1
|
Kuang J, Zhang S, Yu J, Zhang Y, Peng CK, Zou C, Li J, Peng L, Lin L, Lin YG, Lyu P, Yang S, Li JF. Atomically dispersed iron sites from eco-friendly microbial mycelium as highly efficient hydrogenation catalyst. J Colloid Interface Sci 2024; 679:824-833. [PMID: 39395221 DOI: 10.1016/j.jcis.2024.09.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Iron, one of the most abundant elements on earth and an essential element for living organisms, plays a crucial role in our daily metabolism. In the field of catalysis, the development of high-performance catalysts based on less toxic iron element is also of significant importance for green chemistry and a sustainable future. To construct Fe-based heterogeneous catalysts with excellent hydrogenation performance, precise modulation of the atomic coordination structure is a key strategy for enhancing catalytic activity. In this study, we present an in-situ coating method for applying a zeolitic imidazolate framework (ZIF) onto the surface of fungal hyphae. The asymmetric coordination structure of Fe1-N3P1 was precisely tailored by utilizing the phosphorus source from the fungus and the nitrogen source in the ZIFs. Detailed characterizations and density functional theory calculations revealed that the incorporation of ZIFs not only increased the specific surface area of catalysts, but also facilitated the dispersion of Fe2P nanoparticles into the Fe1-N3P1 center, making the lowest reaction energy barrier and resulting in the best performance for nitrobenzene hydrogenation when compared to the Fe2P nanoparticles and clusters. This research introduces a novel design concept for constructing asymmetric monoatomic configuration based on the inherent characteristics of natural microorganisms and the exogenous porous coordination polymers.
Collapse
Affiliation(s)
- Junhua Kuang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Shuaishuai Zhang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Jia Yu
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| | - Yuting Zhang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Chun-Kuo Peng
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chen Zou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaran Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Li Peng
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Lu Lin
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Shuliang Yang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jian-Feng Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
2
|
Jiang Z, Feng Y, Gou Y, Xia Z, Yuan B, Ali SH, Rong X, Guo A, Chen L, Wang B. N, P Dual-Doped Carbons as Metal-Free Catalysts for Hydrogenation. ACS OMEGA 2024; 9:40424-40432. [PMID: 39371965 PMCID: PMC11447849 DOI: 10.1021/acsomega.4c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
The activation of molecule hydrogen (H2) by metal-free catalysts is always a challenge in the field of catalysis. Herein, a series of N, P dual-doped carbon catalysts were constructed by the pyrolysis of chitosan and phytic acid and utilized as metal-free catalysts for the hydrogenation of nitrobenzene. The characterization indicated that the doping of phosphorus atoms not only formed the species with catalytic activity for hydrogenation reaction but also promoted the doping of N. The experimental results indicated that their catalytic performance could be improved by the regulation of pyrolysis temperature and heating rate. CP-900-1 (pyrolysis at 900 °C with a heating rate of 1 °C/min) exhibited a promising catalytic activity with >99% nitrobenzene conversion. N, P codoping was the key factor to its catalytic performance. All results indicated that the excellent catalytic activity of CP-900-1 was attributed to the synergistic interaction among pyridinic N, P-C species, and graphitic N. This work provides an effective route for the rational design and construction of highly efficient metal-free catalysts for hydrogenation.
Collapse
Affiliation(s)
- Zhaoshuo Jiang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yingchao Feng
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yu Gou
- Department
of Orthopaedic Surgery, Tianjin Hospital, Tianjin University,Tianjin 300211, P. R. China
| | - Ziyi Xia
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
- Institute
of Shaoxing, Tianjin University, Shaoxing, Zhejiang 312300, P. R. China
| | - Binwei Yuan
- Shaoxing
Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang 312300, P. R. China
| | - Syed Husnain Ali
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xuejiao Rong
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Anni Guo
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Ligong Chen
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
- Institute
of Shaoxing, Tianjin University, Shaoxing, Zhejiang 312300, P. R. China
| | - Bowei Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
- Institute
of Shaoxing, Tianjin University, Shaoxing, Zhejiang 312300, P. R. China
| |
Collapse
|
3
|
Zhang J, Jian C, Wang FF, Zhang W, Tian Z, Chen DL. The Role of Frustrated Lewis Pair in Catalytic Transfer Hydrogenation of Furfural using Nickel Single-Atom Catalysts: A Theoretical Study. Chemphyschem 2024:e202400628. [PMID: 39292518 DOI: 10.1002/cphc.202400628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
The burgeoning field of frustrated Lewis pair (FLP) heterogeneous catalysts has garnered significant interest in recent years, primarily due to their inherent ability to activate H-source molecules, thereby facilitating hydrogenation reactions. In this study, non-precious transition metal atoms were anchored onto several models of pyridinic nitrogen incorporated graphene sheet. Theoretical calculations substantiated energy barriers as low as 0.10 eV for isopropanol activation, thereby positioning these catalysts as highly promising candidates for catalytic transfer hydrogenation of furfural. Electronic structure analyses revealed that the H-O bond breakage in isopropanol molecules was significantly facilitated by the presence of FLP sites within the catalysts. Notably, both Ni-C2N and Ni-N6-C demonstrated exceptional potential as selective catalysts for the hydrogenation of furfural into furfuryl alcohol, exhibiting remarkably low barriers of only 0.65-0.72 eV for the rate-determining steps. The findings in this study are helpful to design FLP containing single atom catalysts for hydrogenation reactions.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Changping Jian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Fang-Fang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Wei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Zhi Tian
- Lib & Informat Ctr, Zhejiang Normal University, 321004, Jinhua, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
4
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han YK. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Krishan Kumar
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Muhammad Umer
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| |
Collapse
|
5
|
Duan Y, Xia Y, Ling Y, Zhou S, Liu X, Lan Y, Yin X, Yang Y, Yan X, Liang M, Hong S, Zhang L, Wang L. Regulating Second-Shell Coordination in Cobalt Single-Atom Catalysts toward Highly Selective Hydrogenation. ACS NANO 2024. [PMID: 39083439 DOI: 10.1021/acsnano.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Manipulating the local coordination environment of central metal atoms in single-atom catalysts (SACs) is a powerful strategy to exploit efficient SACs with optimal electronic structures for various applications. Herein, Co-SACs featured by Co single atoms with coordinating S atoms in the second shell dispersed in a nitrogen-doped carbon matrix have been developed toward the selective hydrogenation of halo-nitrobenzene. The location of the S atom in the model Co-SAC is verified through synchrotron-based X-ray absorption spectroscopy and theoretical calculations. The resultant Co-SACs containing second-coordination shell S atoms demonstrate excellent activity and outstanding durability for selective hydrogenation, superior to most precious metal-based catalysts. In situ characterizations and theoretical results verify that high activity and selectivity are attributed to the advantageous formation of the Co-O bond between p-chloronitrobenzene and Co atom at Co1N4-S moieties and the lower free energy and energy barriers of the reaction. Our findings unveil the correlation between the performance and second-shell coordination atom of SACs.
Collapse
|
6
|
Xu J, Li B, Ma Z, Zhang X, Zhu C, Yan F, Yang P, Chen Y. Multifunctional Film Assembled from N-Doped Carbon Nanofiber with Co-N 4-O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation. NANO-MICRO LETTERS 2024; 16:240. [PMID: 38980475 PMCID: PMC11233488 DOI: 10.1007/s40820-024-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Single-atom materials have demonstrated attractive physicochemical characteristics. However, understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge. Herein, a facile water-assisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co-N4-O sites on biomass-derived carbon nanofiber (Co-N4-O/NCF) for electromagnetic wave (EMW) absorption. In such nanofiber, one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction. In-depth experimental and theoretical studies reveal that the axial Co-O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co-N4 structure, leading to significantly enhanced dielectric polarization loss relevant to the planar Co-N4 sites. Importantly, the film based on Co-N4-O/NCF exhibits light weight, flexibility, excellent mechanical properties, great thermal insulating feature, and excellent EMW absorption with a reflection loss of - 45.82 dB along with an effective absorption bandwidth of 4.8 GHz. The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance, and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.
Collapse
Affiliation(s)
- Jia Xu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Bei Li
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Zheng Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Chunling Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Feng Yan
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Yujin Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
7
|
Li Y, Cheng H, Wang M, Xu J, Guan L. Highly coordinative molecular cobalt-phthalocyanine electrocatalyst on an oxidized single-walled carbon nanotube for efficient hydrogen peroxide production. MATERIALS HORIZONS 2024; 11:2517-2527. [PMID: 38497122 DOI: 10.1039/d3mh02142d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
H2O2 production via the two-electron oxygen reduction reaction (2e- ORR) offers a potential alternative to the current anthraquinone method owing to its efficiency and environmental friendliness. However, it is necessary to determine the structures of electrocatalysts with cost-effectiveness and high efficiency for future industrialization demand. Herein, a supramolecular catalyst composed of cobalt-phthalocyanine on a near-monodispersed and oxidized single-walled carbon nanotube (CoPc/o-SWCNT) was synthesized via a solution self-assembly method for catalyzing the 2e- ORR for H2O2 electrosynthesis. Benefiting from the enhanced intermolecular interaction by introducing oxygen functional groups on o-SWCNTs, the oxidation states of single-atom Co sites were tuned via the formation of two extra Co-O bonds. Coupled with structural characterizations, density-functional theory (DFT) calculations reveal that the depressed d-band center of the Co site regulated by two axially-bridged O atoms gives rise to a suitable binding strength of oxygen intermediates (*OOH) to favor the 2e- ORR. Thus, the CoPc-6wt%/o-SWCNT-2 catalyst with optimized synthetic parameters delivers competitive 2e- ORR performance for H2O2 electrosynthesis in a neutral electrolyte (pH = 7), including enhanced H2O2 generation, satisfactory molar selectivity of ∼83-95% and long-period stability (75 h) in H-cell measurement. Moreover, it could also be boosted to show a high current of 45 mA cm-2, recorded turnover frequency of 25.3 ± 0.5 s-1 and maximum H2O2 production rate of 5.85 mol g-1 h-1 with a continuous H2O2 accumulation of 1.2 wt% in a flow-cell device, which outperformed most of the reported neutral-selective nonprecious metal single-atom catalysts.
Collapse
Affiliation(s)
- Yaoxin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Haoying Cheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Meilin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiaoxing Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Lunhui Guan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| |
Collapse
|
8
|
Wang Z, Zeng Y, Deng J, Wang Z, Guo Z, Yang Y, Xu X, Song B, Zeng G, Zhou C. Preparation and Application of Single-Atom Cobalt Catalysts in Organic Synthesis and Environmental Remediation. SMALL METHODS 2024; 8:e2301363. [PMID: 38010986 DOI: 10.1002/smtd.202301363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Indexed: 11/29/2023]
Abstract
The development of high-performance catalysts plays a crucial role in facilitating chemical production and reducing environmental contamination. Single-atom catalysts (SACs), a class of catalysts that bridge the gap between homogeneous and heterogeneous catalysis, have garnered increasing attention because of their unique activity, selectivity, and stability in many pivotal reactions. Meanwhile, the scarcity of precious metal SACs calls for the arrival of cost-effective SACs. Cobalt, as a common non-noble metal, possesses tremendous potential in the field of single-atom catalysis. Despite their potential, reviews about single-atom Co catalysts (Co-SACs) are lacking. Accordingly, this review thoroughly summarized various preparation methodologies of Co-SACs, particularly pyrolysis; its application in the specific domain of organic synthesis and environmental remediation is discussed as well. The structure-activity relationship and potential catalytic mechanism of Co-SACs are elucidated through some representative reactions. The imminent challenges and development prospects of Co-SACs are discussed in detail. The findings and insights provided herein can guide further exploration and development in this charming area of catalyst design, leading to the realization of efficient and sustainable catalytic processes.
Collapse
Affiliation(s)
- Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| |
Collapse
|
9
|
Xie X, Xiao F, Zhan S, Zhu M, Xiang Y, Zhong H, Huang H. Deep Oxidation of Chlorinated VOCs by Efficient Catalytic Peroxide Activation over Nanoconfined Co@NCNT Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1625-1635. [PMID: 38207092 DOI: 10.1021/acs.est.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.
Collapse
Affiliation(s)
- Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510006, P. R. China
| | - Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Gioftsidou DK, Kallitsakis MG, Kavaratzi K, Hatzidimitriou AG, Terzidis MA, Lykakis IN, Angaridis PA. Synergy of redox-activity and hemilability in thioamidato cobalt(III) complexes for the chemoselective reduction of nitroarenes to anilines: catalytic and mechanistic investigation. Dalton Trans 2024; 53:1469-1481. [PMID: 38126463 DOI: 10.1039/d3dt02923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reduction of nitro-compounds to amines is one of the most often employed and challenging catalytic processes in the fine and bulk chemical industry. Herein, we present two series of mononuclear homoleptic and heteroleptic Co(III) complexes, i.e., [Co(LNS)3] and [Co(LNS)2L1L2]x+, respectively (x = 0 or 1, LNS = pyrimidine- or pyridine-thioamidato, L1/L2 = thioamidato, phosphine or pyridine), which successfully catalyze the transformation of nitroarenes to anilines by methylhydrazine. The catalytic reaction can be accomplished for a range of electronically and sterically diverse nitroarenes, using mild experimental conditions and low catalyst loadings, resulting in the corresponding anilines in high yields, with high chemoselectivity, and no side-products. Electronic and steric properties of the ligands play pivotal role in the catalytic efficacy of the respective complexes. In particular, complexes bearing ligands of high hemilability/lability and being capable of stabilizing lower metal oxidation-states exhibit the highest catalytic activity. Mechanistic investigations suggest the participation of the Co(III) complexes in two parallel reaction pathways: (a) coordination-induced activation of methylhydrazine and (b) reduction of nitroarenes to anilines by methylhydrazine, through the formation of Co(I) and Co-hydride intermediates.
Collapse
Affiliation(s)
- Dimitra K Gioftsidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael G Kallitsakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Konstantina Kavaratzi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael A Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Chen C, Lu C, Zhao B. Deoxygenative Hydroboration of Aromatic Nitro Compounds Catalyzed by Tetra(diisopropylamido) Rare-Earth Metal-Lithium Bimetallic Complexes. J Org Chem 2023; 88:16391-16399. [PMID: 37948672 DOI: 10.1021/acs.joc.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The first example of the reduction of a nitro compound with HBPin catalyzed by tetra(diisopropylamido) rare-earth metal-lithium bimetallic complexes LiRE(NiPr2)4(THF) (RE = La, Nd, Sm, Gd, and Y) was disclosed. A series of aromatic nitro compounds were reduced to N-borylamines in high yields (up to 99%). The derivatives of N-borylamines─amides and carbamates─were obtained in a sequential one-pot manner. Furthermore, kinetic studies of the deoxygenative hydroboration of nitro compounds were carried out.
Collapse
Affiliation(s)
- Chuanling Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chengrong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
13
|
Hu H, Zhao Y, Zhang Y, Xi J, Xiao J, Cao S. Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Top Curr Chem (Cham) 2023; 381:24. [PMID: 37480375 DOI: 10.1007/s41061-023-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Metal-based catalysts, encompassing both homogeneous and heterogeneous types, play a vital role in the modern chemical industry. Heterogeneous metal-based catalysts usually possess more varied catalytically active centers than homogeneous catalysts, making it challenging to regulate their catalytic performance. In contrast, homogeneous catalysts have defined active-site structures, and their performance can be easily adjusted by modifying the ligand. These characteristics lead to remarkable conceptual and technical differences between homogeneous and heterogeneous catalysts. As a recently emerging class of catalytic material, single-atom catalysts (SACs) have become one of the most active new frontiers in the catalysis field and show great potential to bridge homogeneous and heterogeneous catalytic processes. This review documents a brief introduction to SACs and their role in a range of reactions involving single-atom catalysis. To fully understand process-structure-property relationships of single-atom catalysis in chemical reactions, active sites or coordination structure and performance regulation strategies (e.g., tuning chemical and physical environment of single atoms) of SACs are comprehensively summarized. Furthermore, we discuss the application limitations, development trends and future challenges of single-atom catalysis and present a perspective on further constructing a highly efficient (e.g., activity, selectivity and stability), single-atom catalytic system for a broader scope of reactions.
Collapse
Affiliation(s)
- Hanyu Hu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Yanyan Zhao
- Rowland Institute at Harvard, Cambridge, MA, 02142, USA
| | - Yue Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Wang X, Zhang C, Li D, Sun Y, Ren J, Sun J, Yang D. Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131469. [PMID: 37116331 DOI: 10.1016/j.jhazmat.2023.131469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Tuning the electronic structure of single atom catalysts (SACs) is an effective strategy to promote the catalytic activity in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Herein, a series of Fe-based SACs with S1/2/3/4-coordination numbers on graphene were designed to regulate the electronic structural of SACs at molecular level, and their effects on PMS activation were investigated via density function theory (DFT). The calculation results demonstrate that the electron structure of the active center can be adjusted by coordination environment, which further affects the activation of PMS. Among the studied Fe-SX-C4-X catalysts, with the increase of the S coordination number, the electron density of the Fe-SX-C4-X active center was optimized. The active center of the Fe-S4-C0 catalyst has a largest positive charge density, exhibiting the highest number of electron transfer. It also has a lower kinetic energy barrier (0.28 eV) for PMS dissociation. Organic pollutant such as bisphenol A (BPA) can achieve stable adsorption on Fe-SX-C4-X catalysts, which is conducive to subsequent oxidation by radicals. The dual index ∆f(r) indicates that the para-carbon atom of the hydroxyl group on the benzene ring of BPA is vulnerable to radical attack. This study highlights a theoretical support and a certain guide for designing efficient SACs to activate PMS.
Collapse
Affiliation(s)
- Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Daohao Li
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, China
| | - Jin Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
15
|
Sun X, Zhou N, Liu M. Adsorption desulfurization over porous carbons derived from ZIF-67 and AC. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Xu J, Bai JQ, Si W, Zhang Y, Tan J, Cai M, Cheng Q, Sun S. N,S-Co-doping Significantly Improves the Co–N x Content of the Co-NSPC Catalyst and Enhances the Catalytic Performance for Selective Hydrogenation of Halogenated Nitrobenzenes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jiahui Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Jia-qi Bai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Wenjie Si
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Yunhai Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Jiazhao Tan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Qin Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People’s Republic of China
| |
Collapse
|
17
|
Wang J, Zhang Y, Xu X, Bao M. Oxygen Vacancy-Rich Ni-CeO 2 Heterojunction Catalyst for Hydrogenating Halogenated Nitroarenes with High Activity and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8149-8156. [PMID: 36637974 DOI: 10.1021/acsami.2c21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Halogenated arylamines are important intermediates for the synthesis of dyes, pesticides, herbicides, and other chemicals. One important way to prepare halogenated arylamines is catalytic hydrogenation of halogenated nitroarenes. Ni-based catalysts have been used in the hydrogenation of halogenated nitroarenes but suffer from low activity and dehalogenation side reaction. In this paper, Ni-CeO2/SiO2 heterojunction catalyst with a "raisin-bun" structure was prepared by reverse microemulsion. A built-in electric field and more oxygen vacancies were formed due to electron transfer from Ni to CeO2 as a result of their work function difference. The built-in electric field leads to the heterolytic cleavage of H2, thereby improving the hydrogenation activity. Oxygen vacancies preferentially adsorb and activate nitro groups, inhibiting the dehalogenation side reaction. Through the cooperation of built-in electric field and oxygen vacancy, synchronous enhancement of the activity and selectivity is obtained successfully. This finding provides a new view for the design of non-noble metal-based catalysts with high activity and selectivity.
Collapse
Affiliation(s)
- Jiasheng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ying Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaonan Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
18
|
Zhao X, Wang J, Lian L, Zhang G, An P, Zeng K, He H, Yuan T, Huang J, Wang L, Liu YN. Oxygen Vacancy-Reinforced Water-Assisted Proton Hopping for Enhanced Catalytic Hydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaojun Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lizhen Lian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Guangji Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong 516007, P. R. China
| | - Ping An
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Haichuan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Tiechui Yuan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jianhan Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - You-Nian Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
19
|
Lan X, Zhao W, Fan M, Wang B, Zhang R. Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Chen Y, Li P, Bu X, Wang L, Liang X, Chehreh Chelgani S. In-depth purification of spent pot-lining by oxidation-expansion acid leaching – A comparative study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Chen R, Chen Y, Liang X, Kong Y, Fan Y, Liu Q, Yang Z, Tang F, Muya J, Dessie Walle M, Wang L. Oxidative exfoliation of spent cathode carbon: a two-in-one strategy for its decontamination and high-valued application. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tang F, Zhang G, Wang L, Huang J, Liu YN. Unsymmetrically N, S-coordinated single-atom cobalt with electron redistribution for catalytic hydrogenation of quinolines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Li M, Zhang C, Tang Y, Chen Q, Li W, Han Z, Chen S, Lv C, Yan Y, Zhang Y, Zheng W, Wang P, Guo X, Ding W. Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhong Li
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu Tang
- Institute of Molecular Catalysis and In Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingliang Chen
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Li
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Han
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shanyong Chen
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changchang Lv
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yujie Yan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Liu G, Nie T, Wang H, Shen T, Sun X, Bai S, Zheng L, Song YF. Size Sensitivity of Supported Palladium Species on Layered Double Hydroxides for the Electro-oxidation Dehydrogenation of Hydrazine: From Nanoparticles to Nanoclusters and Single Atoms. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianqi Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
25
|
Zhang J, Cui B, Jiang S, Liu H, Dou M. Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. NANOSCALE 2022; 14:9849-9859. [PMID: 35772340 DOI: 10.1039/d2nr01704k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring cost-effective non-precious metal electrocatalysts is vital for the large-scale application of clean energy conversion devices (i.e., fuel cells, metal-air batteries and water electrolysers). Herein, we present the construction of a three-dimensional cobalt sulfide/multi-heteroatom co-doped carbon composite as a trifunctional electrocatalyst for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) through one-step sulfidation of zeolitic-imidazolate frameworks (ZIFs) using sulfur powder as a sulfur source. By virtue of the distinct periodic metal-nitrogen coordination structure and the abundant micropores within the ZIF precursor, sub-10 nm Co9S8 nanoparticles (NPs) are homogenously anchored on a Co, S and N multi-heteroatom co-doped carbon framework with a large specific surface area that exposes sufficient reactive sites for these electrocatalytic reactions. The optimized Co9S8/CoNSC exhibits outstanding ORR, OER and HER performance, comparable or even superior to those of commercial Pt/C and RuO2. The small Co9S8 NPs and Co-Nx species embedded in the carbon matrix cooperatively catalyze the OER and ORR, while the HER catalysis is mainly contributed by Co9S8 NPs. Furthermore, the Co9S8/CoNSC shows outstanding anti-poisoning capability towards sulfur species during ORR catalysis with no obvious activity degradation observed in 0.1 M KOH containing 50 μM SO32- species, significantly outperforming commercial Pt/C. The assembled rechargeable Zn-air battery using the Co9S8/CoNSC as a cathode shows a high power density (150 mW cm-2) and the assembled water electrolyzer only requires 1.585 V at a current density of 10 mA cm-2 when using this material as an anode and a cathode. This work provides an effective strategy to design and synthesize efficient, durable and anti-poisoning cobalt chalcogenide-based trifunctional electrocatalysts for the large-scale application of clean energy conversion devices.
Collapse
Affiliation(s)
- Jiakun Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Bolan Cui
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Shang Jiang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Haitao Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Meiling Dou
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|