1
|
Jung HI, Choi H, Song YJ, Kim JH, Yoon Y. Synergistic augmentation and fundamental mechanistic exploration of β-Ga 2O 3-rGO photocatalyst for efficient CO 2 reduction. NANOSCALE ADVANCES 2024; 6:4611-4624. [PMID: 39263398 PMCID: PMC11385812 DOI: 10.1039/d4na00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024]
Abstract
We explore the novel photodecomposition capabilities of β-Ga2O3 when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga2O3-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga2O3-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga2O3 and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga2O3-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.
Collapse
Affiliation(s)
- Hye-In Jung
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| | - Hangyeol Choi
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| | - Yu-Jin Song
- Dong-A University, Department of Materials Science and Engineering Busan Republic of Korea
| | - Jung Han Kim
- Dong-A University, Department of Materials Science and Engineering Busan Republic of Korea
| | - Yohan Yoon
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| |
Collapse
|
2
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
3
|
Zheng F, Cao Z, Lin T, Tu B, Shao S, Yang C, An P, Chen W, Fang Q, Wang Y, Tang Z, Li G. Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds. SCIENCE ADVANCES 2024; 10:eadn9896. [PMID: 38758785 PMCID: PMC11100558 DOI: 10.1126/sciadv.adn9896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Hydrodeoxygenation of oxygen-rich molecules toward hydrocarbons is attractive yet challenging in the sustainable biomass upgrading. The typical supported metal catalysts often display unstable catalytic performances owing to the migration and aggregation of metal nanoparticles (NPs) into large sizes under harsh conditions. Here, we develop a crystal growth and post-synthetic etching method to construct hollow chromium terephthalate MIL-101 (named as HoMIL-101) with one layer of sandwiched Ru NPs as robust catalysts. Impressively, HoMIL-101@Ru@MIL-101 exhibits the excellent activity and stability for hydrodeoxygenation of biomass-derived levulinic acid to gamma-valerolactone under 50°C and 1-megapascal H2, and its activity is about six times of solid sandwich counterparts, outperforming the state-of-the-art heterogeneous catalysts. Control experiments and theoretical simulation clearly indicate that the enrichment of levulinic acid and H2 by nanocavity as substrate regulator enables self-regulating the backwash of both substrates toward Ru NPs sandwiched in MIL-101 shells for promoting reaction with respect to solid counterparts, thus leading to the substantially enhanced performance.
Collapse
Affiliation(s)
- Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian Lin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P.R. China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Ziwei W, Hao S, Yizhen C, Ben L, Yaowei X, Wanxia W, Kaiyue W, Mengheng L, Li G, Lei W. Thermal, photonic, and electrocatalysis in lignin depolymerization research. RSC Adv 2023; 13:32627-32640. [PMID: 37936635 PMCID: PMC10626394 DOI: 10.1039/d3ra06880c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
In order to realize a sustainable bio-based future, it is essential to fully harness the potential of biomass, including lignin - a readily available biopolymer that ranks second in abundance and serves as a renewable source of aromatics. While lignin has traditionally been used for lower-value applications like fuel and power generation, unlocking its higher-value potential through diverse conversion and upgrading techniques is of paramount importance. This review focuses on the catalytic conversion of lignin, with a specific emphasis on selective depolymerization, a process that not only supports economically and environmentally sustainable biorefineries but also aligns with Green Chemistry principles, mitigating adverse environmental impacts. Furthermore, we provide a comprehensive discussion of reaction pathways and mechanisms, including C-O and C-C bond cleavage, among different catalysts. Lastly, we analyze and briefly discuss the prospects of rational catalyst design in biomass valorization.
Collapse
Affiliation(s)
- Wang Ziwei
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Shu Hao
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Chen Yizhen
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Liu Ben
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Xu Yaowei
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Wang Wanxia
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Wang Kaiyue
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
| | - Lei Mengheng
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Guo Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Heping Avenue 947 Wuhan 430081 China +86-027-6886-2335
| | - Wang Lei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
5
|
Bhandari S, Rangarajan S, Li S, Scaranto J, Singh S, Maravelias CT, Dumesic JA, Mavrikakis M. A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Sha Li
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Jessica Scaranto
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Suyash Singh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Christos T. Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| |
Collapse
|
6
|
Valentini F, Di Erasmo B, Ciancuti C, Rossi S, Maramai S, Taddei M, Vaccaro L. Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Fu H, Chen H, Gao B, Lu T, Su Y, Zhou L, Liu M, Li H, Yang X. Selectivity control in photocatalytic transfer hydrogenation of bio‐based aldehydes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongmei Fu
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| | - Haijun Chen
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| | - Beibei Gao
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| | - Tianliang Lu
- Zhengzhou University School of Chemical Engineering Zhengzhou CHINA
| | - Yunlai Su
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| | - Lipeng Zhou
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| | - Meijiang Liu
- Dalian Institute of Chemical Physics Dalian National Laboratory for Clean Energy Dalian CHINA
| | - Hongji Li
- Zhengzhou University College of Chemistry 100 Kexue Road, 450001 Zhengzhou P.R. China 450001 Zhengzhou CHINA
| | - Xiaomei Yang
- Zhengzhou University College of Chemistry Zhengzhou CHINA
| |
Collapse
|
8
|
Trombettoni V, Ferlin F, Valentini F, Campana F, Silvetti M, Vaccaro L. POLITAG-Pd(0) catalyzed continuous flow hydrogenation of lignin-derived phenolic compounds using sodium formate as a safe H-source. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Nie R, Tao Y, Nie Y, Lu T, Wang J, Zhang Y, Lu X, Xu CC. Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04939] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Renfeng Nie
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuewen Tao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yunqing Nie
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tianliang Lu
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianshe Wang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongsheng Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuyang Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunbao Charles Xu
- Chemical and Biochemical Engineering, Western University, London, Ontario N6A 3K7 Canada
| |
Collapse
|
10
|
Cao D, Chen Z, Lv L, Zeng H, Peng Y, Li CJ. Light-Driven Metal-Free Direct Deoxygenation of Alcohols under Mild Conditions. iScience 2020; 23:101419. [PMID: 32798970 PMCID: PMC7452908 DOI: 10.1016/j.isci.2020.101419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hydroxyl is widely found in organic molecules as functional group and its deprivation plays an inevitable role in organic synthesis. However, the direct cleavage of Csp3-O bond in alcohols with high selectivity and efficiency, especially without the assistance of metal catalyst, has been a formidable challenge because of its strong bond dissociation energy and unfavorable thermodynamics. Herein, an efficient metal-free strategy that enables direct deoxygenation of alcohols has been developed for the first time, with hydrazine as the reductant induced by light. This protocol features mild reaction conditions, excellent functional group tolerance, and abundant and easily available starting materials, rendering selective deoxygenation of a variety of 1° and 2° alcohols, vicinal diols, and β-1 and even β-O-4 models of natural wood lignin. This strategy is also highlighted by its “traceless” and non-toxic by-products N2 and H2, as readily escapable gases. Mechanistic studies demonstrated dimethyl sulfide being a key intermediate in this transformation. Metal-free direct deoxygenation of alcohols enabled by light Traceless non-toxic N2 and H2 as by-products Broad substrate scope and wide functional group compatibility Converting lignin models into simple aromatics
Collapse
Affiliation(s)
- Dawei Cao
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada; Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, P. R. China; The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhangpei Chen
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
11
|
Experimental Evaluation of a New Approach for a Two-Stage Hydrothermal Biomass Liquefaction Process. ENERGIES 2020. [DOI: 10.3390/en13143692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new approach for biomass liquefaction was developed and evaluated in a joint research project. Focus of the project, called FEBio@H2O, lies on a two-step hydrothermal conversion. Within step 1, the input biomass is converted employing a hydrothermal degradation without added catalyst or by homogeneous catalysis. Within step 2, the hydrogen accepting products of step 1, e.g., levulinic acid (LA) are upgraded by a heterogeneously catalyzed hydrogenation with hydrogen donor substances, e.g., formic acid (FA). As a result, components with an even lower oxygen content in comparison to step 1 products are formed; as an example, γ-valerolactone (GVL) can be named. Therefore, the products are more stable and contained less oxygen as requested for a possible application as liquid fuel. As a hydrothermal process, FEBio@H2O is especially suitable for highly water-containing feedstock. The evaluation involves hydrothermal conversion tests with model substances, degradation of real biomasses, transfer hydrogenation or hydrogenation with hydrogen donor of model substances and real products of step 1, catalyst selection and further development, investigation of the influence of reactor design, the experimental test of the whole process chain, and process assessment.
Collapse
|
12
|
Zhang L, Shang N, Gao S, Wang J, Meng T, Du C, Shen T, Huang J, Wu Q, Wang H, Qiao Y, Wang C, Gao Y, Wang Z. Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00239] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Longkang Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Congcong Du
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
| | - Tongde Shen
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Haijun Wang
- College of Chemical and Environmental Science, Hebei University, Baoding 071000, People’s Republic of China
| | - Yuqing Qiao
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People’s Republic of China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Yongjun Gao
- College of Chemical and Environmental Science, Hebei University, Baoding 071000, People’s Republic of China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| |
Collapse
|
13
|
Fan R, Hu Z, Chen C, Zhu X, Zhang H, Zhang Y, Zhao H, Wang G. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase. Chem Commun (Camb) 2020; 56:6696-6699. [PMID: 32412027 DOI: 10.1039/d0cc02620d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZIF-8 was employed as a template to synthesize HD-Ni/N-CMS containing highly dispersed Ni at the atomic level anchored on a N-doped carbon molecular sieve for vanillin hydrodeoxygenation. The ZIF-8 structure was inherited and Ni-N bonds were formed by the coordination of Ni with N-rich defects, therefore it exhibited a high turnover frequency (1047.1 h-1) and good stability.
Collapse
Affiliation(s)
- Ruoyu Fan
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Hu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Xiaoguang Zhu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
14
|
|
15
|
Hydrogen Production from Formic Acid Attained by Bimetallic Heterogeneous PdAg Catalytic Systems. ENERGIES 2019. [DOI: 10.3390/en12214027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The production of H2 from the so-called Liquid Organic Hydrogen Carriers (LOHC) has recently received great focus as an auspicious option to conventional hydrogen storage technologies. Among them, formic acid, the simplest carboxylic acid, has recently emerged as one of the most promising candidates. Catalysts based on Pd nanoparticles are the most fruitfully investigated, and, more specifically, excellent results have been achieved with bimetallic PdAg-based catalytic systems. The enhancement displayed by PdAg catalysts as compared to the monometallic counterpart is ascribed to several effects, such as the formation of electron-rich Pd species or the increased resistance against CO-poisoning. Aside from the features of the metal active phases, the properties of the selected support also play an important role in determining the final catalytic performance. Among them, the use of carbon materials has resulted in great interest by virtue of their outstanding properties and versatility. In the present review, some of the most representative investigations dealing with the design of high-performance PdAg bimetallic heterogeneous catalysts are summarised, paying attention to the impact of the features of the support in the final ability of the catalysts towards the production of H2 from formic acid.
Collapse
|
16
|
Chen BWJ, Stamatakis M, Mavrikakis M. Kinetic Isolation between Turnovers on Au18 Nanoclusters: Formic Acid Decomposition One Molecule at a Time. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Asensio JM, Miguel AB, Fazzini P, van Leeuwen PWNM, Chaudret B. Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angew Chem Int Ed Engl 2019; 58:11306-11310. [DOI: 10.1002/anie.201904366] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Juan M. Asensio
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | - Ana B. Miguel
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | | | | | - Bruno Chaudret
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
18
|
Asensio JM, Miguel AB, Fazzini P, van Leeuwen PWNM, Chaudret B. Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan M. Asensio
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | - Ana B. Miguel
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | | | | | - Bruno Chaudret
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
19
|
Liu C, Li X, Li J, Sun L, Zhou Y, Guan J, Wang H, Huo P, Ma C, Yan Y. Carbon dots modifying sphere-flower CdIn2S4 on N-rGO sheet muti-dimensional photocatalyst for efficient visible degradation of 2,4-dichlorophenol. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Hada S, Khan Zai MS, Roat P, Verma VP, Shah AK, Yadav DK, Kumari N. Metal-Free Graphene Oxide Promoted a Novel Multicomponent Reaction for the Synthesis of 3-Substituted Quinazolinones Using DMSO as One Carbon Synthon. ChemistrySelect 2019. [DOI: 10.1002/slct.201803623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sonal Hada
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | | | - Priyanka Roat
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | - Ved Prakash Verma
- Department of Chemistry; Banasthali University; Newai-Jodhpuriya Road Vanasthali 304022 India
| | - Anuj Kumar Shah
- School of Engineering and Technology; Jaipur National University; Jaipur 302017 India
| | - Dinesh Kumar Yadav
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | - Neetu Kumari
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| |
Collapse
|
21
|
Jin W, Pastor-Pérez L, Shen D, Sepúlveda-Escribano A, Gu S, Ramirez Reina T. Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation - a Review. ChemCatChem 2019. [DOI: 10.1002/cctc.201801722] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wei Jin
- Department of Chemical and Process Engineering Department; University of Surrey; Guildford GU2 7XH United Kingdom
| | - Laura Pastor-Pérez
- Department of Chemical and Process Engineering Department; University of Surrey; Guildford GU2 7XH United Kingdom
- Laboratorio de Materiales Avanzados Departamento de Química Inorgánica Instituto Universitario de Materiales de Alicante; Universidad de Alicante; Alicante E-03080 Spain
| | - DeKui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education; Southeast University; Nanjing 210009 P.R. China
| | - Antonio Sepúlveda-Escribano
- Laboratorio de Materiales Avanzados Departamento de Química Inorgánica Instituto Universitario de Materiales de Alicante; Universidad de Alicante; Alicante E-03080 Spain
| | - Sai Gu
- Department of Chemical and Process Engineering Department; University of Surrey; Guildford GU2 7XH United Kingdom
| | - Tomas Ramirez Reina
- Department of Chemical and Process Engineering Department; University of Surrey; Guildford GU2 7XH United Kingdom
| |
Collapse
|
22
|
Aand D, Mahajan B, Pabbaraja S, Singh AK. Integrated continuous flow/batch protocol for the photoreduction of ortho-methyl phenyl ketones using water as the hydrogen source. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00110g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The direct hydrogenation of ketones (RRCO) with water to secondary alcohols under catalyst-free, minimal risk conditions, through the light-driven transfer hydrogenation platform.
Collapse
Affiliation(s)
- Dnyaneshwar Aand
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Bhushan Mahajan
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Ajay K. Singh
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
23
|
Mahajan B, Aand D, Singh AK. Silver‐Catalyzed Arylation of (Hetero)arenes via Oxidative Benzylic C−C Bond Cleavage of Benzyl Alcohols/ Benzaldehyde. ChemistrySelect 2018. [DOI: 10.1002/slct.201803215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bhushan Mahajan
- Division of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology, Hyderabad-500007 India
| | - Dnyaneshwar Aand
- Division of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology, Hyderabad-500007 India
| | - Ajay K. Singh
- Division of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology, Hyderabad-500007 India
| |
Collapse
|
24
|
Huang J, Zhao C, Lu F. High-Efficient and Recyclable Magnetic Separable Catalyst for Catalytic Hydrogenolysis of β-O-4 Linkage in Lignin. Polymers (Basel) 2018; 10:E1077. [PMID: 30961002 PMCID: PMC6404071 DOI: 10.3390/polym10101077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Lignin is recognized as a good sustainable material because of its great abundance and potential applications. At present, lignin hydrogenolysis is considered as a potential but challenging way to produce low-molecular-mass aromatic chemicals. The most common linkage between the structural units of lignin polymer is the β-O-4 aryl ether, which are primary or even only target chemical bonds for many degradation processes. Herein, a Pd-Fe₃O₄ composite was synthesized for catalytic hydrogenolysis of β-O-4 bond in lignin. The synthesized catalyst was characterized by XRD, XPS, and SEM and the lignin depolymerization products were analyzed by GC-MS. The catalyst showed good catalytic performance during the hydrogenolysis process, lignin dimer was degraded into monomers completely and a high yield of monomers was obtained by the hydrogenolysis of bagasse lignin. More importantly, the magnetic catalyst was separated conveniently by magnet after reaction and remained highly catalytically efficient after being reused for five times. This work has demonstrated an efficient & recyclable catalyst for the cleavage of the β-O-4 bond in lignin providing an alternative way to make better use of lignins.
Collapse
Affiliation(s)
- Jingtao Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chengke Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China.
| |
Collapse
|
25
|
Zhang T, Li S, Du Y, He T, Shen Y, Bai C, Huang Y, Zhou X. Revealing the Activity Distribution of a Single Nanocatalyst by Locating Single Nanobubbles with Super-Resolution Microscopy. J Phys Chem Lett 2018; 9:5630-5635. [PMID: 30188127 DOI: 10.1021/acs.jpclett.8b02302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is challenging to uncover the catalytic activity at different locations of a single nanocatalyst for gas-generating reactions in real time. This research uses super-resolution microscopy to localize the center of single nanobubbles and reveal the local activity distribution at several to tens of nanometers accuracy. The distances between the centers of the nanobubbles and the center of the nanoplate usually distribute in a certain range from 0 to 500 nm, with the maximum population exhibiting at ∼200 nm. This research also shows that more nanobubbles appear near the tips of the Pd-Ag nanoplate compared with the edges, which indicates higher activity at the tips. In addition, the relationship between the location, lifetime, and turnover rate of the nanobubbles was also carefully studied. This work presents an effective, high-resolution method to localize the activity distribution of nanocatalysts during gas-generating reactions, such as photocatalytic water splitting, dehydrogenation, and electro-oxidation.
Collapse
Affiliation(s)
- Ting Zhang
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Shuping Li
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Ying Du
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Ting He
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Yangbin Shen
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Chuang Bai
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| | - Yunjie Huang
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Xiaochun Zhou
- Division of Advanced Nanomaterials , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
- Key Lab of Nanodevices and Applications , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123 , China
| |
Collapse
|
26
|
Fan R, Chen C, Han M, Gong W, Zhang H, Zhang Y, Zhao H, Wang G. Highly Dispersed Copper Nanoparticles Supported on Activated Carbon as an Efficient Catalyst for Selective Reduction of Vanillin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801953. [PMID: 30058300 DOI: 10.1002/smll.201801953] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Highly dispersed copper nanoparticles (Cu NPs) supported on activated carbon (AC) are effectively synthesized by one-pot carbothermal method at temperature range of 400-700 °C. The X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis reveal that Cu NPs with diameters of 20-30 nm are evenly anchored in carbon matrix. The 15 wt%-Cu/AC-600 catalyst (derived at 600 °C) exhibits best bifunctional catalysis of aqueous-phase hydrodeoxygenation (HDO) and organic-phase transfer-hydrogenation reaction (THR) to selectively transform vanillin to 2-methoxy-4-methylphenol (MMP). In HDO of vanillin, the as-prepared catalyst achieves a 99.9% vanillin conversion and 93.2% MMP selectivity under 120 °C, 2.0 MPa H2 within 5 h. Meanwhile, near-quantitative vanillin conversion and 99.1% MMP selectivity are also obtained under 180 °C within 5 h in THR of vanillin by using 2-propanol as hydrogen donor. The transforming pathways of vanillin are also proposed: vanillin is transformed into MMP via intermediate of 4-hydroxymethyl-2-methoxyphenol in HDO case and by direct hydrogenolysis of vanillin in THR course. More importantly, the activity and the selectivity do not change after 5 cycles, indicating the catalyst has excellent stability. The Cu-based catalyst is relatively cheap and preparation method is facile, green, and easy scale-up, thus achieving a low-cost transformation of biomass to bio-oils and chemicals.
Collapse
Affiliation(s)
- Ruoyu Fan
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Miaomiao Han
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
27
|
Shifrina ZB, Bronstein LM. Magnetically Recoverable Catalysts: Beyond Magnetic Separation. Front Chem 2018; 6:298. [PMID: 30073164 PMCID: PMC6058181 DOI: 10.3389/fchem.2018.00298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Here, we discuss several important aspects of magnetically recoverable catalysts which can be realized when magnetic oxide nanoparticles are exposed to catalytic species and catalytic reaction media. In such conditions magnetic oxides can enhance performance of catalytic nanoparticles due to (i) electronic effects, (ii) catalyzing reactions which are beneficial for the final reaction outcome, or (iii) providing a capacity to dilute catalytic metal oxide species, leading to an increase of oxygen vacancies. However, this approach should be used when the magnetic oxides are stable in reaction conditions and do not promote side reactions. Incorporation of another active component, i.e., a graphene derivative, in the magnetically recoverable catalyst constitutes a smart design of a catalytic system due to synergy of its components, further enhancing catalytic properties.
Collapse
Affiliation(s)
- Zinaida B Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila M Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, Indiana University, Bloomington, IN, United States.,Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Mahajan B, Aand D, Singh AK. Synthesis of Bi(hetero)aryls via Sequential Oxidation and Decarboxylation of Benzylamines in a Batch/Fully Automated Continuous Flow Process. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bhushan Mahajan
- Division of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; -500007 Hyderabad India
| | - Dnyaneshwar Aand
- Division of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; -500007 Hyderabad India
| | - Ajay K. Singh
- Division of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; -500007 Hyderabad India
| |
Collapse
|
29
|
Li S, Du Y, He T, Shen Y, Bai C, Ning F, Hu X, Wang W, Xi S, Zhou X. Nanobubbles: An Effective Way to Study Gas-Generating Catalysis on a Single Nanoparticle. J Am Chem Soc 2017; 139:14277-14284. [DOI: 10.1021/jacs.7b08523] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuping Li
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Du
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Ting He
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yangbin Shen
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Chuang Bai
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Fandi Ning
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xin Hu
- Key
Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wenhui Wang
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shaobo Xi
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xiaochun Zhou
- Division
of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Key
Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
30
|
Li M, Deng J, Lan Y, Wang Y. Efficient Catalytic Hydrodeoxygenation of Aromatic Carbonyls over a Nitrogen-Doped Hierarchical Porous Carbon Supported Nickel Catalyst. ChemistrySelect 2017. [DOI: 10.1002/slct.201701950] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingming Li
- Advanced Materials and Catalysis Group; ZJU-NHU United R&D Center; Center for Chemistry of High-performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310028 P. R. China
| | - Jiang Deng
- Advanced Materials and Catalysis Group; ZJU-NHU United R&D Center; Center for Chemistry of High-performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310028 P. R. China
| | - Yikai Lan
- Advanced Materials and Catalysis Group; ZJU-NHU United R&D Center; Center for Chemistry of High-performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310028 P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group; ZJU-NHU United R&D Center; Center for Chemistry of High-performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310028 P. R. China
| |
Collapse
|
31
|
Du Y, Shen YB, Zhan YL, Ning FD, Yan LM, Zhou XC. Highly active iridium catalyst for hydrogen production from formic acid. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Zhou ZZ, Liu M, Li CJ. Selective Copper–N-Heterocyclic Carbene (Copper-NHC)-Catalyzed Aerobic Cleavage of β-1 Lignin Models to Aldehydes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong-zhen Zhou
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
- School
of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingxin Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
33
|
Tadele K, Verma S, Gonzalez MA, Varma RS. A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2017; 19:1624-1627. [PMID: 30294242 PMCID: PMC6171123 DOI: 10.1039/c6gc03568j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An environmentally benign continuous flow intensified process has been developed that enables upgrading of biomass into biofuels, solvents and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst.
Collapse
Affiliation(s)
- Kidus Tadele
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, MS 443, Cincinnati, Ohio 45268, USA
| | - Sanny Verma
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, MS 443, Cincinnati, Ohio 45268, USA
| | - Michael A Gonzalez
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, MS 443, Cincinnati, Ohio 45268, USA
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, MS 443, Cincinnati, Ohio 45268, USA
| |
Collapse
|
34
|
Gilkey MJ, Xu B. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02171] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew J. Gilkey
- Catalysis
Center for Energy
Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Catalysis
Center for Energy
Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Feng Y, Bin D, Zhang K, Ren F, Wang J, Du Y. One-step synthesis of nitrogen-doped graphene supported PdSn bimetallic catalysts for ethanol oxidation in alkaline media. RSC Adv 2016. [DOI: 10.1039/c5ra26994f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this paper, a facile chemical reduction method was employed to synthesize bimetallic PdSn nanocatalysts, and the nitrogen-doped graphene (N-G) has been used as a conductive support material for PdSn catalysts.
Collapse
Affiliation(s)
- Yue Feng
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Duan Bin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Ke Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Fangfang Ren
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Jin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|