1
|
Zhang XY, Zhu D, Cao RF, Huo YX, Ding TM, Chen ZM. Enantioselective synthesis of inherently chiral sulfur-containing calix[4]arenes via chiral sulfide catalyzed desymmetrizing aromatic sulfenylation. Nat Commun 2024; 15:9929. [PMID: 39548106 PMCID: PMC11568299 DOI: 10.1038/s41467-024-54380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Inherently chiral calixarenes hold great potential for applications in chiral recognition, sensing, and asymmetric catalysis due to their unique structures. However, due to their special structures and relatively large sizes, the catalytic asymmetric synthesis of inherently chiral calixarenes is challenging with very limited examples available. Here, we present an efficient method for the enantioselective synthesis of inherently chiral sulfur-containing calix[4]arenes through the desymmetrizing electrophilic sulfenylation of calix[4]arenes. This catalytic asymmetric reaction is enabled by a chiral 1,1'-binaphthyl-2,2'-diamine-derived sulfide catalyst and hexafluoroisopropanol. Various inherently chiral sulfur-containing calix[4]arenes are obtained in moderate to excellent yields with high enantioselectivities. Control experiments indicate that the thermodynamically favored C-SAr product is formed from the kinetically favored N-SAr product and the combination of the chiral sulfide catalyst and hexafluoroisopropanol is crucially important for both enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ren-Fei Cao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yu-Xuan Huo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
2
|
Piejko M, Moran J, Lebœuf D. Difunctionalization Processes Enabled by Hexafluoroisopropanol. ACS ORGANIC & INORGANIC AU 2024; 4:287-300. [PMID: 38855339 PMCID: PMC11157514 DOI: 10.1021/acsorginorgau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024]
Abstract
In the past 5 years, hexafluoroisopropanol (HFIP) has been used as a unique solvent or additive to enable challenging transformations through substrate activation and stabilization of reactive intermediates. In this Review, we aim at describing difunctionalization processes which were unlocked when HFIP was involved. Specifically, we focus on cyclizations and additions to alkenes, alkynes, epoxides, and carbonyls that introduce a wide range of functional groups of interest.
Collapse
Affiliation(s)
- Maciej Piejko
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institut
Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Zhu D, Mu T, Li ZL, Luo HY, Cao RF, Xue XS, Chen ZM. Enantioselective Synthesis of Planar-Chiral Sulfur-Containing Cyclophanes by Chiral Sulfide Catalyzed Electrophilic Sulfenylation of Arenes. Angew Chem Int Ed Engl 2024; 63:e202318625. [PMID: 38231132 DOI: 10.1002/anie.202318625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
An efficient catalytic asymmetric electrophilic sulfenylation reaction for the synthesis of planar-chiral sulfur-containing cyclophanes has been developed for the first time. This was achieved by using a new Lewis base catalyst and a new ortho-trifluoromethyl-substituted sulfenylating reagent. Using the substrates with low rotational energy barrier, the transformation proceeded through a dynamic kinetic resolution, and the high rotational energy barrier of the substrates allowed the reaction to undergo a kinetic resolution process. Meanwhile, this transformation was compatible with a desymmetrization process when the symmetric substrates were used. Various planar-chiral sulfur-containing cyclophanes were readily obtained in moderate to excellent yields with moderate to excellent enantioselectivities (up to 97 % yield and 95 % ee). This approach was used to synthesize pharmaceutically relevant planar-chiral sulfur-containing molecules. Density functional theory calculations showed that π-π interactions between the sulfenyl group and the aromatic ring in the substrate play a crucial role in enantioinduction in this sulfenylation reaction.
Collapse
Affiliation(s)
- Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong Mu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200232, P. R. China
| | - Ze-Long Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hui-Yun Luo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ren-Fei Cao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200232, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Abstract
Catalysts play a major role in chemical synthesis, and catalysis is considered to be a green and economic process. Catalysis is dominated by covalent interactions between the catalyst and substrate. The design of non-covalent catalysts came into limelight only recently. Hydrogen bonding (HB) catalysts are well established among non-covalent catalysts, including asymmetric HB catalysts. Though halogen bonding (XB) catalysis and its asymmetric version are gaining admiration, non-covalent chalcogen bonding catalysis (ChB) is in the budding stage. This tutorial review will focus on the recently evolved chalcogen bonding catalysis and emphasis will be given to the chalcogen bonding of chiral molecules. Since successful enantioselective chalcogen bonding catalysis is yet to be reported, this review will focus on the basics of non-covalent bonding catalysis, chalcogen bonding catalysis, chiral chalcogenide synthesis, rigidification of transition states by ChB, stabilization of cations by chiral chalcogens, details of unsuccessful asymmetric chalcogen bonding catalysis, enantioseparation of racemic molecules using ChB, and the existence of ChB in chiral biomolecules.
Collapse
Affiliation(s)
- Govindasamy Sekar
- Department of Chemistry, IIT Madras, Chennai, Tamilnadu-600 036, India.
| | | | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Science and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. Substrate-Directed Enantioselective Aziridination of Alkenyl Alcohols Controlled by a Chiral Cation. J Am Chem Soc 2023; 145:7516-7527. [PMID: 36961353 PMCID: PMC10080694 DOI: 10.1021/jacs.3c00693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Alkene aziridination is a highly versatile transformation for the construction of chiral nitrogen-containing compounds. Inspired by the success of analogous substrate-directed epoxidations, we report an enantioselective aziridination of alkenyl alcohols, which enables asymmetric nitrene transfer to alkenes with varied substitution patterns, including those not covered by the current protocols. We believe that our method is effective because it is substrate-directed, exploiting a network of attractive non-covalent interactions between the substrate, an achiral dianionic rhodium(II,II) tetracarboxylate dimer, and its two associated cinchona alkaloid-derived cations. It is these cations that provide a defined chiral pocket in which the aziridination can occur. In addition to a thorough evaluation of compatible alkene classes, we advance a practical mnemonic to predict reaction outcome and disclose a range of post-functionalization protocols that highlight the unique synthetic potential of the enantioenriched aziridine-alcohol products.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicholas J. Hodson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arthur R. Lit
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert J. Phipps
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Liu XD, Ye AH, Chen ZM. Catalytic Enantioselective Intermolecular Three-Component Sulfenylative Difunctionalizations of 1,3-Dienes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xiao-Dong Liu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
7
|
Riddell AB, Michalski MM, Schwan AL. Synthesis of alkyl allenyl sulfoxides from thiosuccinimides via [2,3]-sigmatropic rearrangement. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2157829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Adam B. Riddell
- Department of Chemistry, University of Guelph, Guelph, N1G 2W1, Canada
| | | | - Adrian L. Schwan
- Department of Chemistry, University of Guelph, Guelph, N1G 2W1, Canada
| |
Collapse
|
8
|
Wang Q, Nilsson T, Eriksson L, Szabó KJ. Sulfenofunctionalization of Chiral α-Trifluoromethyl Allylboronic Acids: Asymmetric Synthesis of SCF 3 , SCF 2 R, SCN and SAr Compounds. Angew Chem Int Ed Engl 2022; 61:e202210509. [PMID: 36152310 PMCID: PMC9828052 DOI: 10.1002/anie.202210509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/12/2023]
Abstract
We report herein a new method for the synthesis of densely functionalized chiral allyl SCF3 , SCF2 R, SCN and SAr species with a separate CF3 functionality. The synthetic approach is based on selenium-catalyzed sulfenofunctionalization of chiral α-CF3 allylboronic acids. The reactions proceeded with remarkably high stereo-, diastereo- and site-selectivity, based on the formation of a stable thiiranium ion followed by rapid deborylative ring opening.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Tomas Nilsson
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Lars Eriksson
- Department of Materials and Environmental ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Kálmán J. Szabó
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| |
Collapse
|
9
|
Liang Y, Jiao H, Zhang H, Wang YQ, Zhao X. Chiral Chalcogenide-Catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org Lett 2022; 24:7210-7215. [PMID: 36154012 DOI: 10.1021/acs.orglett.2c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for the construction of chiral sulfides by catalytic enantioselective hydrothiolation of alkenes via an electrophilic pathway has been developed. Using this strategy, cyclic and acyclic unactivated alkenes efficiently afforded various chiral products in the presence of electrophilic sulfur reagents and silanes through chiral chalcogenide catalysis. The obtained products were easily transformed into other types of valuable chiral sulfur-containing compounds. Mechanistic studies revealed that the superior construction of chiral thiiranium ion intermediate is the key to achieving such a transformation.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hui Jiao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|