1
|
Álvarez-Núñez A, Sarkar R, Dantignana V, Xiong J, Guo Y, Luis JM, Costas M, Company A. Intramolecular C-H Oxidation in Iron(V)-oxo-carboxylato Species Relevant in the γ-Lactonization of Alkyl Carboxylic Acids. ACS Catal 2024; 14:14183-14194. [PMID: 39324053 PMCID: PMC11420956 DOI: 10.1021/acscatal.4c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species. When the carboxylic acid functionality is present in the alkane substrate, it acts as a directing group, enabling the selective intramolecular γ-C-H hydroxylation that eventually affords γ-lactones. While this mechanistic frame is solidly supported by previous mechanistic studies, direct spectroscopic detection of the key iron(V)-oxo-carboxylato intermediate and its competence for engaging in the selective γ-C-H oxidation leading to lactonization have not been accomplished. In this work, we generate a series of well-defined iron(V)-oxo-carboxylato species (2c-2f) differing in the nature of the bound carboxylate ligand. Species 2c-2f are characterized by a set of spectroscopic techniques, including UV-vis spectroscopy, cold-spray ionization mass spectrometry (CSI-MS), and, in selected cases, EPR and Mössbauer spectroscopies. We demonstrate that 2c-2f undergo site-selective γ-lactonization of the carboxylate ligand in a stereoretentive manner, thus unequivocally identifying metal-oxo-carboxylato species as the powerful yet selective C-H cleaving species in catalytic γ-lactonization reactions of carboxylic acids. Reactivity experiments confirm that the intramolecular formation of γ-lactones is in competition with the intermolecular oxidation of external alkanes and olefins. Finally, mechanistic studies, together with DFT calculations, support a mechanism involving a site-selective C-H cleavage in the γ-position of the carboxylate ligand by the oxo moiety, followed by a fast carboxylate rebound, eventually leading to the selective formation of γ-lactones.
Collapse
Affiliation(s)
- Andrea Álvarez-Núñez
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Rudraditya Sarkar
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Department
of Chemistry, School of Science, Gandhi
Institute of Technology and Management (GITAM), Hyderabad502329, India
| | - Valeria Dantignana
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jin Xiong
- Chemistry
Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Chemistry
Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Josep M. Luis
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Anna Company
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
2
|
Wu Z, Zhang X, Gao L, Sun D, Zhao Y, Nam W, Wang Y. Elusive Active Intermediates and Reaction Mechanisms of ortho-/ ipso-Hydroxylation of Benzoic Acid by Hydrogen Peroxide Mediated by Bioinspired Iron(II) Catalysts. Inorg Chem 2023; 62:14261-14278. [PMID: 37604675 DOI: 10.1021/acs.inorgchem.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Aromatic hydroxylation of benzoic acids (BzOH) to salicylates and phenolates is fundamentally interesting in industrial chemistry. However, key mechanistic uncertainties and dichotomies remain after decades of effort. Herein, the elusive mechanism of the competitive ortho-/ipso-hydroxylation of BzOH by H2O2 mediated by a nonheme iron(II) catalyst was comprehensively investigated using density functional theory calculations. Results revealed that the long-postulated FeV(O)(anti-BzO) oxidant is an FeIV(O)(anti-BzO•) species 2 (anti- and syn- are defined by the orientation of the carboxyl oxygen of BzO to the oxo), which rules out the noted two-oxidant mechanism proposed previously. We propose a new mechanism in which, following the formation of an FeV(O)(syn-BzO) species (3) and its electromer FeIV(O)(syn-BzO•) (3'), 3/3' either converts to salicylate and phenolate via intramolecular self-hydroxylation (route A) or acts as an oxidant to oxygenate another BzOH to generate the same products (route B). In route A, the rotation of the BzO group along the C-O bond forms 2, in which the BzO group is orientated by π-π stacking interactions. An electrophilic ipso-addition forms a phenolate by concomitant decarboxylation or an ortho-attack forms a cationic complex, which readily undergoes an NIH shift and a BzOH-assisted proton shift to form a salicylate. In route B, 3 oxidizes an additional BzOH molecule directed by hydrogen bonding and π-π stacking interactions. In both routes, selectivity is determined by the chemical property of the BzO ring. These mechanistic findings provide a clear mechanistic scenario and enrich the knowledge of hydroxylation of aromatic acids.
Collapse
Affiliation(s)
- Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xuan Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Lanping Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
3
|
Effect of Brшnsted Acid on the Reactivity and Selectivity of the Oxoiron(V) Intermediates in C-H and C=C Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of HClO4 on the reactivity and selectivity of the catalyst systems 1,2/H2O2/AcOH, based on nonheme iron complexes of the PDP families, [(Me2OMePDP)FeIII(μ-OH)2FeIII(MeOMe2PDP)](OTf)4 (1) and [(NMe2PDP)FeIII(μ-OH)2FeIII(NMe2PDP](OTf)4 (2), toward oxidation of benzylideneacetone (bna), adamantane (ada), and (3aR)-(+)-sclareolide (S) has been studied. Adding HClO4 (2–10 equiv. vs. Fe) has been found to result in the simultaneous improvement of the observed catalytic efficiency (i.e., product yields) and the oxidation regio- or enantioselectivity. At the same time, HClO4 causes a threefold increase of the second-order rate constant for the reaction of the key oxygen-transferring intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a), with cyclohexane at −70 °C. The effect of strong Brønsted acid on the catalytic reactivity is discussed in terms of the reversible protonation of the Fe=O moiety of the parent perferryl intermediates.
Collapse
|
4
|
Kejriwal A. Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H 2O 2) as powerful oxidant. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2085567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ambica Kejriwal
- Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
5
|
Zima AM, Lyakin OY, Bryliakova AA, Babushkin DE, Bryliakov KP, Talsi EP. Reactivity vs. Selectivity of Biomimetic Catalyst Systems of the Fe(PDP) Family through the Nature and Spin State of the Active Iron-Oxygen Species. CHEM REC 2022; 22:e202100334. [PMID: 35142426 DOI: 10.1002/tcr.202100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Catalytic approaches to late-stage creation of new C-O bonds, especially via oxygenation of particular C-H groups in complex organic molecules, provide challenging tools for the synthesis of biologically active compounds and candidate drugs. In the last decade, significant efforts were invested in designing bioinspired iron based catalyst systems, capable of conducting selective oxidations of organic compounds. The key role of the oxygen-transferring high-valent iron-oxygen species in selective oxygenation is now well established; the next logical step would be gaining insight into the factors governing the oxidation chemo- and stereoselectivity, in relation to the peculiarities of their electronic structure, which would allow introducing the desired level of predictability into those catalytic transformations. In this Personal Account we analyze recent data on the reactivity of bioinspired formally oxoiron(V) catalytically active sites toward organic substrates having C=C and C(sp3 )-H groups. While the majority of reported oxoiron(V) active species are low-spin (S=1/2) complexes, the presence of strong electron-donating groups (NR1 R2 ) in the ligand backbone favors the high-spin (S=3/2) ground state. Remarkably, the high-spin perferryl species exhibit higher chemo-, regio-, and stereoselectivity in the oxidations than their low-spin counterparts, thus witnessing the significance of these subtle electronic effects for the selectivity of oxidations conducted by bioinspired catalysts of the Fe(PDP) family.
Collapse
Affiliation(s)
- Alexandra M Zima
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Oleg Y Lyakin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Anna A Bryliakova
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia.,Novosibirsk R&D Center, Inzhenernaya 20, Novosibirsk, 630090, Russia
| | - Dmitrii E Babushkin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | | | - Evgenii P Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Zima AM, Babushkin DE, Lyakin OY, Bryliakov KP, Talsi EP. High‐Spin and Low‐Spin State Perferryl Intermediates: Reactivity‐Selectivity Correlation in Fe(PDP) Catalyzed Oxidation of (+)‐Sclareolide. ChemCatChem 2021. [DOI: 10.1002/cctc.202101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexandra M. Zima
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| | | | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| | | | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| |
Collapse
|
7
|
Balamurugan M, Suresh E, Palaniandavar M. μ-Oxo-bridged diiron(iii) complexes of tripodal 4N ligands as catalysts for alkane hydroxylation reaction using m-CPBA as an oxidant: substrate vs. self hydroxylation. RSC Adv 2021; 11:21514-21526. [PMID: 35478792 PMCID: PMC9034113 DOI: 10.1039/d1ra03135j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
A series of non-heme μ-oxo-bridged dinuclear iron(iii) complexes of the type [Fe2(μ-O)(L1–L6)2Cl2]Cl21–6 have been isolated and their catalytic activity towards oxidative transformation of alkanes into alcohols has been studied using m-choloroperbenzoic acid (m-CPBA) as an oxidant. All the complexes were characterized by CHN, electrochemical, and UV-visible spectroscopic techniques. The molecular structures of 2 and 5 have been determined successfully by single crystal X-ray diffraction analysis and both possesses octahedral coordination geometry and each iron atom is coordinated by four nitrogen atoms of the 4N ligand and a bridging oxygen. The sixth position of each octahedron is coordinated by a chloride ion. The (μ-oxo)diiron(iii) core is linear in 2 (Fe–O–Fe, 180.0°), whereas it is non-linear (Fe–O–Fe, 161°) in 5. All the diiron(iii) complexes show quasi-reversible one electron transfer in the cyclic voltammagram and catalyze the hydroxylation of alkanes like cyclohexane, adamantane with m-CPBA as an oxidant. In acetonitrile solution, adding excess m-CPBA to the diiron(iii) complex 2 without chloride ions leads to intramolecular hydroxylation reaction of the oxidant. Interestingly, 2 catalyzes alkane hydroxylation in the presence of chloride ions, but intramolecular hydroxylation in the absence of chloride ions. The observed selectivity for cyclohexane (A/K, 5–7) and adamantane (3°/2°, 9–18) suggests the involvement of high-valent iron–oxo species rather than freely diffusing radicals in the catalytic reaction. Moreover, 4 oxidizes (A/K, 7) cyclohexane very efficiently up to 513 TON while 5 oxidizes adamantane with good selectivity (3°/2°, 18) using m-CPBA as an oxidant. The electronic effects of ligand donors dictate the efficiency and selectivity of catalytic hydroxylation of alkanes. The ligand stereoelectronic effect of diiron(iii) complexes determines the efficiency and selectivity of catalytic alkane hydroxylation with m-CPBA as an oxidant.![]()
Collapse
Affiliation(s)
- Mani Balamurugan
- School of Chemistry, Bharathidasan University Tiruchirappalli 620 024 Tamil Nadu India
| | - Eringathodi Suresh
- Analytical Science Discipline, Central Salt and Marine Chemicals Research Institute Bhavnagar 364 002 India
| | | |
Collapse
|
8
|
Morimoto Y, Hanada S, Kamada R, Fukatsu A, Sugimoto H, Itoh S. Hydroxylation of Unactivated C(sp 3)-H Bonds with m-Chloroperbenzoic Acid Catalyzed by an Iron(III) Complex Supported by a Trianionic Planar Tetradentate Ligand. Inorg Chem 2021; 60:7641-7649. [PMID: 33400861 DOI: 10.1021/acs.inorgchem.0c03469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxylation of cyclohexane with m-chloroperbenzoic acid was examined in the presence of an iron(III) complex supported by a trianionic planar tetradentate ligand. The present reaction system shows a high turnover number of 2750 with a high product selectivity of alcohol (93%). The turnover frequency was 0.51 s-1, and the second-order rate constant (k) for the C-H bond activation of cyclohexane was 1.08 M-1 s-1, which is one of the highest values among the iron complexes in the oxidation of cyclohexane so far reported. The present catalytic system can be adapted to the hydroxylation of substrates having only primary C-H bonds such as 2,2,3,3-tetramethylbutane as well as gaseous alkanes such as butane, propane, and ethane. The involvement of an iron(III) acyl peroxido complex as the reactive species was suggested by spectroscopic measurements of the reaction solution.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinichi Hanada
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Ryusuke Kamada
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Arisa Fukatsu
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. Low-Spin and High-Spin Perferryl Intermediates in Non-Heme Iron Catalyzed Oxidations of Aliphatic C-H Groups. Chemistry 2021; 27:7781-7788. [PMID: 33780054 DOI: 10.1002/chem.202004395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 11/07/2022]
Abstract
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.
Collapse
Affiliation(s)
- Alexandra M Zima
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russian Federation
| | - Oleg Y Lyakin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russian Federation
| | - Konstantin P Bryliakov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russian Federation
| | - Evgenii P Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
10
|
Zima AM, Lyakin OY, Bushmin DS, Soshnikov IE, Bryliakov KP, Talsi EP. Non-heme perferryl intermediates: Effect of spin state on the epoxidation enantioselectivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques. This review provides a detailed statement of the utilization of homogeneous and heterogeneous iron-based catalysts for the synthesis of both low and high molecular weight molecules with versatile use, focusing on receiving functional materials with high potential for industrial application.
Collapse
|
12
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
14
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
15
|
Ezhov R, Ravari AK, Pushkar Y. Characterization of the Fe
V
=O Complex in the Pathway of Water Oxidation. Angew Chem Int Ed Engl 2020; 59:13502-13505. [PMID: 32369663 DOI: 10.1002/anie.202003278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Alireza Karbakhsh Ravari
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Yulia Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| |
Collapse
|
16
|
Ezhov R, Ravari AK, Pushkar Y. Characterization of the Fe
V
=O Complex in the Pathway of Water Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Alireza Karbakhsh Ravari
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Yulia Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| |
Collapse
|
17
|
Li Y, Zhang Y, Zhang H, Han Y, Zhao J. Asymmetric Epoxidation of α,β‐Unsaturated Ketones Catalyzed by Chiral Iron Complexes of (R,R)‐3,4‐Diaminopyrrolidine Derived N4‐Ligands with Camphorsulfonyl Sidearms. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuanfeng Li
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationHebei University of Technology Tianjin 300130 P. R. China
| | - Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
18
|
Dantignana V, Company A, Costas M. Oxoiron(V) Complexes of Relevance in Oxidation Catalysis of Organic Substrates. Isr J Chem 2020. [DOI: 10.1002/ijch.201900161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valeria Dantignana
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| |
Collapse
|
19
|
Kal S, Xu S, Que L. Bio-inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong C-H Bonds. Angew Chem Int Ed Engl 2020; 59:7332-7349. [PMID: 31373120 DOI: 10.1002/anie.201906551] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Indexed: 11/11/2022]
Abstract
Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C-H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron-oxygen intermediates like iron(III)-hydroperoxo and high-valent iron-oxo species have been trapped and identified in investigations of these bio-inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio-inspired nonheme iron systems to form the high-valent iron-oxo intermediates.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Shuangning Xu
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
20
|
Kal S, Xu S, Que L. Bioinspirierte Nicht‐Häm‐Eisenoxidationskatalyse: Beteiligung von Oxoeisen(V)‐Oxidantien an der Spaltung starker C‐H‐Bindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Subhasree Kal
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Shuangning Xu
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
21
|
Zima AM, Lyakin OY, Lubov DP, Bryliakov KP, Talsi EP. Aromatic C H oxidation by non-heme iron(V)-oxo intermediates bearing aminopyridine ligands. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lubov DP, Lyakin OY, Samsonenko DG, Rybalova TV, Talsi EP, Bryliakov KP. Palladium aminopyridine complexes catalyzed selective benzylic C–H oxidations with peracetic acid. Dalton Trans 2020; 49:11150-11156. [DOI: 10.1039/d0dt02247k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium complexes with tripodal ligands of the tpa family efficiently catalyze benzylic C–H oxidation of various substrates with peracetic acid, affording the corresponding ketones in high yields (up to 100%), at <1 mol% catalyst loadings.
Collapse
Affiliation(s)
- Dmitry P. Lubov
- Boreskov Institute of Catalysis
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Oleg Yu. Lyakin
- Boreskov Institute of Catalysis
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Denis G. Samsonenko
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Nikolaev Institute of Inorganic Chemistry
- Novosibirsk 630090
| | - Tatyana V. Rybalova
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Novosibirsk 630090
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| |
Collapse
|
24
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
25
|
Dantignana V, Serrano-Plana J, Draksharapu A, Magallón C, Banerjee S, Fan R, Gamba I, Guo Y, Que L, Costas M, Company A. Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. J Am Chem Soc 2019; 141:15078-15091. [PMID: 31469954 DOI: 10.1021/jacs.9b05758] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work directly compares the spectroscopic and reactivity properties of an oxoiron(IV) and an oxoiron(V) complex that are supported by the same neutral tetradentate N-based PyNMe3 ligand. A complete spectroscopic characterization of the oxoiron(IV) species (2) reveals that this compound exists as a mixture of two isomers. The reactivity of the thermodynamically more stable oxoiron(IV) isomer (2b) is directly compared to that exhibited by the previously reported 1e--oxidized analogue [FeV(O)(OAc)(PyNMe3)]2+ (3). Our data indicates that 2b is 4 to 5 orders of magnitude slower than 3 in hydrogen atom transfer (HAT) from C-H bonds. The origin of this huge difference lies in the strength of the O-H bond formed after HAT by the oxoiron unit, the O-H bond derived from 3 being about 20 kcal·mol-1 stronger than that from 2b. The estimated bond strength of the FeIVO-H bond of 100 kcal·mol-1 is very close to the reported values for highly active synthetic models of compound I of cytochrome P450. In addition, this comparative study provides direct experimental evidence that the lifetime of the carbon-centered radical that forms after the initial HAT by the high valent oxoiron complex depends on the oxidation state of the nascent Fe-OH complex. Complex 2b generates long-lived carbon-centered radicals that freely diffuse in solution, while 3 generates short-lived caged radicals that rapidly form product C-OH bonds, so only 3 engages in stereoretentive hydroxylation reactions. Thus, the oxidation state of the iron center modulates not only the rate of HAT but also the rate of ligand rebound.
Collapse
Affiliation(s)
- Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Carla Magallón
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Saikat Banerjee
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ruixi Fan
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| |
Collapse
|
26
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. High‐Spin and Low‐Spin Perferryl Intermediates in Fe(PDP)‐Catalyzed Epoxidations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandra M. Zima
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| |
Collapse
|
27
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Characterized cis-Fe V(O)(OH) intermediate mimics enzymatic oxidations in the gas phase. Nat Commun 2019; 10:901. [PMID: 30796210 PMCID: PMC6385299 DOI: 10.1038/s41467-019-08668-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
FeV(O)(OH) species have long been proposed to play a key role in a wide range of biomimetic and enzymatic oxidations, including as intermediates in arene dihydroxylation catalyzed by Rieske oxygenases. However, the inability to accumulate these intermediates in solution has thus far prevented their spectroscopic and chemical characterization. Thus, we use gas-phase ion spectroscopy and reactivity analysis to characterize the highly reactive [FeV(O)(OH)(5tips3tpa)]2+ (32+) complex. The results show that 32+ hydroxylates C–H bonds via a rebound mechanism involving two different ligands at the Fe center and dihydroxylates olefins and arenes. Hence, this study provides a direct evidence of FeV(O)(OH) species in non-heme iron catalysis. Furthermore, the reactivity of 32+ accounts for the unique behavior of Rieske oxygenases. The use of gas-phase ion characterization allows us to address issues related to highly reactive intermediates that other methods are unable to solve in the context of catalysis and enzymology. FeV(O)(OH) species have long been thought to play a role in a range of enzymatic oxidations, but their characterization has remained elusive. Here, using gas-phase ion spectroscopy, the authors characterize an FeV(O)(OH) species and find that its reactivity mimics that of Rieske oxygenases.
Collapse
|
29
|
Engelmann X, Malik DD, Corona T, Warm K, Farquhar ER, Swart M, Nam W, Ray K. Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xenia Engelmann
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deesha D. Malik
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120-750 Korea
| | - Teresa Corona
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Katrin Warm
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Erik R. Farquhar
- Case Center for Synchrotron Biosciences, NSLS-IIBrookhaven National Laboratory Upton NY 11973 USA
| | - Marcel Swart
- ICREA Pg. Lluis Companys 23 08010 Barcelona Spain
- IQCCUniversitat de Girona Campus Montilivi 17003 Girona Spain
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120-750 Korea
| | - Kallol Ray
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
30
|
Engelmann X, Malik DD, Corona T, Warm K, Farquhar ER, Swart M, Nam W, Ray K. Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angew Chem Int Ed Engl 2019; 58:4012-4016. [PMID: 30663826 DOI: 10.1002/anie.201812758] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Indexed: 11/08/2022]
Abstract
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV (O)(CH3 CN)]2+ (2; cyclam=1,4,8,11-tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII ]2+ with aqueous hydrogen peroxide (H2 O2 ) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo- and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII ]2+ and H2 O2 . In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high-yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.
Collapse
Affiliation(s)
- Xenia Engelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Teresa Corona
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Katrin Warm
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Erik R Farquhar
- Case Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Marcel Swart
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.,IQCC, Universitat de Girona, Campus Montilivi, 17003, Girona, Spain
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
31
|
Guo M, Corona T, Ray K, Nam W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS CENTRAL SCIENCE 2019; 5:13-28. [PMID: 30693322 PMCID: PMC6346628 DOI: 10.1021/acscentsci.8b00698] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 05/23/2023]
Abstract
Utilization of O2 as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic catalytic oxidation systems. Metalloenzymes activate O2 by employing earth-abundant metals and exhibit diverse reactivities in oxidation reactions, including epoxidation of olefins, functionalization of alkane C-H bonds, arene hydroxylation, and syn-dihydroxylation of arenes. Metal-oxo species are proposed as reactive intermediates in these reactions. A number of biomimetic metal-oxo complexes have been synthesized in recent years by activating O2 or using artificial oxidants at iron and manganese centers supported on heme or nonheme-type ligand environments. Detailed reactivity studies together with spectroscopy and theory have helped us understand how the reactivities of these metal-oxygen intermediates are controlled by the electronic and steric properties of the metal centers. These studies have provided important insights into biological reactions, which have contributed to the design of biologically inspired oxidation catalysts containing earth-abundant metals like iron and manganese. In this Outlook article, we survey a few examples of these advances with particular emphasis in each case on the interplay of catalyst design and our understanding of metalloenzyme structure and function.
Collapse
Affiliation(s)
- Mian Guo
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Teresa Corona
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kallol Ray
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou
Research Institute of LICP, Lanzhou Institute of Chemical Physics
(LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R.
China
| |
Collapse
|
32
|
Mitra M, Cusso O, Bhat SS, Sun M, Cianfanelli M, Costas M, Nordlander E. Highly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(ii) catalyst of a chiral tetradentate ligand. Dalton Trans 2019; 48:6123-6131. [DOI: 10.1039/c8dt04449j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new chiral Fe(ii)-complex mediates the asymmetric epoxidation of prochiral olefins with good enantioselectivity.
Collapse
Affiliation(s)
- Mainak Mitra
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | | | - Satish S. Bhat
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - Mingzhe Sun
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | | | | | - Ebbe Nordlander
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
33
|
Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes with nitrogen ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Cruchter T, Larionov VA. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Tkachenko NV, Lyakin OY, Zima AM, Talsi EP, Bryliakov KP. Effect of different carboxylic acids on the aromatic hydroxylation with H2O2 in the presence of an iron aminopyridine complex. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. On the nature of the active intermediates in iron-catalyzed oxidation of cycloalkanes with hydrogen peroxide and peracids. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Tkachenko NV, Ottenbacher RV, Lyakin OY, Zima AM, Samsonenko DG, Talsi EP, Bryliakov KP. Highly Efficient Aromatic C−H Oxidation with H2
O2
in the Presence of Iron Complexes of the PDP Family. ChemCatChem 2018. [DOI: 10.1002/cctc.201800832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolay V. Tkachenko
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Roman V. Ottenbacher
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Alexandra M. Zima
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Denis G. Samsonenko
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
- Nikolaev Institute of Inorganic Chemistry; Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
| |
Collapse
|
38
|
Lyakin OY, Zima AM, Tkachenko NV, Bryliakov KP, Talsi EP. Direct Evaluation of the Reactivity of Nonheme Iron(V)–Oxo Intermediates toward Arenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleg Y. Lyakin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Alexandra M. Zima
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Nikolay V. Tkachenko
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
39
|
Du J, Miao C, Xia C, Lee YM, Nam W, Sun W. Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00874] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
40
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. Direct reactivity studies of non-heme iron-oxo intermediates toward alkane oxidation. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Fan R, Serrano-Plana J, Oloo WN, Draksharapu A, Delgado-Pinar E, Company A, Martin-Diaconescu V, Borrell M, Lloret-Fillol J, García-España E, Guo Y, Bominaar EL, Que L, Costas M, Münck E. Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe V-Oxo Intermediate. J Am Chem Soc 2018; 140:3916-3928. [PMID: 29463085 DOI: 10.1021/jacs.7b11400] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of [(PyNMe3)FeII(CF3SO3)2], 1, with excess peracetic acid at -40 °C generates a highly reactive intermediate, 2b(PAA), that has the fastest rate to date for oxidizing cyclohexane by a nonheme iron species. It exhibits an intense 490 nm chromophore associated with an S = 1/2 EPR signal having g-values at 2.07, 2.01, and 1.94. This species was shown to be in a fast equilibrium with a second S = 1/2 species, 2a(PAA), assigned to a low-spin acylperoxoiron(III) center. Unfortunately, contaminants accompanying the 2(PAA) samples prevented determination of the iron oxidation state by Mössbauer spectroscopy. Use of MeO-PyNMe3 (an electron-enriched version of PyNMe3) and cyclohexyl peroxycarboxylic acid as oxidant affords intermediate 3b(CPCA) with a Mössbauer isomer shift δ = -0.08 mm/s that indicates an iron(V) oxidation state. Analysis of the Mössbauer and EPR spectra, combined with DFT studies, demonstrates that the electronic ground state of 3b(CPCA) is best described as a quantum mechanical mixture of [(MeO-PyNMe3)FeV(O)(OC(O)R)]2+ (∼75%) with some FeIV(O)(•OC(O)R) and FeIII(OOC(O)R) character. DFT studies of 3b(CPCA) reveal that the unbound oxygen of the carboxylate ligand, O2, is only 2.04 Å away from the oxo group, O1, corresponding to a Wiberg bond order for the O1-O2 bond of 0.35. This unusual geometry facilitates reversible O1-O2 bond formation and cleavage and accounts for the high reactivity of the intermediate when compared to the rates of hydrogen atom transfer and oxygen atom transfer reactions of FeIII(OC(O)R) ferric acyl peroxides and FeIV(O) complexes. The interaction of O2 with O1 leads to a significant downshift of the Fe-O1 Raman frequency (815 cm-1) relative to the 903 cm-1 value predicted for the hypothetical [(MeO-PyNMe3)FeV(O)(NCMe)]3+ complex.
Collapse
Affiliation(s)
- Ruixi Fan
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Joan Serrano-Plana
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Estefanía Delgado-Pinar
- Grup de Química Supramolecular, Institut de Ciència Molecular, Departament de Química Inorgànica , Universitat de València , 46980 Paterna , Valencia , Spain
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Vlad Martin-Diaconescu
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Margarida Borrell
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain
| | - Enrique García-España
- Grup de Química Supramolecular, Institut de Ciència Molecular, Departament de Química Inorgànica , Universitat de València , 46980 Paterna , Valencia , Spain
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Emile L Bominaar
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Eckard Münck
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
42
|
Qiu B, Xu D, Sun Q, Miao C, Lee YM, Li XX, Nam W, Sun W. Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Qiu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqian Xu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
43
|
Oloo WN, Banerjee R, Lipscomb JD, Que L. Equilibrating (L)Fe III-OOAc and (L)Fe V(O) Species in Hydrocarbon Oxidations by Bio-Inspired Nonheme Iron Catalysts Using H 2O 2 and AcOH. J Am Chem Soc 2017; 139:17313-17326. [PMID: 29136467 PMCID: PMC5768304 DOI: 10.1021/jacs.7b06246] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the remarkable chemistry of the family of Rieske oxygenase enzymes, nonheme iron complexes of tetradentate N4 ligands have been developed to catalyze hydrocarbon oxidation reactions using H2O2 in the presence of added carboxylic acids. The observation that the stereo- and enantioselectivity of the oxidation products can be modulated by the electronic and steric properties of the acid implicates an oxidizing species that incorporates the carboxylate moiety. Frozen solutions of these catalytic mixtures generally exhibit EPR signals arising from two S = 1/2 intermediates, a highly anisotropic g2.7 subset (gmax = 2.58 to 2.78 and Δg = 0.85-1.2) that we assign to an FeIII-OOAc species and a less anisotropic g2.07 subset (g = 2.07, 2.01, and 1.96 and Δg ≈ 0.11) we associate with an FeV(O)(OAc) species. Kinetic studies on the reactions of iron complexes supported by the TPA (tris(pyridyl-2-methyl)amine) ligand family with H2O2/AcOH or AcOOH at -40 °C reveal the formation of a visible chromophore at 460 nm, which persists in a steady state phase and then decays exponentially upon depletion of the peroxo oxidant with a rate constant that is substrate independent. Remarkably, the duration of this steady state phase can be modulated by the nature of the substrate and its concentration, which is a rarely observed phenomenon. A numerical simulation of this behavior as a function of substrate type and concentration affords a kinetic model in which the two S = 1/2 intermediates exist in a dynamic equilibrium that is modulated by the electronic properties of the supporting ligands. This notion is supported by EPR studies of the reaction mixtures. Importantly, these studies unambiguously show that the g2.07 species, and not the g2.7 species, is responsible for substrate oxidation in the (L)FeII/H2O2/AcOH catalytic system. Instead the g2.7 species appears to be off-pathway and serves as a reservoir for the g2.07 species. These findings will be helpful not only for the design of regio- and stereospecific nonheme iron oxidation catalysts but also for providing insight into the mechanisms of the remarkably versatile oxidants formed by nature's most potent oxygenases.
Collapse
Affiliation(s)
- Williamson N. Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| |
Collapse
|
44
|
Liu H, An Z, He J. Nanosheet-enhanced efficiency in amine-catalyzed asymmetric epoxidation of α, β-unsaturated aldehydes via host-guest synergy. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Bryliakov KP. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chem Rev 2017; 117:11406-11459. [DOI: 10.1021/acs.chemrev.7b00167] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
46
|
Colomban C, Kudrik EV, Sorokin AB. Heteroleptic μ-nitrido diiron complex supported by phthalocyanine and octapropylporphyrazine ligands: Formation of oxo species and their reactivity with fluorinated compounds. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and reactivity of [Formula: see text]-bridged diiron macrocyclic complexes have been a topic of increasing interest in recent years since the observation of particular catalytic properties of these complexes. Herein, we report a preparation of a novel heteroleptic μ-nitrido diiron complex with unsubstituted phthalocyanine and octapropylporphyrazine macrocycles. This complex reacts with [Formula: see text]-chloroperbenzoic acid to form high-valent diiron oxo species showing strong oxidizing properties. The formation and structure of the transient oxo species was investigated by cryospray collision induced dissociation MS/MS technique. Analysis of fragmentation pattern showed that the attachment of oxo moiety occurred at either iron phthalocyanine or at iron porphyrazine site with slight preference for the phthalocyanine iron site. The catalytic properties of the heteroleptic μ-nitrido diiron complex were evaluated in the oxidative transformation of hexafluorobenzene and perfluoro(allylbenzene).
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Evgeny V. Kudrik
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
- Ivanovo State University of Chemistry and Technology 7, av F. Engels; 153000 Ivanovo, Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
47
|
Cussó O, Serrano-Plana J, Costas M. Evidence of a Sole Oxygen Atom Transfer Agent in Asymmetric Epoxidations with Fe-pdp Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Olaf Cussó
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Joan Serrano-Plana
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Miquel Costas
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
48
|
DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species? J Biol Inorg Chem 2017; 22:987-998. [PMID: 28667369 DOI: 10.1007/s00775-017-1477-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Through the introduction of dimethylamino (Me2N) substituent at the pyridine ring of 2-((R)-2-[(R)-1-(pyridine-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-ylmethyl)pyridine (PDP) ligand, the non-heme FeII(Me2NPDP)/H2O2/AcOH catalyst system was found to exhibit significant higher catalytic activity and enantioselectivity than the non-substituent one in the asymmetric epoxidation experiments. The mechanistic origin of the remarkable substituent effects in these oxidation reactions has not been well established. To ascertain the potent oxidant and the related reaction mechanism, a detailed DFT calculation was performed. Interestingly, a novel Fe(IV)-oxo Me2NPDP cation radical species, [(Me2NPDP)+·FeIV(O)(OAc)]2+ ( Me2N 5), with about one spin spreading over the non-heme Me2NPDP ligand was formed via a carboxylic-acid-assisted O-O bond heterolysis, which is reminiscent of Compound I (an Fe(IV)(O)(porphyrin cation radical) species) in cytochrome P450 chemistry. Me2N 5 is energetically comparable with the cyclic ferric peracetate species Me2N 6, while in the pristine Fe(PDP) catalyst system, H 6 is more stable than H 5. Comparison of the activation energy for the ethylene epoxidation promoted by Me2N 5 and Me2N 6, Me2N 5 is supposed as the true oxidant triggering the epoxidation of olefins. In addition, a systematic research on the substituent effects varied from the electron-donating substituent (dMM, the substituents at sites 3, 4, and 5 of the pyridine ring: methyl, methoxyl, and methyl) to the electron-withdrawing one (CF3, 2,6-bis(trifluoromethyl)phenyl) on the electronic structure of the reaction intermediates has also been investigated. An alternative cyclic ferric peracetate complex is obtained, indicating that the substituents at the pyridine ring of PDP ligands have significant impacts on the electronic structure of the oxidants.
Collapse
|
49
|
Jalba A, Régnier N, Ollevier T. Enantioselective Aromatic Sulfide Oxidation and Tandem Kinetic Resolution Using Aqueous H2O2and Chiral Iron-Bis(oxazolinyl)bipyridine Catalysts. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Angela Jalba
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Noémie Régnier
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Thierry Ollevier
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| |
Collapse
|
50
|
|