1
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2024:10.1007/s11030-024-10956-z. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
2
|
Zhao B, Li C, Hu T, Gao Y, Fan L, Zhang X. Robust {Pb 10}-Cluster-Based Metal-Organic Framework for Capturing and Converting CO 2 into Cyclic Carbonates under Mild Conditions. Inorg Chem 2024; 63:14183-14192. [PMID: 39010257 DOI: 10.1021/acs.inorgchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing a highly active catalyst that can efficiently capture and convert carbon dioxide (CO2) into high-value-added energy materials remains a severe challenge, which inspires us to explore effective metal-organic frameworks (MOFs) with high chemical stability and high-density active sites. Herein, we report a robust 3D lead(II)-organic framework of {(Me2NH2)2[Pb5(PTTPA)2(H2O)3]·2DMF·3H2O}n (NUC-111) with unreported [Pb10(COO)22(H2O)6] clusters (abbreviated as {Pb10}) as nodes (H6PTTPA = 4,4',4″-(pyridine-2,4,6-triyl)triisophthalic acid). After thermal activation, NUC-111a is functionalized by the multifarious symbiotic acid-base active sites of open Pb2+ sites and uncoordinated pyridine groups on the inner surface of the void volume. Gas adsorption tests confirm that NUC-111a displays a higher separation performance for mixed gases of f CO2 and CH4 with the selectivity of CO2/CH4 at 273 K and 101 kPa being 31 (1:99, v/v), 23 (15:85, v/v), and 8 (50:50, v/v), respectively. When the temperature rises to 298 K, the selectivity of CO2/CH4 at 101 kPa is 26 (1:99, v/v), 22 (15:85, v/v), and 11 (50:50, v/v). Moreover, activated NUC-111a exhibited excellent catalytic performance, stability, and recyclability for the cycloaddition of CO2 with epoxides under mild conditions. Hence, this work provides valuable insight into designing MOFs with multifunctionality for CO2 capture, separation, and conversion.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, P. R. China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
3
|
Liu J, Zhang B, Jian P, Shi J. Experimental and Theoretical Investigation of Interfacial Engineering in Fe 2O 3/NiFe 2O 4 Heterostructures toward the Cycloaddition of CO 2 with Styrene Oxide. Inorg Chem 2024; 63:12981-12991. [PMID: 38951131 DOI: 10.1021/acs.inorgchem.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The chemical fixation of CO2 into epoxides for the synthesis of cyclic carbonates is an appealing solution to both reduce global CO2 emission and produce fine chemicals, but it is still a prime challenge to develop a low-cost, earth-abundant, yet efficient solid catalyst. Herein, Fe2O3/NiFe2O4 heterostructures are facilely constructed for the highly efficient cycloaddition of CO2 with styrene oxide (SO) to produce styrene carbonate (SC). Both experimental findings and density functional theory (DFT) calculations substantiate the prominent electron transfer and charge redistribution within the heterointerfaces between the biphasic components, which induce a unique interfacial microenvironment that can facilitate the adsorption and activation of SO. This endows the biphasic catalyst with a substantially higher reactivity than the individual components. This study sheds new insights into the establishment of heterostructured catalysts consisting of transitional metal oxides for the high-efficiency production of SC from the cycloaddition of CO2 with SO.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Shi
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
4
|
Abazari R, Ghorbani N, Shariati J, Varma RS, Qian J. Copper-Based Bio-MOF/GO with Lewis Basic Sites for CO 2 Fixation into Cyclic Carbonates and C-C Bond-Forming Reactions. Inorg Chem 2024; 63:12667-12680. [PMID: 38916987 DOI: 10.1021/acs.inorgchem.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Nasrin Ghorbani
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Jafar Shariati
- Department of Chemical Engineering, Darab Branch, Islamic Azad University, P.O. Box 74817-83143 Darab, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
5
|
Zhou X, Zhang H, Cheng H, Wang Z, Wang P, Zheng Z, Dai Y, Xing D, Liu Y, Huang B. Enhanced cycloaddition between CO 2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect. J Colloid Interface Sci 2024; 658:805-814. [PMID: 38154243 DOI: 10.1016/j.jcis.2023.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
The cycloaddition reaction between CO2 and epoxide is an efficient way to convert CO2 into high value-added chemicals. Therefore, it is particularly important to develop efficient catalysts that can catalyze the reaction under mild conditions. In this work, a metal-organic framework (Bi-HHTP, consisting of bismuth (Bi) as metal dots and 2,3,6,7,10,11-hexahydroxy-triphenylene (HHTP) as organic linkers) with zigzagging corrugated topology was successfully synthesized, which shows excellent catalytic activity under visible light irradiation. Various characterizations suggest that the excellent activity is derived from the following reasons: (1) the abundant exposed Bi sites provide Lewis sites for adsorption of epoxides and CO2; (2) the free holes produced over Bi-HHTP under light irradiation which could oxidize epoxide, which consequently facilitateing the subsequent ring-opening reaction; and (3) the existence of synergistic photocatalytic and photothermal effect in Bi-HHTP. This study provides a new avenue of developing bismuth-based metal organic frameworks to promote the efficiency of cycloaddition of CO2 under mild conditions.
Collapse
Affiliation(s)
- Xiaolu Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Danning Xing
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Zhang M, He Z, Wang L, Zhang X, Li G. Isomorphous Substitution of Organic Cage Crystal by Pd Nanoclusters for Selective Hydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308400. [PMID: 37948438 DOI: 10.1002/smll.202308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
For supporting active metal, the cavity confinement and mass transfer facilitation lie not in one sack, a trade-off between high activity and good stability of the catalyst is present. Porous organic cages (POCs) are expected to break the trade-off when metal particles are properly loaded. Herein, three organic cages (CC3, RCC3, and FT-RCC3) are employed to support Pd nanoclusters for catalytic hydrogenation. Subnanometer Pd clusters locate differently in different cage frameworks by using the same reverse double-solvents approach. Compared with those encapsulated in the intrinsic cavity of RCC3 and anchored on the outer surface of CC3, the Pd nanoclusters orderly assembled in FT-RCC3 crystal via isomorphous substitution exhibit superior activity, high selectivity, and good stability for semi-hydrogenation of phenylacetylene. Isomorphous substitution of FT-RCC3 crystal by Pd nanoclusters is originated from high crystallization capacity of FT-RCC3 and specific interaction of each Pd nanocluster with four cage windows. Both confinement function and H2 accumulation capacity of FT-RCC3 are fully utilized to support active Pd nanoclusters for efficient selective hydrogenation. The present results provide a new perspective to the heterogeneous catalysis field in terms of crystalizing metal nanoclusters in POC framework and outside the cage for making the best use of both parts.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
7
|
Liu N, Liu T, Liu G, Mi X, Li Y, Yang L, Zhou Z, Wang S. Two isostructural Zn/Co-MOFs with penetrating structures: multifunctional properties of both luminescence sensing and conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:3654-3665. [PMID: 38289280 DOI: 10.1039/d3dt03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 μM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.
Collapse
Affiliation(s)
- Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Guangning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
8
|
Zhang X, Wang X, Li C, Hu T, Fan L. Nanoporous {Co 3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO 2 and Knoevenagel condensation. J Colloid Interface Sci 2023; 656:127-136. [PMID: 37988780 DOI: 10.1016/j.jcis.2023.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enhancing the catalysis of metal-organic frameworks (MOFs) by regulating inherent Lewis acid-base sites to realize the efficient seperation and chemical fixation of inert carbon dioxide (CO2) is crucial but challenging. Herein, the solvothermal self-assembly of Co2+, 5'-(4-carboxy-2-nitrophenyl)-2,2',2'',4',6'-pentanitro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H3TNBTB) and 4'-phenyl-4,2':6',4''-terpyridine (PTP) generated a highly robust cobalt-organic framework of {[Co3(TNBTB)2(PTP)]·7DMF·6H2O}n (NUC-82). In NUC-82, the tri-core clusters of {Co3} with linear shape are bridged by TNBTB3- to form two-dimensional structure in ac plane, which is further linked by PTP to generate a three-dimensional framework with two kinds of solvent-accessible channels: rhombic-like (ca. 11.57 × 10.76 Å) along a axis and rectangular-like (ca. 7.32 × 11.56 Å) along b axis. Furthermore, it is worth emphasizing that the confined pore environments are characterized by plentiful Lewis acid-base sites of tricobalt clusters, grafted nitro groups and free pyridinyl, high specific surface area and solvent-free nano-caged windows. Activated NUC-82a owns the ultra-high ethylene (C2H2) separation performance over the mixture of C2H2/CH4 and CO2/CH4 with the selectivity of 223.1 and 44.7. Thanks to the great Lewis-acid sites as well as the large pore volume, activated NUC-82a displays the high catalytic performace on the cycloaddition of CO2 with epoxides under wield condtions such as amibient pressure. Furthermore, because of the rich Lewis base sites, NUC-82a can efficiently catalyze Knoevenagel condensation of aldehydes and malononitrile. In the above organic reactions, NUC-82a not only shows the high catalytic activity, but also exhibits the high selectivity, satifactory recyclability and easy-to-separate heterogeneity, confirming that NUC-82a is a promising catalyst. Hence, this work provides in-depth insight into the construction of multifunctional MOFs by modifying the traditional ligands with as many Lewis acid-base active sites as possible.
Collapse
Affiliation(s)
- Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Chong Li
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Liming Fan
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
9
|
Saha E, Jungi H, Dabas S, Mathew A, Kuniyil R, Subramanian S, Mitra J. Amine-rich Nickel(II)-Xerogel as a Highly Active Bifunctional Metallo-organo Catalyst for Aqueous Knoevenagel Condensation and Solvent-free CO 2 Cycloaddition. Inorg Chem 2023; 62:14959-14970. [PMID: 37672483 DOI: 10.1021/acs.inorgchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Metallogels formed from supramolecular interactions of low-molecular-weight gelators (LMWGs) combine the qualities of heterogeneous catalysts and offer the advantages of multifunctionality owing to the facile installation of desired task-specific moieties on the surface and along the channels of the gels. We discuss the applications of a triazole-based Ni(II) gel-derived xerogel (NiXero) having a high density of Ni(II)-nodes and appended primary amines as a recyclable heterogeneous catalyst for Knoevenagel condensation of aldehyde and malononitrile in water and the solvent-free cycloaddition of CO2 to form a series of cyclic carbonates with near-quantitative conversion of the respective epoxides, with low catalyst loading (0.59 mol %), high catalyst stability, and recyclability. The structural advantages of NiXero, due to the concurrent presence of bifunctional Lewis acid-base sites on the channels, open Ni(II) nodes, Ntriazole, pendant -NH2 and its chemical stability, are conducive to the cooperative heterogeneous catalytic activity under mild conditions. This work emphasizes the effective amalgamation of metals with purpose-built ligand systems for the construction of metallogels and their utility as heterogeneous catalysts for desired organic transformations.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Hiren Jungi
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Shilpa Dabas
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Saravanan Subramanian
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
10
|
Si X, Yao Q, Pan X, Zhang X, Zhang C, Li Z, Duan W, Hou J, Huang X. Mesoporous MOF Based on a Hexagonal Bipyramid Co 8-Cluster: High Catalytic Efficiency on the Cycloaddition Reaction of CO 2 with Bulky Epoxides. Inorg Chem 2023; 62:15006-15014. [PMID: 37672651 DOI: 10.1021/acs.inorgchem.3c01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mesoporous cobalt-based metal-organic framework (LCU-606) was synthesized based on a hexagonal bipyramid Co8(μ4-O)3 cluster and an N,N,N',N'-tetrakis-(4-benzoic acid)-1,4-phenylenediamine ligand (H4TBAP). LCU-606 featuring large pore diameters of 21.7 Å and exposed Lewis-acid metal sites could serve as an excellent heterogeneous catalyst for CO2 cycloaddition reaction with various epoxide substrates under mild conditions (1 atm CO2, 60 °C, and solvent free). In particular, when extending the substrates to bulkier ones, LCU-606 still shows high catalytic efficiency on account of the large pore aperture. Also, LCU-606 demonstrates high recyclability and stability in consecutive catalytic runs. Therefore, the high efficiency, recyclability, and generality on CO2 catalytic cycloaddition make LCU-606 a very promising heterogeneous catalyst for CO2 chemical fixation.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Chenglu Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Zhanqiang Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Jinle Hou
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| |
Collapse
|
11
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
12
|
Sahoo R, Mondal S, Chand S, Das MC. Highly Robust Metal-Organic Framework for Efficiently Catalyzing Knoevenagel Condensation and the Strecker Reaction under Solvent-Free Conditions. Inorg Chem 2023; 62:12989-13000. [PMID: 37530642 DOI: 10.1021/acs.inorgchem.3c01767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Metal-organic frameworks (MOFs) have been recognized as one of the most promising porous materials and offer great opportunities for the rational design of new catalytic solids having great structural diversity and functional tunability. Despite numerous inherent merits, their chemical environment instability limits their practical usage and demands further exploration. Herein, by employing the mixed-ligand approach, we have designed and developed a robust 3D Co-MOF, [Co2(μ2-O)(TDC)2(L)(H2O)2]·2DMF (H2TDC = 2,5-thiophenedicarboxylic acid, L = 3,3'-azobispyridine), IITKGP-50 (IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also in a wide range of aqueous pH solutions (pH = 2-12). Taking advantage of superior framework robustness and the presence of high-density open metal sites, IITKGP-50 was further explored in catalyzing the two-component Knoevenagel condensation reaction and three-component Strecker reactions. Moreover, to verify the size selectivity of IITKGP-50, smaller to bulkier substrates in comparison with the MOF's pore cavity (8.1 × 5.6 Å2) were employed, in which relatively lesser conversions for the sterically bulkier aldehyde derivatives confirmed that the catalytic cycle occurs inside the pore cavity. The easy scalability, lower catalyst loading compared to that of benchmark MOFs, magnificent conversion rate over a wide range of substrates, and excellent recyclability without significant performance loss made IITKGP-50 a promising heterogeneous catalyst candidate.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| |
Collapse
|
13
|
Zhang Y, Sun CY, Lin L. Coordination-directed self-assembly of nano-cages: metal ion-change, ligand-extending, shape-control and transdermal drug delivery. RSC Adv 2023; 13:23396-23401. [PMID: 37546215 PMCID: PMC10401521 DOI: 10.1039/d3ra04150f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
The combination of different pyridyl ligands and metal ions has proven to be a very reliable strategy for controlling the coordination mode of the heterometallic coordination nano-cages. Adjusting the length of the ligands could result in the selective synthesis of several heterometallic coordination nano-cages, either [8Rh + 2M]-4L, [8Rh + 2M]-5L or [8Rh + 4M]-6L cages, derived from the very same precursors (LH3tzdc) through half-sandwich rhodium self-assembly. Moreover, a series of [8Rh + 4M]-6L cages was chosen to exemplify the preparation. The rigidity of various pyridyl donor ligands caused the vertical nano-cage to be energetically preferred and was able to change the self-assembly process through ligand flexibility to selectively give the inclined nano-cage and cross nano-cage.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Chi-Yu Sun
- Department of Translational Medicine Research Centre, School of Pharmacy, Shenyang Medical College Shenyang 110034 China
| | - Lin Lin
- Department of Translational Medicine Research Centre, School of Pharmacy, Shenyang Medical College Shenyang 110034 China
| |
Collapse
|
14
|
Seal N, Palakkal AS, Pillai RS, Neogi S. Coordination Unsaturation and Basic Site-Immobilized Nanochannel in a Chemorobust MOF for 3-Fold-Increased High-Temperature Selectivity and Fixation of CO 2 under Mild Conditions with Nanomolar Recognition of Roxarsone. Inorg Chem 2023; 62:11528-11540. [PMID: 37440273 DOI: 10.1021/acs.inorgchem.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A multifaceted metal-organic framework (MOF) with task-specific site-engineered pores can promise high-temperature and moisture-tolerant capture and non-redox fixation of CO2 under mild conditions as well as ultrasensitive detection of carcinogenic contaminants in water. Herein, we report a pillar-bilayered MOF that holds a nanochannel with contrasting functionalities for both these sustainable applications with improved performance characteristics. The twofold entangled robust framework exhibits CO2 adsorption at elevated temperatures with considerable MOF-gas interaction. Interestingly, CO2 selectivity unveils nearly a 3-fold improvement upon the rise of temperature, affording a CO2/N2 value of 820 at 313 K, which outperforms many porous adsorbents. Additionally, breakthrough simulation establishes complete separation and attests the potential of this MOF in the separation of flue gas mixture. Importantly, minor CO2 loss during multiple capture-release cycles and under a relative humidity of 75% promise practical usability of the material. Density functional theory (DFT) not only portrays the atomistic level snapshots of temperature-triggered CO2 inclusion inside this microporous vessel alongside the role of diverse CO2-philic sites but also validates the basis of N2-phobicity of an azo-functionalized linker on such increased selectivity. The guest-free MOF further demonstrates non-redox and recyclable CO2 fixation with wide epoxide tolerance under solvent-free mild conditions and even works at atmospheric pressure and room temperature. The crucial roles of high-density acid-base sites in both adsorption and catalysis are supported by control experiments and by comparing the activity of an unfunctionalized MOF. The hydrolytic stability and strong luminescence signature benefit the framework in aqueous-phase selective and fast responsive detection of detrimental roxarsone (ROX) with high quenching (7.56 × 104 M-1) and very low sensitivity (68 nM). Apart from varying degrees of an energy-transfer mechanism, the fluorosensing of ROX is comprehensively supported by in-depth DFT studies that manifest alteration of MOF energy levels in the presence of organoarsenic compounds and depict MOF-analyte supramolecular interactions.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, School of Basic Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, ASCG/PCM, Indian Space Research Organization, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022 Kerala, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| |
Collapse
|
15
|
Su H, Zhou Y, Huang T, Sun F. Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules 2023; 28:5237. [PMID: 37446898 DOI: 10.3390/molecules28135237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Medi-MOF-1 is a highly porous Metal-Organic framework (MOF) constructed from Zn(II) and curcumin. The obtained crystal was characterized using powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). A micrometer-sized crystal with similar morphology was successfully obtained using the solvothermal method. Thanks to its high surface area, good stability, and abound pores, the as-synthesized medi-MOF-1 could be used as a functional porous material to adsorb different gases (H2, CO2, CH4, and N2) and iodine (I2). The activated sample exhibited a high I2 adsorption ability of 1.936 g g-1 at room temperature via vapor diffusion. Meanwhile, the adsorbed I2 could be released slowly in ethanol, confirming the potential application for I2 adsorption.
Collapse
Affiliation(s)
- Hongmin Su
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yang Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tao Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Singh M, Karmakar A, Seal N, Mondal PP, Kundu S, Neogi S. Redox-Active and Urea-Engineered-Entangled MOFs for High-Efficiency Water Oxidation and Elevated Temperature Advanced CO 2 Separation Cum Organic-Site-Driven Mild-Condition Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24504-24516. [PMID: 37162125 DOI: 10.1021/acsami.3c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.
Collapse
Affiliation(s)
- Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Partha Pratim Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| |
Collapse
|
17
|
Chen J, Shi D, Wu Q, Chen K, Zhang Y, Xu X, Li H. Magnetically-separable quasi-homogeneous catalyst: Brush-type ionic liquid polymer coated magnetic polymer microspheres for tandem reactions to produce 4H-pyrans/biodiesel. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Xu Z, Zhao YY, Chen L, Zhu CY, Li P, Gao W, Li JY, Zhang XM. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO 2 with epoxides and Knoevenagel condensation reactions. Dalton Trans 2023; 52:3671-3681. [PMID: 36847359 DOI: 10.1039/d3dt00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ya-Yu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Cai-Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ji-Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiu-Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| |
Collapse
|
19
|
Lv H, Fan L, Hu T, Jiao C, Zhang X. A highly robust cluster-based indium(III)-organic framework with efficient catalytic activity in cycloaddition of CO 2 and Knoevenagel condensation. Dalton Trans 2023; 52:3420-3430. [PMID: 36815544 DOI: 10.1039/d2dt04043c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The efficient catalytic performance displayed by MOFs is decided by an appropriate charge/radius ratio of defect metal sites, large enough solvent-accessible channels and Lewis base sites capable of polarizing substrate molecules. Herein, the solvothermal self-assembly led to a highly robust nanochannel-based framework of {[In4(CPDD)2(μ3-OH)2(DMF)(H2O)2]·2DMF·5H2O}n (NUC-66) with a 56.8% void volume, which is a combination of a tetranuclear cluster [In4(μ3-OH)2(COO)10(DMF)(H2O)2] (abbreviated as {In4}) and a conjugated tetracyclic pentacarboxylic acid ligand of 4,4'-(4-(4-carboxyphenyl)pyridine-2,6-diyl)diisophthalic acid (H5CPDD). To the best of our knowledge, NUC-66 is a rarely reported {In4}-based 3D framework with embedded hierarchical triangular-microporous (2.9 Å) and hexagonal-nanoporous (12.0 Å) channels, which are shaped by six rows of {In4} clusters. After solvent exchange and vacuum drying, the surface of nanochannels in desolvated NUC-66a is modified by unsaturated In3+ ions, Npyridine atoms and μ3-OH groups, all of which display polarization ability towards polar molecules due to their Lewis acidity or basicity. The catalytic experiments performed showed that NUC-66a had high catalytic activity in the cycloaddition reactions of epoxides with CO2 under mild conditions, which should be ascribed to its structural advantages including nanoscale channels, rich bifunctional active sites, large surface areas and chemical stability. Moreover, NUC-66a, as a heterogeneous catalyst, could greatly accelerate the Knoevenagel condensation reactions of aldehydes and malononitrile. Hence, this work confirms that the development of rigid nanoporous cluster-based MOFs built on metal ions with a high charge and large radius ratio will be more likely to realize practical applications, such as catalysis, adsorption and separation of gas, etc.
Collapse
Affiliation(s)
- Hongxiao Lv
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Chenxu Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
20
|
Feng M, Zhou X, Wang X, Zhou P, Wang J, Cheng Z, Wang D. Two Stable Sodalite-Cage-Based MOFs for Highly Gas Selective Capture and Conversion in Cycloaddition Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11837-11844. [PMID: 36814119 DOI: 10.1021/acsami.2c22725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stable metal-organic frameworks, containing periodically arranged nanosized cages or pores and active Lewis acid-base sites, are considered ideal candidates for efficient heterogeneous catalysis. Herein, based on the light of reticular chemistry design principles, the ingenious assembly of two pyridine N-rich multifunctional triangular linkers, H3TBA [3,5-di (1h-tetrazol-5-yl) benzoic acid] and H2TZI [5-(1H-tetrazol-5-yl)isophthalic acid], with MnII formed PCP-33(Mn) and PCP-34(Mn), respectively. PCP-33(Mn) and PCP-34(Mn) are typical sod topology zeolitic metal-organic frameworks (ZMOFs) with hierarchical tetragonal micropores and metal organic polyhedral sodalite-like cages. The inner walls of these cages are modified by open metal sites MnII and Lewis acid-base sites of halide ions and N pyridine atoms. The characteristics of the cages' structures make two MOFs exhibit high surface area and a small window, which promote their outstanding gas capture ability (C2H2, 131.8 cm3 g-1; CO2, 77.9 cm3 g-1 at 273 K) and selective separation performance (C2H2/CH4, 226.2, CO2/CH4, 50.3 at 298 K), and are also suitable as catalytic reactors for metal/solvent-free chemical fixation of CO2 with epoxides to achieve high-efficiency CO2 conversion. Furthermore, they are greatly recyclable for several cycles while retaining their structural rigidity and catalytic activity.
Collapse
Affiliation(s)
- Meng Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xia Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xirong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Peipei Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jingyu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhuoyi Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
21
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
22
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
23
|
Xiao L, Guo B, Lu Z, Zhao Y, Yin X, Lai Y, Cai J, Hou L. Polymetric pseudo liquid behavior of ionic cyclic polypyrazoles for efficient CO2 cycloaddition reaction under mild conditions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Pajuelo-Corral O, Razquin-Bobillo L, Rojas S, García JA, Choquesillo-Lazarte D, Salinas-Castillo A, Hernández R, Rodríguez-Diéguez A, Cepeda J. Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3977. [PMID: 36432263 PMCID: PMC9694308 DOI: 10.3390/nano12223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The work presented herein reports on the synthesis, structural and physico-chemical characterization, luminescence properties and luminescent sensing activity of a family of isostructural coordination polymers (CPs) with the general formula [Ln2(μ4-5Meip)3(DMF)]n (where Ln(III) = Sm (1Sm), Eu (2Eu), Gd (3Gd), Tb (4Tb) and Yb (5Yb) and 5Meip = 5-methylisophthalate, DMF = N,N-dimethylmethanamide). Crystal structures consist of 3D frameworks tailored by the linkage between infinite lanthanide(III)-carboxylate rods by means of the tetradentate 5Meip ligands. Photoluminescence measurements in solid state at variable temperatures reveal the best-in-class properties based on the capacity of the 5Meip ligand to provide efficient energy transfers to the lanthanide(III) ions, which brings intense emissions in both the visible and near-infrared (NIR) regions. On the one hand, compound 5Yb displays characteristic lanthanide-centered bands in the NIR with sizeable intensity even at room temperature. Among the compounds emitting in the visible region, 4Tb presents a high QY of 63%, which may be explained according to computational calculations. At last, taking advantage of the good performance as well as high chemical and optical stability of 4Tb in water and methanol, its sensing capacity to detect 2,4,6-trinitrophenol (TNP) among other nitroaromatic-like explosives has been explored, obtaining high detection capacity (with Ksv around 105 M-1), low limit of detection (in the 10-6-10-7 M) and selectivity among other molecules (especially in methanol).
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Laura Razquin-Bobillo
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Sara Rojas
- Departamento de Química Inorgánica, UEQ, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Jose Angel García
- Departamento de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 Armilla, Spain
| | - Alfonso Salinas-Castillo
- Departamento de Química Analítica, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Ricardo Hernández
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, UEQ, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| |
Collapse
|
25
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
26
|
A highly robust lutecium(III)-organic framework for the high catalytic performance on the chemical fixation CO2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Lv H, Chen H, Hu T, Zhang X. Nanocage-based {In 2Tm 2}-organic framework for efficiently catalyzing the cycloaddition reaction of CO 2 with epoxides and Knoevenagel condensation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of [In2Tm2(μ2-OH)2(CO2)10(H2O)2] clusters and H5BDCP ligand generated a highly robust nanoporous MOF with high catalytic performance in the cycloaddition reaction of epoxides with CO2 and Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|