
|
8
|
Liang YE, Chang MY, Ho H, Chiou CT, Barve BD, Li WT. Palladium-Catalyzed Cascade Endo- dig Cycloisomerization and Olefination with Alkenes to Access Fused Oxatricyclic Compounds. Org Lett 2023; 25:8194-8198. [PMID: 37962852 DOI: 10.1021/acs.orglett.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A novel cascade Pd(II)-catalyzed endo-dig cycloisomerization and olefination reaction of 2-benzyl-3-alkynyl chromones with activated/unactivated alkenes has been developed for the synthesis of fused oxatricyclic compounds. This concise one-pot synthetic approach was applied to the difunctionalization of unbiased alkynes based on 2-benzyl-3-(alkynyl)-4H-chromen-4-one via O-attack endo-dig cycloisomerization, followed by olefination with both activated and unactivated alkenes.
Collapse
Affiliation(s)
- Yi-En Liang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
| | - Ming-Yiang Chang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
| | - Hsi Ho
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
| | - Balaji D Barve
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan, R.O.C
- Department of Chemistry, Tamkang University, New Taipei City 251301, Taiwan, R.O.C
| |
Collapse
|
9
|
Dethe DH, Kumar V, Shukla M. A palladium catalyzed asymmetric desymmetrization approach to enantioenriched 1,3-disubstituted isoindolines. Chem Sci 2023; 14:11267-11272. [PMID: 37860662 PMCID: PMC10583692 DOI: 10.1039/d3sc03496h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Herein, we report the first palladium/MPAA catalyzed enantioselective C-H activation/[4 + 1] annulation of diarylmethyltriflamide and olefins to construct chiral cis-1,3-disubstituted isoindoline derivatives. The use of a readily accessible mono-N-protected amino acid as a chiral ligand improves the efficiency and enantioselectivity of the catalytic transformation. The developed method provides access to both enantiomers of a product using either d or l-phenylalanine derivative as a chiral ligand facilitating the synthesis of both optically active 1,3-disubstituted isoindoline derivatives.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Manmohan Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| |
Collapse
|
10
|
Yadav A, Upadhyay S, Kant R, Srivastava AK. Regioselective Synthesis of Phenanthridines via Pd(II)-Catalyzed Annulative C( sp2)-H Activation. J Org Chem 2023; 88:13568-13583. [PMID: 37738300 DOI: 10.1021/acs.joc.3c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A robust synthesis of phenanthridines has been described via Pd(II)-catalyzed domino C(sp2)-H activation/N-arylation using oxime esters with aryl acyl peroxides in a highly regioselective manner. This protocol is compatible with acetophenone as well as benzophenone-derived oxime esters and allows modular construction of functionalized phenanthridines with wide tolerance of electronic functionality. Further transformations were conducted to synthesize key building blocks, and control experiments were performed to understand the plausible reaction mechanism.
Collapse
Affiliation(s)
- Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surabhi Upadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Lee S, Shin JE, Yoon R, Yoo H, Kim S. Annulation of O-silyl N, O-ketene acetals with alkynes for the synthesis of dihydropyridinones and its application in concise total synthesis of phenanthroindolizidine alkaloids. Front Chem 2023; 11:1267422. [PMID: 37810583 PMCID: PMC10551152 DOI: 10.3389/fchem.2023.1267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
The formation of N-heterocycles with multiple substituents is important in organic synthesis. Herein, we report a novel method for the construction of functionalized dihydropyridinone rings through the annulation of an amide α-carbon with a tethered alkyne moiety. The reaction of the amide with the alkyne was achieved via O-silyl N,O-ketene acetal formation and silver-mediated addition. Furthermore, the developed method was applied for the total synthesis of phenanthroindolizidine and phenanthroquinolizidine alkaloids. By varying the coupling partners, a concise and collective total synthesis of these alkaloids was achieved.
Collapse
Affiliation(s)
- Seokwoo Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eui Shin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ran Yoon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hanbin Yoo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Yoshimoto R, Taborosi A, He Q, Ano Y, Chatani N, Mori S. Theoretical Investigations of Palladium-Catalyzed [3+2] Annulation via Benzylic and meta C-H Bond Activation. Chem Asian J 2023; 18:e202300531. [PMID: 37537516 DOI: 10.1002/asia.202300531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
The palladium-catalyzed reaction of aromatic amides with maleimides results in the formation of a double C-H bond activation product, which occurs at both the benzylic and meta positions. Computational chemistry studies suggest that the first C-H bond activation unfolds via a six-membered palladacycle, maleimide insertion, protonation of the Pd-N bond, and then activation of the meta C-H bond. The process concludes with reductive elimination, producing an annulation product. The energy decomposition analysis (EDA) showed that the deformation energy favors the ortho C-H bond activation process. However, this route is non-productive. The interaction energy controls the site where the maleimide is inserted into the Pd-C(sp3 ) bond, which determines its site selectivity. The energetic span model indicates that the meta C-H bond activation step is the one that determines the turnover frequency. Regarding the directing group, it has been concluded that the strong Pd-S bonding and the destabilizing effect of the deformation energy allow the 2-thiomethylphenyl to function effectively as a directing group.
Collapse
Affiliation(s)
- Rie Yoshimoto
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
| | - Attila Taborosi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
- Research Initiative for Supra-Materials, Shinshu University, Nagano, Nagano, 380-8553, Japan
| | - Qiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Research Center for Environmental Preservation, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki, 319-1106, Japan
| |
Collapse
|
13
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Kumar MN, Suresh V, Nagireddy A, Nanubolu JB, Reddy MS. Pd-catalyzed regioselective rollover dual C-H annulation cascade: facile approach to phenanthrene derivatives. Chem Commun (Camb) 2023. [PMID: 37475606 DOI: 10.1039/d3cc02523c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Annulations of unsaturated systems through C-H activation represent a powerful tool for producing multicyclic scaffolds. Having coordinating centers in both annulation partners (a dual coordination strategy) would afford remarkable selectivities in the outcomes. Along this concept, we report herein a Pd-catalyzed regioselective rollover cascade dual C-H annulation of o-arylphenols with alkynols for constructing phenanthrene scaffolds. Control, KIE and deuteration studies were conducted to determine the reaction mechanism, and downstream transformations and scaled-up reactions were carried out to assess the robustness of the transformation.
Collapse
Affiliation(s)
- Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Vavilapalli Suresh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Attunuri Nagireddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| |
Collapse
|
15
|
Marsicano V, Arcadi A, Aschi M, Chiarini M, Fabrizi G, Goggiamani A, Marinelli F, Iazzetti A. Direct Regioselective Hydro(hetero)arylation/Cyclocondensation Reactions of β-(2-Aminophenyl)-α,β-ynones by Means of Transition-Metal Catalysis/Brønsted Acid Synergism: Experimental Results and Computational Insights. J Org Chem 2023. [PMID: 37162477 DOI: 10.1021/acs.joc.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experimental results and computational insights explain the key role of transition-metal catalysis/Brønsted acid synergism in the achievement of the sequential regioselective direct heteroarylation/cyclocondensation reactions of β-(2-aminophenyl)-α,β-ynones with a variety of electron-rich aromatic heterocyclic/arenes to afford quinoline-(hetero)aromatic hybrids. The first approach to the synthesis of 4-(1H-pyrrol-2-yl)quinolines is described. The effectiveness of various transition metals is compared.
Collapse
Affiliation(s)
- Vincenzo Marsicano
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Antonio Arcadi
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi di L'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agro-alimentari e Ambientali, Università di Teramo, Via Balzarini 1, 64100 Teramo, TE, Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Fabio Marinelli
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
16
|
Bhaduri N, Pawar AB. Redox-neutral C-H annulation strategies for the synthesis of heterocycles via high-valent Cp*Co(III) catalysis. Org Biomol Chem 2023; 21:3918-3941. [PMID: 37128760 DOI: 10.1039/d3ob00133d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A variety of biologically active molecules, pharmaceuticals, and natural products consist of a nitrogen-containing heterocyclic backbone. The majority of them are isoquinolones, indoles, isoquinolines, etc.; thereby the synthesis and derivatization of such heterocycles are synthetically very relevant. Also, certain naphthol derivatives have high synthetic utility as agrochemicals and in dye industries. Previous approaches have utilized ruthenium, rhodium, or iridium which may not be desirable due to the high toxicity, low abundance, and high cost of such 4d and 5d metals. Moreover, the need for an external oxidant during the reaction also adds by-products to the system. A high-valent cobalt-catalyzed redox-neutral C-H functionalization strategy has emerged to be a far better alternative in this regard. The use of the non-noble metal cobalt allows for selectivity and specificity in product formation. Also, the redox-neutral concept avoids the use of an external oxidant either due to the presence of a metal in a non-variable oxidation state throughout the catalytic cycle or due to the presence of an oxidizing directing group or an oxidizing coupling partner. Such an oxidizing directing group not only directs the catalyst to a specific reaction site by chelation but also regenerates the catalyst at the end of the cycle. Certain bonds such as N-O, N-N, N-Cl, N-S, and C-S are the main game-players behind the oxidizing property of such directing groups. In the other case, the directing group only chelates the catalyst to a reaction center, whereas the oxidation is carried out by the upcoming group/coupling partner. Overall, merging the redox-neutral concept with the high-valent cobalt catalysis is paving the way forward toward a sustainable and environmentally friendly approach. This review critically describes the mechanistic understanding, scope, limitations, and synthesis of various biologically relevant heterocycles via the redox-neutral concept in the high-valent Cp*Co(III)-catalyzed C-H functionalization chemistry domain.
Collapse
Affiliation(s)
- Nilanjan Bhaduri
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
17
|
Zeng M, Chen J, Li F, Li H, Zhao L, Jiang D, Dai J, Liu W. Ruthenium-Catalyzed Oxidative Synthesis of N-(2-triazine)indoles by C-H Activation. Molecules 2023; 28:molecules28093676. [PMID: 37175086 PMCID: PMC10179826 DOI: 10.3390/molecules28093676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
1,3,5 triazines, especially indole functionalized triazine derivatives, exhibit excellent activities, such as anti-tumor, antibacterial, and anti-inflammatory activities. Traditional methods for the synthesis of N-(2-triazine) indoles suffer from unstable materials and tedious operations. Transition-metal-catalyzed C-C/C-N coupling provides a powerful protocol for the synthesis of indoles by the C-H activation strategy. Here, we report the efficient ruthenium-catalyzed oxidative synthesis of N-(2-triazine) indoles by C-H activation from alkynes and various substituted triazine derivatives in a moderate to good yield, and all of the N-(2-triazine) indoles were characterized by 1H NMR, 13C NMR, and HRMS. This protocol can apply to the gram-scale synthesis of the N-(2-triazine) indole in a moderate yield. Moreover, the reaction is proposed to be performed via a six-membered ruthenacycle (II) intermediate, which suggests that the triazine ring could offer chelation assistance for the formation of N-(2-triazine) indoles.
Collapse
Affiliation(s)
- Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Jiaqi Chen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Fengye Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Haojie Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Lan Zhao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Jun Dai
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Wenbo Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
18
|
Bera S, Biswas A, Pal J, Roy L, Mondal S, Samanta R. Pd(II)-Catalyzed Oxidative Naphthylation of 2-Pyridone through N-H/C-H Activation Using Diarylacetylene as an Uncommon Arylating Agent. Org Lett 2023; 25:1952-1957. [PMID: 36896989 DOI: 10.1021/acs.orglett.3c00497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A Pd(II)-catalyzed straightforward oxidative naphthylation of unmasked 2-pyridone derivatives is described using a twofold internal alkyne as a coupling partner. The reaction proceeds through N-H/C-H activation to provide polyarylated N-naphthyl 2-pyridones. An unusual oxidative annulation at the arene C-H bond of the diarylalkyne leads to the formation of polyarylated N-naphthyl 2-pyridones, where the 2-pyridone-attached phenyl ring of the naphthyl ring is polyaryl-substituted. Mechanistic studies and DFT calculations suggest a plausible mechanism based on N-H/C-H activation. The N-naphthyl 2-pyridone derivatives were studied to explore encouraging photophysical properties.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
19
|
Yang J, Liu B, Chang J. Ru(II)-Catalyzed One-Pot Synthesis of 1,2-Hydropyridines via a Three-Component Reaction. Org Lett 2023; 25:1476-1480. [PMID: 36856311 DOI: 10.1021/acs.orglett.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A ruthenium(II)-catalyzed one-pot synthesis of highly substituted 1,2-dihydropyridines (DHPs) via a three-component reaction system has been realized. The reaction is conducted using a simple Ru(II) catalyst without the addition of specific ligands. The catalytic system exhibits good functionality tolerance with a wide range of starting materials. The DHPs obtained can be easily converted into tetrahydropyridines and azabicyclo[4.2.0]octa-4,7-dienes by subsequent reduction or [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Juntao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
21
|
Zeng Z, Gao H, Zhou Z, Yi W. Intermolecular Redox-Neutral Carboamination of C–C Multiple Bonds Initiated by Transition-Metal-Catalyzed C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| |
Collapse
|
22
|
Gérardin B, Traboulsi I, Pal S, Lebunetelle G, Ramondenc Y, Hoarau C, Schneider C. Direct Synthesis of Benzo[ c]carbazoles by Pd-Catalyzed C–H [4 + 2] Annulation of 3-Arylindoles with External 1,3-Dienes. Org Lett 2022; 24:8164-8169. [DOI: 10.1021/acs.orglett.2c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Baptiste Gérardin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Iman Traboulsi
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Suman Pal
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | | | - Yvan Ramondenc
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Christophe Hoarau
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Cédric Schneider
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| |
Collapse
|
23
|
Nanda T, Fastheem M, Linda A, Pati BV, Banjare SK, Biswal P, Ravikumar PC. Recent Advancement in Palladium-Catalyzed C–C Bond Activation of Strained Ring Systems: Three- and Four-Membered Carbocycles as Prominent C3/C4 Building Blocks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Muhammed Fastheem
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Astha Linda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pragati Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C. Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
24
|
Liang YE, Kan CY, Barve BD, Chen YA, Li WT. Palladium-Catalyzed Chemo- and Regiocontrolled Tandem Cyclization/Cross-Coupling of 2-Benzyl-3-alkynyl Chromones with Aryl Iodides for the Synthesis of 4 H-Furo[3,2- c]chromenes and Xanthones. Org Lett 2022; 24:6728-6733. [PMID: 35943329 DOI: 10.1021/acs.orglett.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel Pd-catalyzed chemo- and regiocontrolled tandem cyclization/cross-coupling reaction of 3-alkynyl chromone with aryl iodide was developed for the synthesis of 4H-furo[3,2-c]chromenes and xanthones. The difunctionalization of alkynes through O-attack/5-exo-dig and C-attack/6-endo-dig cyclization was reported by this rare approach, which was selectively controlled by the addition of KF or a bidentate phosphine ligand. A one-pot tandem process was demonstrated directly from γ-alkynyl-1,3-diketone for this method.
Collapse
Affiliation(s)
- Yi-En Liang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC
| | - Chih-Yu Kan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC
| | - Balaji D Barve
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC.,Department of Chemistry, National Taiwan Normal University, Taipei 10610, Taiwan, ROC
| | - Yen-An Chen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC
| |
Collapse
|
25
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|