1
|
Monreal-Corona R, Joly N, Gaillard S, Renaud JL, Valero M, Mayolas E, Pla-Quintana A, Poater A. Mechanism and optimization of ruthenium-catalyzed oxalamide synthesis using DFT. Dalton Trans 2024. [PMID: 39668800 DOI: 10.1039/d4dt03182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The oxalamide skeleton is a common structural motif in many biologically active molecules. These scaffolds can be synthesized via ruthenium pincer complex-catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines. In this study, we elucidate the mechanism of this oxalamide synthesis using density functional theory calculations. The rate-determining state is identified as the formation of molecular hydrogen following the oxidation of hydroxyacetamide to oxoacetamide. In predictive catalysis exercises, various modifications to the ruthenium pincer catalyst were investigated to assess their impact on the reactivity.
Collapse
Affiliation(s)
- Roger Monreal-Corona
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Nicolas Joly
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Marc Valero
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Enric Mayolas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Pillai VG, Malyk KR, Kennedy CR. Mechanistic insights on C(acyl)-N functionalisation mediated by late transition metals. Dalton Trans 2024; 53:18803-18818. [PMID: 39115156 PMCID: PMC11614710 DOI: 10.1039/d4dt01829j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The carboxamide functional group has a privileged role in organic and biological chemistry due to its prevalence and utility across synthetic and natural products. Due to nN → π*CO delocalisation, amides and related functional groups are typically kinetically resistant to degradation. Nonetheless, over the past decade, transition metal catalysis has transformed our ability to utilise molecules featuring C(acyl)-N units as reactants. Alongside the burgeoning catalytic applications ranging from COx utilisation to small molecule synthesis, elucidation of the underlying mechanisms remains a critical ongoing effort. Herein, we aggregate and analyse current understanding of the mechanisms for C(acyl)-N functionalisation of amides and related functional groups with a focus on recent developments involving mechanisms unique to the late transition metals. Discussion is organized around three general mechanistic manifolds: redox-neutral mechanisms, 2e- redox-cycling mechanisms, and mechanisms involving 1e- redox steps. For each class, we focus on reactions that directly involve a transition metal mediator/catalyst in the C(acyl)-N cleavage step. We conclude with an outlook on the outstanding ambiguities and opportunities for innovation.
Collapse
Affiliation(s)
- Vivek G Pillai
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Kaycie R Malyk
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - C Rose Kennedy
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
3
|
Khatua M, Goswami B, Devi A, Kamal, Hans S, Samanta S. A Phosphine-Oxide Cobalt(II) Complex and Its Catalytic Activity Studies toward Alcohol Dehydrogenation Triggered Direct Synthesis of Imines and Quinolines. Inorg Chem 2024; 63:9786-9800. [PMID: 38739882 DOI: 10.1021/acs.inorgchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, a new pincer-like amino phosphine donor ligand, H2L1, and its phosphine-oxide analog, H2L2, were synthesized. Subsequently, cobalt(II) complexes 1 and 2 were synthesized by the reaction of anhydrous Co(II)Cl2 with ligands H2L1 and H2L2, respectively. The ligands and complexes were fully characterized by various physicochemical and spectroscopic characterization techniques. Finally, the identity of the complexes 1 and 2 was confirmed by single crystal X-ray structure determination. The phosphine ligand containing complex 1 was converted to the phosphine oxide ligand containing complex 2 in air in acetonitrile solution. Both complexes 1 and 2 were investigated as precatalysts for alcohol dehydrogenation-triggered synthesis of imines in air. The phosphine-oxide complex 2 was more efficient than the phosphine complex 1. A wide array of alcohols and amines were successfully reacted in a mild condition to result in imines in good to excellent yields. Precatalyst 2 was also highly efficient for the synthesis of varieties of quinolines in air. As H2L2 in 2 has side arms that can be deprotonated, we investigated complex 2 for its base (KOtBu) promoted deprotonation events by various spectroscopic studies and DFT calculations. These studies have shown that mono deprotonation of the amine side arm attached to the pyridine is quite feasible, and deprotonation of complex 2 leads to a dearomatized pyridyl ring containing complex 2a. The mechanistic investigations of the catalytic reaction, by a combination of experimental and computational studies, have suggested that the dearomatized complex, 2a acted as an active catalyst. The reaction proceeded through the hydride transfer pathway. The activation barrier of this step was calculated to be 26.5 kcal/mol, which is quite consistent with the experimental reaction temperature under aerobic conditions. Although various pincer-like complexes are explored for such reactions, phosphine oxide ligand-containing complexes are still unexplored.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ambika Devi
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Shivali Hans
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|
4
|
Zheng L, Wang M, Li Y, Xiong Y, Wu C. Recycling and Degradation of Polyamides. Molecules 2024; 29:1742. [PMID: 38675560 PMCID: PMC11052090 DOI: 10.3390/molecules29081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As one of the five major engineering plastics, polyamide brings many benefits to humans in the fields of transportation, clothing, entertainment, health, and more. However, as the production of polyamide increases year by year, the pollution problems it causes are becoming increasingly severe. This article reviews the current recycling and treatment processes of polyamide, such as chemical, mechanical, and energy recovery, and degradation methods such as thermal oxidation, photooxidation, enzyme degradation, etc. Starting from the synthesis mechanism of polyamide, it discusses the advantages and disadvantages of different treatment methods of polyamide to obtain more environmentally friendly and economical treatment schemes. Finding enzymes that can degrade high-molecular-weight polyamides, exploring the recovery of polyamides under mild conditions, synthesizing environmentally degradable polyamides through copolymerization or molecular design, and finally preparing degradable bio-based polyamides may be the destination of polyamide.
Collapse
Affiliation(s)
- Lin Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Mengjin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yaoqin Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yan Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
5
|
Luk J, Oates CL, Fuentes Garcia JA, Clarke ML, Kumar A. Manganese-Catalyzed Hydrogenation of Amides and Polyurethanes: Is Catalyst Inhibition an Additional Barrier to the Efficient Hydrogenation of Amides and Their Derivatives? Organometallics 2024; 43:85-93. [PMID: 38274653 PMCID: PMC10806803 DOI: 10.1021/acs.organomet.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hydrogenation of amides and other less electrophilic carbonyl derivatives with an N-C=O functionality requires significant improvements in scope and catalytic activity to be a genuinely useful reaction in industry. Here, we report the results of a study that examined whether such reactions are further disadvantaged by nitrogen-containing compounds such as aliphatic amines acting as inhibitors on the catalysts. In this case, an enantiomerically pure manganese catalyst previously established to be efficient in the hydrogenation of ketones, N-aryl-imines, and esters was used as a prototype of a manganese catalyst. This was accomplished by doping a model ester hydrogenation with various nitrogen-containing compounds and monitoring progress. Following from this, a protocol for the catalytic hydrogenation of amides and polyurethanes is described, including the catalytic hydrogenation of an axially chiral amide that resulted in low levels of kinetic resolution. The hypothesis of nitrogen-containing compounds acting as an inhibitor in the catalytic hydrogenation process has also been rationalized by using spectroscopy (high-pressure infrared (IR), nuclear magnetic resonance (NMR)) and mass spectrometry studies.
Collapse
Affiliation(s)
- James Luk
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Conor L. Oates
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - José A. Fuentes Garcia
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Matthew L. Clarke
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| |
Collapse
|
6
|
Shukla PM, Pratap A, Maji B. DIBAL-H-mediated N-deacetylation of tertiary amides: synthesis of synthetically valuable secondary amines. Org Biomol Chem 2024; 22:501-505. [PMID: 38165251 DOI: 10.1039/d3ob01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A rapid DIBAL-H-mediated N-deacetylation of tertiary amides is described under mild conditions, affording synthetically valuable secondary amines in good to excellent yields.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| |
Collapse
|
7
|
Adilkhanova A, Frolova VF, Yessengazin A, Öztopçu Ö, Gudun KA, Segizbayev M, Matsokin NA, Dmitrienko A, Pilkington M, Khalimon AY. Synthesis and catalytic performance of nickel phosphinite pincer complexes in deoxygenative hydroboration of amides. Dalton Trans 2023; 52:2872-2886. [PMID: 36762562 DOI: 10.1039/d2dt03801c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A series of imino-POCNR, amino-POCNR2, and bis(phosphinite) POCOP pincer complexes of Ni(II) were prepared and tested in catalytic deoxygenative hydroboration of amides with HBPin to the corresponding amines. In contrast to the deoxygenative hydrosilylation approach, primarily developed for tertiary amides, superior reactivity in Ni-catalyzed deoxygenative hydroboration was demonstrated for secondary carboxamides. The bis(phosphinite) hydride complex (POCOP)NiH proved the most active in these reactions, tolerating potentially reducible functionalities such as internal alkenes, esters, nitriles, heteroaromatic compounds, and tertiary amides. Preferable hydroboration of secondary amides was also demonstrated in the presence of primary amide functionalities. The reactions were conducted at 60-80 °C, representing a rare example of a base-metal catalytic system for selective deoxygenation of secondary amides to the corresponding amines under mild conditions. In contrast to secondary amides, deoxygenative hydroboration of primary amides was demonstrated using an iminophosphinite pre-catalyst (POCNDmp)Ni(CH2TMS) (Dmp = 2,6-Me2C6H3). Deoxygenation reactions were suggested to proceed via a direct C-O bond cleavage mechanism, which is triggered by dehydrogenative N-borylation to access more electrophilic N-borylamides amenable to the addition of HBPin to the carbonyl group.
Collapse
Affiliation(s)
- Aziza Adilkhanova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan. .,School of Mining and Geosciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Valeriya F Frolova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Azamat Yessengazin
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Özgür Öztopçu
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Kristina A Gudun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Medet Segizbayev
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada
| | - Nikita A Matsokin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anton Dmitrienko
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada
| | - Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| |
Collapse
|
8
|
Ravn AK, Rezayee NM. The Investigation of a Switchable Iridium Catalyst for the Hydrogenation of Amides: A Case Study of C–O Versus C–N Bond Scission. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne K. Ravn
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Nomaan M. Rezayee
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Lee K, Jing Y, Wang Y, Yan N. A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 2022; 6:635-652. [PMID: 37117711 PMCID: PMC9366821 DOI: 10.1038/s41570-022-00411-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/08/2022]
Abstract
Originating from the desire to improve sustainability, producing fuels and chemicals from the conversion of biomass and waste plastic has become an important research topic in the twenty-first century. Although biomass is natural and plastic synthetic, the chemical nature of the two are not as distinct as they first appear. They share substantial structural similarities in terms of their polymeric nature and the types of bonds linking their monomeric units, resulting in close relationships between the two materials and their conversions. Previously, their transformations were mostly studied and reviewed separately in the literature. Here, we summarize the catalytic conversion of biomass and waste plastics, with a focus on bond activation chemistry and catalyst design. By tracking the historical and more recent developments, it becomes clear that biomass and plastic have not only evolved their unique conversion pathways but have also started to cross paths with each other, with each influencing the landscape of the other. As a result, this Review on the catalytic conversion of biomass and waste plastic in a unified angle offers improved insights into existing technologies, and more importantly, may enable new opportunities for future advances.
Collapse
Affiliation(s)
- Kyungho Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yaxuan Jing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Lian P, Li R, Wan X, Xiang Z, Liu H, Cao Z, Wan X. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Org Chem Front 2022. [DOI: 10.1039/d1qo01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented strategy for the acetylation of alcohols and amines using diacetyl as both an acylation reagent and a photosensitizer was well developed.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Khalimon AY. Deoxygenative hydroboration of carboxamides: a versatile and selective synthetic approach to amines. Dalton Trans 2021; 50:17455-17466. [PMID: 34787155 DOI: 10.1039/d1dt03516a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deoxygenative reduction of amides is considered as an attractive method for preparation of synthetically valuable amines. However, the low electrophilicity of the amide carbonyl group, high thermodynamic stability and kinetic inertness of the amides make their reduction a challenging task. Until recently, most efforts for catalytic deoxygenation of amides to amines were concentrated on hydrogenation and hydrosilylation approaches, which mainly employed precious metal catalysts and often required harsh reaction conditions and showed insufficient selectivities. Moreover, these reactions are mostly limited to secondary and tertiary amides, whereas direct reduction of primary amides to primary amines remained arduous. In contrast, deoxygenative hydroboration of amides, although it appeared less then a decade ago, has already proved advantageous in terms of the amide scope, reaction conditions and selectivity of transformations. This article provides an overview of the developments in hydroboration of amides, focusing on mechanistic aspects of these transformations and advantages of hydroboration compared to hydrogenation and hydrosilylation approaches.
Collapse
Affiliation(s)
- Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
12
|
Deolka S, Fayzullin RR, Khaskin E. Bulky PNP ligands blocking metal-ligand cooperation allow for isolation of Ru(0), and lead to catalytically active Ru complexes in acceptorless alcohol dehydrogenation. Chemistry 2021; 28:e202103778. [PMID: 34741487 DOI: 10.1002/chem.202103778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/12/2022]
Abstract
We synthesized two 4Me-PNP ligands which block metal-ligand cooperation (MLC) with the Ru center and compared their Ru complex chemistry to their two traditional analogues used in acceptorless alcohol dehydrogenation catalysis. The corresponding 4Me-PNP complexes, which do not undergo dearomatization upon addition of base, allowed us to obtain rare, albeit unstable, 16 electron mono CO Ru(0) complexes. Reactivity with CO and H 2 allows for stabilization and extensive characterization of bis CO Ru(0) 18 electron and Ru(II) cis and trans dihydride species that were also shown to be capable of C(sp2)-H activation. Reactivity and catalysis are contrasted to non-methylated Ru(II) species, showing that an MLC pathway is not necessary, with dramatic differences in outcomes during catalysis between i Pr and t Bu PNP complexes within each of the 4Me and non-methylated backbone PNP series being observed. Unusual intermediates are characterized in one of the new and one of the traditional complexes, and a common catalysis deactivation pathway was identified.
Collapse
Affiliation(s)
- Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University, Chemistry, JAPAN
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, Organic and Physical Chemistry, RUSSIAN FEDERATION
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Chemistry, 1919-1 Tancha, 904-0495, Onna, JAPAN
| |
Collapse
|
13
|
Zhou W, Neumann P, Al Batal M, Rominger F, Hashmi ASK, Schaub T. Depolymerization of Technical-Grade Polyamide 66 and Polyurethane Materials through Hydrogenation. CHEMSUSCHEM 2021; 14:4176-4180. [PMID: 33174664 DOI: 10.1002/cssc.202002465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Indexed: 05/21/2023]
Abstract
Chemical recycling provides a promising solution to utilize plastic waste. Here, a catalytic hydrogenative depolymerization of polyamide 66 (PA 66) and polyurethane (PU) was developed. The system employed Ru pincer complexes at high temperature (200 °C) in THF solution, and even technical-grade polymers could be hydrogenated with satisfactory yields under these conditions. A comparison of the system with some known heterogeneous catalysts as well as catalyst poisoning tests supported the homogeneity of the system. These results demonstrate the potential of chemical recycling to regain building blocks for polymers and will be interesting for the further development of polymer hydrogenation.
Collapse
Affiliation(s)
- Wei Zhou
- Catalysis Research Laboratory (CaRLa), University of Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Paul Neumann
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Mona Al Batal
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), University of Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), University of Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
14
|
Air-stable nickel(II) borohydrides as prohydrides: Reactions with halocarbons and aerial carbon dioxide. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zhang S, Zhai X, Song Y, Feng L, Tung CH, Wang W. Insertion of BH3 into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengnan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Yike Song
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, People’s Republic of China
| |
Collapse
|
16
|
Yao W, Wang J, Zhong A, Li J, Yang J. Combined KOH/BEt 3 Catalyst for Selective Deaminative Hydroboration of Aromatic Carboxamides for Construction of Luminophores. Org Lett 2020; 22:8086-8090. [PMID: 33026813 DOI: 10.1021/acs.orglett.0c03033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selective catalytic C-N bond cleavage of amides into value-added amine products is a desirable but challenging transformation. Molecules containing iminodibenzyl motifs are prevalent in pharmaceutical molecules and functional materials. Here we established a combined KOH/BEt3 catalyst for deaminative hydroboration of acyl-iminodibenzyl derivatives, including nonheterocyclic carboxamides, to the corresponding amines. This novel transition-metal-free methodology was also applied to the construction of Clomipramine and luminophores.
Collapse
Affiliation(s)
- Wubing Yao
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P. R. China.,Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jiali Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P. R. China.,Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Aiguo Zhong
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P. R. China
| | - Jinshan Li
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P. R. China
| | - Jianguo Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P. R. China.,Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
17
|
Subaramanian M, Sivakumar G, Babu JK, Balaraman E. Selective hydrogenation of primary amides and cyclic di-peptides under Ru-catalysis. Chem Commun (Camb) 2020; 56:12411-12414. [PMID: 32936149 DOI: 10.1039/d0cc04550k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii)-catalyzed selective hydrogenation of challenging primary amides and cyclic di-peptides to their corresponding primary alcohols and amino alcohols, respectively, is reported. The hydrogenation reaction operates under mild and eco-benign conditions and can be scaled-up.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India.
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India.
| | - Jessin K Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India.
| |
Collapse
|
18
|
Saha S, Eisen MS. Mild catalytic deoxygenation of amides promoted by thorium metallocene. Dalton Trans 2020; 49:12835-12841. [PMID: 32901643 DOI: 10.1039/d0dt02770g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The organoactinide-catalyzed (Cp*2ThMe2) hydroborated reduction of a wide range of tertiary, secondary, and primary amides to the corresponding amines/amine-borane adducts via deoxygenation of the amides is reported herein. The catalytic reactions proceed under mild conditions with low catalyst loading and pinacolborane (HBpin) concentration in a selective fashion. Cp*2ThMe2 is capable of efficiently catalysing the gram-scale reaction without a drop in efficiency. The amine-borane adducts are successfully converted into free amine products in high conversions, which increases the usefulness of this catalytic system. A plausible mechanism is proposed based on detailed kinetics, stoichiometric, and deuterium labeling studies.
Collapse
Affiliation(s)
- Sayantani Saha
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa City, 32000, Israel.
| | - Moris S Eisen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa City, 32000, Israel.
| |
Collapse
|
19
|
Kumar A, von Wolff N, Rauch M, Zou YQ, Shmul G, Ben-David Y, Leitus G, Avram L, Milstein D. Hydrogenative Depolymerization of Nylons. J Am Chem Soc 2020; 142:14267-14275. [PMID: 32706584 PMCID: PMC7441490 DOI: 10.1021/jacs.0c05675] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
widespread crisis of plastic pollution demands discovery of new and
sustainable approaches to degrade robust plastics such as nylons.
Using a green and sustainable approach based on hydrogenation, in
the presence of a ruthenium pincer catalyst at 150 °C and 70
bar H2, we report here the first example of hydrogenative
depolymerization of conventional, widely used nylons and polyamides,
in general. Under the same catalytic conditions, we also demonstrate
the hydrogenation of a polyurethane to produce diol, diamine, and
methanol. Additionally, we demonstrate an example where monomers (and
oligomers) obtained from the hydrogenation process can be dehydrogenated
back to a poly(oligo)amide of approximately similar molecular weight,
thus completing a closed loop cycle for recycling of polyamides. Based
on the experimental and density functional theory studies, we propose
a catalytic cycle for the process that is facilitated by metal–ligand
cooperativity. Overall, this unprecedented transformation, albeit
at the proof of concept level, offers a new approach toward a cleaner
route to recycling nylons.
Collapse
Affiliation(s)
| | - Niklas von Wolff
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS/University of Paris, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat Commun 2020; 11:3893. [PMID: 32753681 PMCID: PMC7403344 DOI: 10.1038/s41467-020-17588-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Catalytic hydrogenation of amides is of great interest for chemists working in organic synthesis, as the resulting amines are widely featured in natural products, drugs, agrochemicals, dyes, etc. Compared to traditional reduction of amides using (over)stoichiometric reductants, the direct hydrogenation of amides using molecular hydrogen represents a greener approach. Furthermore, amide hydrogenation is a highly versatile transformation, since not only higher amines (obtained by C–O cleavage), but also lower amines and alcohols, or amino alcohols (obtained by C–N cleavage) can be selectively accessed by fine tuning of reaction conditions. This review describes the most recent advances in the area of amide hydrogenation using H2 exclusively and molecularly defined homogeneous as well as nano-structured heterogeneous catalysts, with a special focus on catalyst development and synthetic applications. Catalytic hydrogenation of amides is a pivotal chemical transformation for both research labs and chemical production in industry. Here, the authors comprehensively review this topic by including state-of-art homogeneous and heterogeneous catalysts that can hydrogenate amides and related compounds.
Collapse
|
21
|
Zou YQ, Zhou QQ, Diskin-Posner Y, Ben-David Y, Milstein D. Synthesis of oxalamides by acceptorless dehydrogenative coupling of ethylene glycol and amines and the reverse hydrogenation catalyzed by ruthenium. Chem Sci 2020; 11:7188-7193. [PMID: 34123004 PMCID: PMC8159388 DOI: 10.1039/d0sc02065f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A sustainable, new synthesis of oxalamides, by acceptorless dehydrogenative coupling of ethylene glycol with amines, generating H2, homogeneously catalyzed by a ruthenium pincer complex, is presented. The reverse hydrogenation reaction is also accomplished using the same catalyst. A plausible reaction mechanism is proposed based on stoichiometric reactions, NMR studies, X-ray crystallography as well as observation of plausible intermediates. Ruthenium catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines to oxalamides is reported. The reverse hydrogenation reaction is also accomplished.![]()
Collapse
Affiliation(s)
- You-Quan Zou
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot 76100 Israel
| | - Quan-Quan Zhou
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
22
|
Recent Advances in Homogeneous Catalysis via Metal–Ligand Cooperation Involving Aromatization and Dearomatization. Catalysts 2020. [DOI: 10.3390/catal10060635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, an increasing number of metal complex catalysts have been developed to achieve the activation or transformation of substrates based on cooperation between the metal atom and its ligands. In such “cooperative catalysis,” the ligand not only is bound to the metal, where it exerts steric and electronic effects, but also functionally varies its structure during the elementary processes of the catalytic reaction. In this review article, we focus on metal–ligand cooperation involving aromatization and dearomatization of the ligand, thus introducing the newest developments and examples of homogeneous catalytic reactions.
Collapse
|
23
|
Kar S, Rauch M, Kumar A, Leitus G, Ben-David Y, Milstein D. Selective Room-Temperature Hydrogenation of Amides to Amines and Alcohols Catalyzed by a Ruthenium Pincer Complex and Mechanistic Insight. ACS Catal 2020; 10:5511-5515. [PMID: 32455053 PMCID: PMC7236134 DOI: 10.1021/acscatal.0c01406] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Indexed: 12/30/2022]
Abstract
![]()
We
report a room-temperature protocol for the hydrogenation of
various amides to produce amines and alcohols. Compared with most
previous reports for this transformation, which use high temperatures
(typically, 100–200 °C) and H2 pressures (10–100
bar), this system proceeds under extremely mild conditions (RT, 5–10
bar of H2). The hydrogenation is catalyzed by well-defined
ruthenium-PNNH pincer complexes (0.5 mol %) with potential dual modes
of metal–ligand cooperation. An unusual Ru-amidate complex
was formed and crystallographically characterized. Mechanistic investigations
indicate that the room-temperature hydrogenation proceeds predominantly
via the Ru–N amido/amine metal–ligand cooperation.
Collapse
|
24
|
Tindall DJ, Menche M, Schelwies M, Paciello RA, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. Ru0 or RuII: A Study on Stabilizing the “Activated” Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation. Inorg Chem 2020; 59:5099-5115. [DOI: 10.1021/acs.inorgchem.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Mathias Schelwies
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Rocco A. Paciello
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry & Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 275, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
25
|
Artús Suàrez L, Jayarathne U, Balcells D, Bernskoetter WH, Hazari N, Jaraiz M, Nova A. Rational selection of co-catalysts for the deaminative hydrogenation of amides. Chem Sci 2020; 11:2225-2230. [PMID: 32190278 PMCID: PMC7059200 DOI: 10.1039/c9sc03812d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Theory and experiments were used to rationally design co-catalysts for the deaminative hydrogenation of amides. TBD was found to be the optimal catalyst, assisting the C–N bond cleavage while preventing the formation of adducts with the catalyst.
The catalytic hydrogenation of amides is an atom economical method to synthesize amines. Previously, it was serendipitously discovered that the combination of a secondary amide co-catalyst with (iPrPNP)Fe(H)(CO) (iPrPNP = N[CH2CH2(PiPr2)]2–), results in a highly active base metal system for deaminative amide hydrogenation. Here, we use DFT to develop an improved co-catalyst for amide hydrogenation. Initially, we computationally evaluated the ability of a series of co-catalysts to accelerate the turnover-limiting proton transfer during C–N bond cleavage and poison the (iPrPNP)Fe(H)(CO) catalyst through a side reaction. TBD (triazabicyclodecene) was identified as the leading co-catalyst. It was experimentally confirmed that when TBD is combined with (iPrPNP)Fe(H)(CO) a remarkably active system for amide hydrogenation is generated. TBD also enhances the activity of other catalysts for amide hydrogenation and our results provide guidelines for the rational design of future co-catalysts.
Collapse
Affiliation(s)
- Lluís Artús Suàrez
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P. O. Box 1033, Blindern , N-0315 Oslo , Norway .
| | - Upul Jayarathne
- Department of Chemistry , University of Missouri , Columbia , Missouri 65211 , USA
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P. O. Box 1033, Blindern , N-0315 Oslo , Norway .
| | | | - Nilay Hazari
- Department of Chemistry , Yale University , P. O. Box 208107 , New Haven , Connecticut 06520 , USA
| | - Martín Jaraiz
- Department of Electronics , ETSIT , University of Valladolid , Paseo Belén 15 , 47011 Valladolid , Spain.,IU CINQUIMA , University of Valladolid , Paseo de Belén 7 , 47011 Valladolid , Spain
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P. O. Box 1033, Blindern , N-0315 Oslo , Norway . .,Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
26
|
Tamang SR, Singh A, Bedi D, Bazkiaei AR, Warner AA, Glogau K, McDonald C, Unruh DK, Findlater M. Polynuclear lanthanide–diketonato clusters for the catalytic hydroboration of carboxamides and esters. Nat Catal 2020. [DOI: 10.1038/s41929-019-0405-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Papa V, Cabrero-Antonino JR, Spannenberg A, Junge K, Beller M. Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01078b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the first general and efficient homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines is presented.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | - Jose R. Cabrero-Antonino
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
- Instituto de Tecnología Química
- Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | |
Collapse
|
28
|
Leischner T, Artús Suarez L, Spannenberg A, Junge K, Nova A, Beller M. Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chem Sci 2019; 10:10566-10576. [PMID: 32110342 PMCID: PMC7020655 DOI: 10.1039/c9sc03453f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022] Open
Abstract
A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic hydrogenation of amides.
A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic hydrogenation of amides. Among the tested catalysts, Mo-1a proved to be particularly well suited for the selective C–N hydrogenolysis of N-methylated formanilides. Notably, high chemoselectivity was observed in the presence of certain reducible groups including even other amides. The general catalytic performance as well as selectivity issues could be rationalized taking an anionic Mo(0) as the active species. The interplay between the amide C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O reduction and the catalyst poisoning by primary amides accounts for the selective hydrogenation of N-methylated formanilides. The catalyst resting state was found to be a Mo–alkoxo complex formed by reaction with the alcohol product. This species plays two opposed roles – it facilitates the protolytic cleavage of the C–N bond but it encumbers the activation of hydrogen.
Collapse
Affiliation(s)
- Thomas Leischner
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Lluis Artús Suarez
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 , Oslo , Norway .
| | - Anke Spannenberg
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Kathrin Junge
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 , Oslo , Norway .
| | - Matthias Beller
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| |
Collapse
|
29
|
Ryabchuk P, Stier K, Junge K, Checinski MP, Beller M. Molecularly Defined Manganese Catalyst for Low-Temperature Hydrogenation of Carbon Monoxide to Methanol. J Am Chem Soc 2019; 141:16923-16929. [PMID: 31577437 DOI: 10.1021/jacs.9b08990] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methanol synthesis from syngas (CO/H2 mixtures) is one of the largest manmade chemical processes with annual production reaching 100 million tons. The current industrial method proceeds at high temperatures (200-300 °C) and pressures (50-100 atm) using a copper-zinc-based heterogeneous catalyst. In contrast, here, we report a molecularly defined manganese catalyst that allows for low-temperature/low-pressure (120-150 °C, 50 bar) carbon monoxide hydrogenation to methanol. This new approach was evaluated and optimized by quantum mechanical simulations virtual high-throughput screenings. Crucial for this achievement is the use of amine-based promoters, which capture carbon monoxide to give formamide intermediates, which then undergo manganese-catalyzed hydrogenolysis, regenerating the promoter. Following this conceptually new approach, high selectivity toward methanol and catalyst turnover numbers (up to 3170) was achieved. The proposed general catalytic cycle for methanol synthesis is supported by model studies and detailed spectroscopic investigations.
Collapse
Affiliation(s)
- Pavel Ryabchuk
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein Straße 29a , Rostock 18059 , Germany
| | - Kenta Stier
- CreativeQuantum GmbH , Am Studio 2 , Berlin 12489 , Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein Straße 29a , Rostock 18059 , Germany
| | | | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein Straße 29a , Rostock 18059 , Germany
| |
Collapse
|
30
|
Lane EM, Zhang Y, Hazari N, Bernskoetter WH. Sequential Hydrogenation of CO2 to Methanol Using a Pincer Iron Catalyst. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00413] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth M. Lane
- The Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yuanyuan Zhang
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Ong DY, Yen Z, Yoshii A, Revillo Imbernon J, Takita R, Chiba S. Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides. Angew Chem Int Ed Engl 2019; 58:4992-4997. [DOI: 10.1002/anie.201900233] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Derek Yiren Ong
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Zhihao Yen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Asami Yoshii
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Julia Revillo Imbernon
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Ryo Takita
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
32
|
Guzmán J, Bernal AM, García-Orduña P, Lahoz FJ, Oro LA, Fernández-Alvarez FJ. Selective reduction of formamides to O-silylated hemiaminals or methylamines with HSiMe 2Ph catalyzed by iridium complexes. Dalton Trans 2019; 48:4255-4262. [PMID: 30847452 DOI: 10.1039/c8dt05070h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of (4-methyl-pyridin-2-iloxy)ditertbutylsilane (NSitBu-H, 1) with [IrCl(coe)2]2 affords the iridium(iii) complex [Ir(H)(Cl)(κ2-NSitBu)(coe)] (2), which has been fully characterized including X-ray diffraction studies. The reaction of 2 with AgCF3SO3 leads to the formation of species [Ir(H)(CF3SO3)(κ2-NSitBu)(coe)] (3). The iridium complexes 2 and 3 are effective catalysts for the reduction of formamides with HSiMe2Ph. The selectivity of the reduction process depends on the catalyst. Thus, by using complex 2, with a chloride ancillary ligand, it has been possible to selectively obtain the corresponding O-silylated hemiaminal by reaction of formamides with one equivalent of HSiMe2Ph, while complex 3, with a triflate ligand instead of chloride, catalyzed the selective reduction of formamides to the corresponding methylamine.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza - CSIC, Facultad de Ciencias 50009, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Ong DY, Yen Z, Yoshii A, Revillo Imbernon J, Takita R, Chiba S. Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Derek Yiren Ong
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Zhihao Yen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Asami Yoshii
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Julia Revillo Imbernon
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Ryo Takita
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
34
|
Selective C-N σ Bond Cleavage in Azetidinyl Amides under Transition Metal-Free Conditions. Molecules 2019; 24:molecules24030459. [PMID: 30696043 PMCID: PMC6384560 DOI: 10.3390/molecules24030459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Functionalization of amide bond via the cleavage of a non-carbonyl, C-N σ bond remains under-investigated. In this work, a transition-metal-free single-electron transfer reaction has been developed for the C-N σ bond cleavage of N-acylazetidines using the electride derived from sodium dispersions and 15-crown-5. Of note, less strained cyclic amides and acyclic amides are stable under the reaction conditions, which features the excellent chemoselectivity of the reaction. This method is amenable to a range of unhindered and sterically encumbered azetidinyl amides.
Collapse
|
35
|
Sorribes I, Lemos SCS, Martín S, Mayoral A, Lima RC, Andrés J. Palladium doping of In2O3 towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catal Sci Technol 2019. [DOI: 10.1039/c9cy02128k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first general heterogeneous hydrogenation of amides to amines and alcohols is performed under additive-free conditions and without product de-aromatization by applying a Pd-doped In2O3 catalyst.
Collapse
Affiliation(s)
- Iván Sorribes
- Departament de Química Física i Analítica
- Universitat Jaume I
- 12071 Castelló
- Spain
| | | | - Santiago Martín
- Departamento de Química Física
- Facultad de Ciencias
- Instituto de Ciencias de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50009 Zaragoza
| | - Alvaro Mayoral
- Center for High-resolution Electron Microscopy (CħEM)
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai
- China
| | - Renata C. Lima
- Instituto de Química
- Universidade Federal de Uberlândia
- Uberlândia
- Brazil
| | - Juan Andrés
- Departament de Química Física i Analítica
- Universitat Jaume I
- 12071 Castelló
- Spain
| |
Collapse
|
36
|
Yao W, Li R, Yang J, Hao F. Hydride-catalyzed selectively reductive cleavage of unactivated tertiary amides using hydrosilane. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00924h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first hydride-catalyzed reductive cleavage of tertiary amides using the hydrosilane as reducing reagent has been developed. This transition-metal-free process may offer a versatile alternative to current systems for the selective reductive cleavage of amides.
Collapse
Affiliation(s)
- Wubing Yao
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- China
| | - Rongrong Li
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- China
| | - Jianguo Yang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- China
| | - Feiyue Hao
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- China
| |
Collapse
|
37
|
Le L, Liu J, He T, Kim D, Lindley EJ, Cervarich TN, Malek JC, Pham J, Buck MR, Chianese AR. Structure–Function Relationship in Ester Hydrogenation Catalyzed by Ruthenium CNN-Pincer Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linh Le
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jiachen Liu
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Tianyi He
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Daniel Kim
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Eric J. Lindley
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Tia N. Cervarich
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jack C. Malek
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - John Pham
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Matthew R. Buck
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
38
|
Artús Suàrez L, Culakova Z, Balcells D, Bernskoetter WH, Eisenstein O, Goldberg KI, Hazari N, Tilset M, Nova A. The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02184] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lluís Artús Suàrez
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Zuzana Culakova
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Wesley H. Bernskoetter
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Odile Eisenstein
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
- Institut Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, cc 1501 Université de Montpellier, Montpellier 34095, France
| | - Karen I. Goldberg
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mats Tilset
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| |
Collapse
|
39
|
Ruthenium-Pincer-Catalyzed Hydrogenation of Lactams to Amino Alcohols. Chem Asian J 2018; 13:2559-2565. [DOI: 10.1002/asia.201800759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Indexed: 01/07/2023]
|
40
|
Suárez A. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.
Collapse
|
41
|
Zhang B, Li H, Ding Y, Yan Y, An J. Reduction and Reductive Deuteration of Tertiary Amides Mediated by Sodium Dispersions with Distinct Proton Donor-Dependent Chemoselectivity. J Org Chem 2018; 83:6006-6014. [PMID: 29750511 DOI: 10.1021/acs.joc.8b00617] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A practical and scalable single electron transfer reduction mediated by sodium dispersions has been developed for the reduction and reductive deuteration of tertiary amides. The chemoselectivity of this method highly depends on the nature of the proton donor. The challenging reduction via C-N bond cleavage has been achieved using Na/EtOH, affording alcohol products, while the use of Na/NaOH/H2O leads to the formation of amines via selective C-O scission. Sodium dispersions with high specific surface areas are crucial to obtain high yields and good chemoselectivity. This new method tolerates a range of tertiary amides. Moreover, the corresponding reductive deuterations mediated by Na/EtOD- d1 and Na/NaOH/D2O afford useful α,α-dideuterio alcohols and α,α-dideuterio amines with an excellent deuterium content.
Collapse
Affiliation(s)
- Bin Zhang
- College of Science , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , China
| | - Hengzhao Li
- College of Science , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , China
| | - Yuxuan Ding
- College of Science , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , China
| | - Yuhao Yan
- College of Science , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , China
| | - Jie An
- College of Science , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , China
| |
Collapse
|
42
|
Unsleber JP, Neugebauer J, Morris RH. DFT methods applied to answer the question: how accurate is the ligand acidity constant method for estimating the pKa of transition metal hydride complexes MHXL4 when X is varied? Dalton Trans 2018; 47:2739-2747. [DOI: 10.1039/c7dt03473c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Additive ligand acidity constants AL of anionic ligands are calculated for neutral hydrides of iron(ii), ruthenium(ii) and osmium(ii) with phosphine and carbonyl co-ligands; constant AL in green, more variable AL in red.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Theoretische Organische Chemie
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | | |
Collapse
|
43
|
Tamura M, Ishikawa S, Betchaku M, Nakagawa Y, Tomishige K. Selective hydrogenation of amides to alcohols in water solvent over a heterogeneous CeO2-supported Ru catalyst. Chem Commun (Camb) 2018; 54:7503-7506. [DOI: 10.1039/c8cc02697a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CeO2-supported Ru (Ru/CeO2) worked as an effective and reusable heterogeneous catalyst for the selective dissociation of the C–N bond in amides, particularly primary amides, with H2 in water solvent at low reaction temperature of 333 K.
Collapse
Affiliation(s)
| | | | - Mii Betchaku
- Graduate School of Engineering
- Tohoku University
- Aoba-ku
- Japan
| | | | | |
Collapse
|
44
|
Xie Y, Hu P, Bendikov T, Milstein D. Heterogeneously catalyzed selective hydrogenation of amides to alcohols and amines. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00112j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the heterogeneously catalyzed hydrogenation of amides to form alcohols and amines.
Collapse
Affiliation(s)
- Yinjun Xie
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Peng Hu
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
- School of Chemistry
| | - Tatyana Bendikov
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot
- Israel
| | - David Milstein
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
45
|
Koo J, Kim SH, Hong SH. Hydrogenation of silyl formates: sustainable production of silanol and methanol from hydrosilane and carbon dioxide. Chem Commun (Camb) 2018; 54:4995-4998. [DOI: 10.1039/c8cc02276c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Simultaneous production of methanol and silanols was achieved by hydrogenation of silyl formates readily obtained from silanes and CO2.
Collapse
Affiliation(s)
- Jangwoo Koo
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- South Korea
| | - Seung Hyo Kim
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- South Korea
| | - Soon Hyeok Hong
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- South Korea
| |
Collapse
|
46
|
Chai H, Wang L, Liu T, Yu Z. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huining Chai
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Liandi Wang
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
| | - Tingting Liu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhengkun Yu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
47
|
Chai H, Liu T, Zheng D, Yu Z. Cooperative N–H and CH2 Skeleton Effects on the Catalytic Activities of Bimetallic Ru(II)–NNN Complexes: Experimental and Theoretical Study. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huining Chai
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Tingting Liu
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Daoyuan Zheng
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhengkun Yu
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
48
|
Wang Z, Li Y, Liu QB, Solan GA, Ma Y, Sun WH. Direct Hydrogenation of a Broad Range of Amides under Base-free Conditions using an Efficient and Selective Ruthenium(II) Pincer Catalyst. ChemCatChem 2017. [DOI: 10.1002/cctc.201700952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zheng Wang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P.R. China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- CAS Research/Education Center for Excellence in Molecular Sciences; University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yong Li
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P.R. China
| | - Qing-bin Liu
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P.R. China
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Department of Chemistry; University of Leicester; University Road Leicester LE1 7RH UK
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- CAS Research/Education Center for Excellence in Molecular Sciences; University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
49
|
Chai H, Liu T, Yu Z. NHTs Effect on the Enantioselectivity of Ru(II) Complex Catalysts Bearing a Chiral Bis(NHTs)-Substituted Imidazolyl-Oxazolinyl-Pyridine Ligand for Asymmetric Transfer Hydrogenation of Ketones. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Huining Chai
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Tingting Liu
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhengkun Yu
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, People’s Republic of China
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
50
|
Huq SR, Shi S, Diao R, Szostak M. Mechanistic Study of SmI2/H2O and SmI2/Amine/H2O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals. J Org Chem 2017. [DOI: 10.1021/acs.joc.7b00372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Syed R. Huq
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Ray Diao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|