1
|
Su Q, Louwerse M, Lammers RF, Maurits E, Janssen M, Boot RG, Borlandelli V, Offen WA, Linzel D, Schröder SP, Davies GJ, Overkleeft HS, Artola M, Aerts JMFG. Selective labelling of GBA2 in cells with fluorescent β-d-arabinofuranosyl cyclitol aziridines. Chem Sci 2024:d3sc06146a. [PMID: 39246358 PMCID: PMC11375437 DOI: 10.1039/d3sc06146a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
GBA2, the non-lysosomal β-glucosylceramidase, is an enzyme involved in glucosylceramide metabolism. Pharmacological inhibition of GBA2 by N-alkyl iminosugars is well tolerated and benefits patients suffering from Sandhoff and Niemann-Pick type C diseases, and GBA2 inhibitors have been proposed as candidate-clinical drugs for the treatment of parkinsonism. With the ultimate goal to unravel the role of GBA2 in (patho)physiology, we sought to develop a GBA2-specific activity-based probe (ABP). A library of probes was tested for activity against GBA2 and the two other cellular retaining β-glucosidases, lysosomal GBA1 and cytosolic GBA3. We show that β-d-arabinofuranosyl cyclitol aziridine (β-d-Araf aziridine) reacts with the GBA2 active site nucleophile to form a covalent and irreversible bond. Fluorescent β-d-Araf aziridine probes potently and selectively label GBA2 both in vitro and in cellulo, allowing for visualization of the localization of overexpressed GBA2 using fluorescence microscopy. Co-staining with an antibody selective for the lysosomal β-glucosylceramidase GBA1, shows distinct subcellular localization of the two enzymes. We proffer our ABP technology for further delineating the role and functioning of GBA2 in disease and propose the β-d-Araf aziridine scaffold as a good starting point for the development of GBA2-specific inhibitors for clinical development.
Collapse
Affiliation(s)
- Qin Su
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Max Louwerse
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Rob F Lammers
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Elmer Maurits
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Max Janssen
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Wendy A Offen
- York Structural Biology Laboratory, Department of Chemistry, The University of York Heslington York YO10 5DD UK
| | - Daniël Linzel
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Sybrin P Schröder
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York Heslington York YO10 5DD UK
| | - Herman S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
2
|
Hameleers L, Pijning T, Gray BB, Fauré R, Jurak E. Novel β-galactosidase activity and first crystal structure of Glycoside Hydrolase family 154. N Biotechnol 2024; 80:1-11. [PMID: 38163476 DOI: 10.1016/j.nbt.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Polysaccharide Utilization Loci (PULs) are physically linked gene clusters conserved in the Gram-negative phylum of Bacteroidota and are valuable sources for Carbohydrate Active enZyme (CAZyme) discovery. This study focuses on BD-β-Gal, an enzyme encoded in a metagenomic PUL and member of the Glycoside Hydrolase family 154 (GH154). BD-β-Gal showed exo-β-galactosidase activity with regiopreference for hydrolyzing β-d-(1,6) glycosidic linkages. Notably, it exhibited a preference for d-glucopyranosyl (d-Glcp) over d-galactopyranosyl (d-Galp) and d-fructofuranosyl (d-Fruf) at the reducing end of the investigated disaccharides. In addition, we determined the high resolution crystal structure of BD-β-Gal, thus providing the first structural characterization of a GH154 enzyme. Surprisingly, this revealed an (α/α)6 topology, which has not been observed before for β-galactosidases. BD-β-Gal displayed low structural homology with characterized CAZymes, but conservation analysis suggested that the active site was located in a central cavity, with conserved E73, R252, and D253 as putative catalytic residues. Interestingly, BD-β-Gal has a tetrameric structure and a flexible loop from a neighboring protomer may contribute to its reaction specificity. Finally, we showed that the founding member of GH154, BT3677 from Bacteroides thetaiotaomicron, described as β-glucuronidase, displayed exo-β-galactosidase activity like BD-β-Gal but lacked a tetrameric structure.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Tjaard Pijning
- Department of Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Brandon B Gray
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Edita Jurak
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
3
|
Wang WJ, Wang T, Zhao Y, Li BN, Chen DZ. Theoretical Insights into N-Glycoside Bond Cleavage of 5-Carboxycytosine by Thymine DNA Glycosylase: A QM/MM Study. J Phys Chem B 2024; 128:4621-4630. [PMID: 38697651 DOI: 10.1021/acs.jpcb.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.
Collapse
Affiliation(s)
- Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Tian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bi-Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
4
|
Wu Y, Hu Q, Che Y, Niu Z. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Chem Sci 2024; 15:6200-6217. [PMID: 38699266 PMCID: PMC11062090 DOI: 10.1039/d4sc00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.
Collapse
Affiliation(s)
- Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Meelua W, Thinkumrob N, Saparpakorn P, Pengthaisong S, Hannongbua S, Ketudat Cairns JR, Jitonnom J. Structural basis for inhibition of a GH116 β-glucosidase and its missense mutants by GBA2 inhibitors: Crystallographic and quantum chemical study. Chem Biol Interact 2023; 384:110717. [PMID: 37726065 DOI: 10.1016/j.cbi.2023.110717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) β-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation. The binding of IFG and 7 other iminosugar inhibitors to wild-type and mutant enzymes (Asp508His and Arg786His) mimicking GBA2 pathogenic variants was then evaluated computationally by two-layered ONIOM calculations (at the B3LYP:PM7 level). Calculations showed that six charged residues, Glu441, Asp452, His507, Asp593, Glu777, and Arg786 influence inhibitor binding most. His507, Glu777 and Arg786, form strong hydrogen bonds with the inhibitors (∼1.4-1.6 Å). Thus, the missense mutation of one of these residues in Arg786His has a greater effect on the interaction energies for all inhibitors compared to Asp508His. In line with the experimental data for the inhibitors that have been tested, the favorable interaction energy between the inhibitors and the TxGH116 protein followed the trend: isofagomine > 1-deoxynojirimycin > glucoimidazole > N-butyl-deoxynojirimycin ≈ N-nonyl-deoxynojirimycin > conduritol B epoxide ≈ azepane 1 > azepane 2. The obtained structural and energetic properties and comparison to the GBA2 model can lead to understanding of structural requirement for inhibitor binding in GH116 to aid the design of high potency GBA2 inhibitors.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, 56000, Thailand; Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | | | - Salila Pengthaisong
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|