1
|
Hu J, Tan X, Li Y, Luo L, Wang X, Cao D, Luo G. Theoretical Insights into Rare-Earth-Catalyst-Controlled Diastereo- and Enantioselective [3 + 2] Annulation of Aromatic Aldimines with Styrenes. Inorg Chem 2025; 64:3120-3128. [PMID: 39907012 DOI: 10.1021/acs.inorgchem.4c05543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Rare-earth-catalyzed annulation reactions using alkenes via C-H activation offer an atom-efficient approach to constructing cyclic compounds. However, the mechanisms underlying these reactions remain poorly understood, limiting the rational design of related catalytic systems. Recently, Hou and Cong reported an unprecedented example of rare-earth-catalyst-controlled diastereodivergent asymmetric [3 + 2] annulation of aromatic aldimines with alkenes. To elucidate the mechanisms and the origins of diastereo- and enantioselectivity, density functional theory calculations were performed. The results revealed that the styrene insertion step determines the stereoselectivity. Styrene insertion follows a similar metal-styrene interaction pattern across different catalysts. Specifically, during cis-insertion, styrene interacts strongly with the metal center, exhibiting significant Sc···Ph interactions, whereas such interactions are absent during trans-insertion. Thus, when the catalyst is employed with a small ligand, stereoselectivity is primarily governed by electronic factors, favoring the cis-insertion mode. In contrast, for the more sterically hindered catalyst, the Sc···Ph interactions in cis-insertion are insufficient to overcome the steric effects, leading to a preference for the trans-insertion mode, which minimizes steric hindrance. These findings offer deeper insights into the origins of catalyst-controlled diastereo- and enantioselectivity and will also contribute to the rational design of stereospecific annulation reactions in rare-earth catalysis.
Collapse
Affiliation(s)
- Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xinyu Tan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lun Luo
- School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xintong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Deyue Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Gao H, Wang W, Zhai X, Ye F, Liu B, Lu G, Li Y. Origin of Regioselectivity Inversion Tuned by Substrate Electronic Properties in Co(III)-Catalyzed Annulation of N-Chlorobenzamide with Alkenes. Chempluschem 2024:e202400625. [PMID: 39568344 DOI: 10.1002/cplu.202400625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
The mechanisms of Co(III)-catalyzed annulations of N-chlorobenzamide with olefins bearing different electronic properties were computationally studied and the origins of regioselectivity reversal were investigated by using energy decomposition analysis (EDA). The alkene migratory insertion step determines the regiochemistry of these reactions. EDA results indicate that the 2,1-insertion with styrene is favored because there is a weaker Pauli repulsion between the cobaltacycle Co-C σ orbital and the olefin π orbital. Conversely, the 1,2-insertion with vinyltrimethylsilane is more favorable than the 2,1-insertion. This is mostly because the increased π electron density can effectively differentiate the stabilizing electronic interactions.
Collapse
Affiliation(s)
- Han Gao
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Wujie Wang
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Xiaofang Zhai
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Feng Ye
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Bin Liu
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Gang Lu
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuliang Li
- Department of Interventional Medicine and Minimally Invasive Oncology, The Second Hospital of Shandong University, The Institute of Interventional Oncology Shandong University, Jinan, Shandong, 250033, P. R. China
| |
Collapse
|
3
|
Zhao M, Yuan H, Zhang J. Insights into the Synergistic Interplay of Ligand and Base Effects in Palladium-Catalyzed Enantioselectivity Hydrofunctionalization of Dienes. Inorg Chem 2024; 63:21031-21041. [PMID: 39436811 DOI: 10.1021/acs.inorgchem.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization involving the use of O-based nucleophiles are an important topic in synthetic chemistry. Herein, density functional theory calculations were conducted to unveil the mechanism and enantioselectivity of Pd-catalyzed asymmetric hydrofunctionalization of conjugated dienes. We found that the base-assisted 4,3-activation model of the ligand-to-ligand hydrogen transfer (LLHT) mechanism is the most preferred one among all the cases, which could be ascribed to the favorable C-H···O interactions and the electrostatic interactions. For the enantioselective C-O bond formation process, the orientation of the substrate in the chiral pocket plays a significant role in controlling the enantioselectivity by contributing different noncovalent interactions. On the basis of the distortion/interaction model and energy decomposition analysis, the distortion energy is identified as the dominant factor controlling the product chemoselectivity. BnOH acts as the substrate, proton shuttle, and stabilizer to facilitate the H-transfer process in both LLHT and the C-O bond formation process. This study provides molecular-level insights into the collaborative effect of the base and P,N-ligand to perform the catalytic activity in the asymmetric hydrofunctionalization of conjugated dienes, which might open a new avenue for designing more efficient base-assisted enantioselective hydrofunctionalization by Pd catalysis.
Collapse
Affiliation(s)
- Manzhu Zhao
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
5
|
Fairlamb IJS, Lynam JM. Unveiling Mechanistic Complexity in Manganese-Catalyzed C-H Bond Functionalization Using IR Spectroscopy Over 16 Orders of Magnitude in Time. Acc Chem Res 2024; 57:919-932. [PMID: 38412502 PMCID: PMC10956383 DOI: 10.1021/acs.accounts.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
ConspectusAn understanding of the mechanistic processes that underpin reactions catalyzed by 3d transition metals is vital for their development as potential replacements for scarce platinum group metals. However, this is a significant challenge because of the tendency of 3d metals to undergo mechanistically diverse pathways when compared with their heavier congeners, often as a consequence of one-electron transfer reactions and/or intrinsically weaker metal-ligand bonds. We have developed and implemented a new methodology to illuminate the pathways that underpin C-H bond functionalization pathways in reactions catalyzed by Mn-carbonyl compounds. By integrating measurements performed on catalytic reactions with in situ reaction monitoring and state-of-the-art ultrafast spectroscopic methods, unique insight into the mode of action and fate of the catalyst have been obtained.Using a combination of time-resolved spectroscopy and in situ low-temperature NMR studies, we have shown that photolysis of manganese-carbonyl precatalysts results in rapid (<5 ps) CO dissociation─the same process that occurs under thermal catalytic conditions. This enabled the detection of the key states relevant to catalysis, including solvent and alkyne complexes and their resulting transformation into manganacycles, which results from a migratory insertion reaction into the Mn-C bond. By systematic variation of the substrates (many of which are real-world structurally diverse substrates and not simple benchmark systems) and quantification of the resulting rate constants for the insertion step, a universal model for this migratory insertion process has been developed. The time-resolved spectroscopic method gave insight into fundamental mechanistic pathways underpinning other aspects of modern synthetic chemistry. The most notable was the first direct experimental observation of the concerted metalation deprotonation (CMD) mechanism through which carboxylate groups are able to mediate C-H bond activation at a metal center. This step underpins a host of important synthetic applications. This study demonstrated how the time-resolved multiple probe spectroscopy (TRMPS) method enables the observation of mechanistic process occurring on time scales from several picoseconds through to μs in a single experiment, thereby allowing the sequential observation of solvation, ligand substitution, migratory insertion, and ultimate protonation of a Mn-C bond.These studies have been complemented by an investigation of the "in reaction flask" catalyst behavior, which has provided additional insight into new pathways for precatalyst activation, including evidence that alkyne C-H bond activation may occur before heterocycle activation. Crucial insight into the fate of the catalyst species showed that excess water played a key role in deactivation to give higher-order hydroxyl-bridged manganese carbonyl clusters, which were independently found to be inactive. Traditional in situ IR and NMR spectroscopic analysis on the second time scale bridges the gap to the analysis of real catalytic reaction systems. As a whole, this work has provided unprecedented insight into the processes underpinning manganese-catalyzed reactions spanning 16 orders of magnitude in time.
Collapse
Affiliation(s)
- Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Li Z, Wang M, Yang Y, Liang Y, Chen X, Zhao Y, Houk KN, Shi Z. Atroposelective hydroarylation of biaryl phosphines directed by phosphorus centres. Nat Commun 2023; 14:8509. [PMID: 38129395 PMCID: PMC10739911 DOI: 10.1038/s41467-023-44202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Prized for their ability to generate chemical complexity rapidly, catalytic carbon-hydrogen (C-H) activation and functionalization reactions have enabled a paradigm shift in the standard logic of synthetic chemistry. Directing group strategies have been used extensively in C-H activation reactions to control regio- and enantioselectivity with transition metal catalysts. However, current methods rely heavily on coordination with nitrogen and/or oxygen atoms in molecules and have therefore been found to exhibit limited generality in asymmetric syntheses. Here, we report enantioselective C-H activation with unsaturated hydrocarbons directed by phosphorus centres to rapidly construct libraries of axially chiral phosphines through dynamic kinetic resolution. High reactivity and enantioselectivity are derived from modular assembly of an iridium catalyst with an endogenous phosphorus atom and an exogenous chiral phosphorus ligand, as confirmed by detailed experimental and computational studies. This reaction mode significantly expands the pool of enantiomerically enriched functional phosphines, some of which have shown excellent efficiency for asymmetric catalysis.
Collapse
Affiliation(s)
- Zexian Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhuangzhi Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China.
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Zhang JW, Liu XJ, Zhang J, Liu JB. Mechanism and origins of cobalt-catalyzed ligand-controlled regiodivergent C-H functionalization of aldehydes with enynes. Dalton Trans 2023; 52:13946-13954. [PMID: 37728124 DOI: 10.1039/d3dt02570e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The influence of the P-M-P bite angle in diphosphine ligands on selectivity has been observed in various catalytic reactions. A better understanding of the ligand bite angle concept is important for the rational design of efficient catalytic systems. In the present work, the mechanism of cobalt-catalyzed C-H functionalization of aldehydes with enynes and how the diphosphine ligands alter regioselectivity were investigated by density functional theory (DFT) calculations. The catalytic cycle is initiated by the oxidative cyclization of enynes rather than the oxidative addition of aldehydes. Regioselectivity arises from competing σ-bond metathesis and migratory insertion steps, in which the steric effects of diphosphine ligands are the dominant factors influencing the activation barriers. The calculations indicate that σ-bond metathesis is more challenging and its feasibility is highly dependent on the ligand bite angle. The improved mechanistic understanding will enable further design of transition-metal-catalyzed selective cyclization reactions.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Xiao-Jun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jian Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Remote Site-Switchable Hydroarylation of Alkenes Controlled by Ligands. Angew Chem Int Ed Engl 2023; 62:e202309859. [PMID: 37610735 DOI: 10.1002/anie.202309859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinbao Ren
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Deyue Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
9
|
Ou Y, Ye Q, Deng W, Xu Z. Mechanism and Origin of CuH‐Catalyzed Regio‐ and Enantioselective Hydrocarboxylation of Allenes. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yu‐Ru Ou
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Qi Ye
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Zheng‐Yang Xu
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| |
Collapse
|
10
|
Sawano T, Ono M, Iwasa A, Hayase M, Funatsuki J, Sugiyama A, Ishikawa E, Yoshikawa T, Sakata K, Takeuchi R. Iridium-Catalyzed Branch-Selective Hydroalkylation of Simple Alkenes with Malonic Amides and Malonic Esters. J Org Chem 2023; 88:1545-1559. [PMID: 36637330 DOI: 10.1021/acs.joc.2c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the iridium-catalyzed branch-selective hydroalkylation of simple alkenes such as aliphatic alkenes and aromatic alkenes with malonic amides and malonic esters under neutral reaction conditions. A variety of aliphatic alkenes and aromatic alkenes bearing bromine, chlorine, ester, 2-thienylcarboxylate, silyl, and phthalimide groups were all found to be suitable for this hydroalkylation. The combination of this method with Krapcho dealkoxycarbonylation realized a one-pot synthesis of β-substituted amide and ester from β-amide ester and malonic ester. The hydroalkylated products derived from malonic amides are suitable for further transformation. The finely tuned reaction conditions realized the selective transformation of hydroalkylated products to 1,3-diamines or monoamides with the same reagent. Deuterium labeling experiments and measurement of the kinetic isotope effect indicated that the catalytic cycle involves a reversible step and cleavage of the C-H bond is not a rate-determining step. Density functional theory calculations provided insight into the reaction mechanism, where the carboiridation step is followed by C-H reductive elimination.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masaki Ono
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ami Iwasa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masaya Hayase
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Juri Funatsuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ayumu Sugiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Eri Ishikawa
- Department of Applied Chemistry, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
11
|
Cao F, Wu P, Zhou Y, Zhang N, Xue Z, Shi L, Zhou G, Luo G. Mechanism and Origin of Site Selectivity and Regioselectivity of Scandium-Catalyzed Benzylic C-H Alkylation of Tertiary Anilines with Alkenes. Inorg Chem 2023; 62:979-988. [PMID: 36603128 DOI: 10.1021/acs.inorgchem.2c03830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Benzylic C(sp3)-H alkylation of tertiary anilines with alkenes by an anilido-oxazoline-ligated scandium alkyl catalyst was recently reported with C-H site selectivity and alkene-dependent regioselectivity. Revealing the mechanism and origin of selectivity is undoubtedly of great importance for understanding experimental observations and developing new reactions. Herein, density functional theory (DFT) calculations have been carried out on the model reaction of Sc-catalyzed benzylic C(sp3)-H alkylation of N,N-dimethyl-o-toluidine with allylbenzene. The reaction generally undergoes the generation of active species, alkene insertion, and protonation steps. The difference of the distortion energy of the aniline moiety in transition states, which is related to the ring size of the forming metallacycles, accounts for the site selectivity of C-H activation. Benzylic C(sp3)-H activation possessing less strained five-membered metallacycle compared to the ortho-C(sp2)-H and α-methyl C(sp3)-H activation results in benzylic C(sp3)-H alkylation observed experimentally. Both steric and electronic factors are responsible for the 1,2-insertion regioselectivity for alkyl-substituted alkenes, while electronic factors control the 2,1-insertion manner for vinylsilanes. The analysis of original alkene substrates further strengthens the understanding of the alkene-dependent regioselectivity. These results help us to obtain the mechanistic understanding and are expected to be conducive to the development of new C-H functionalization reactions.
Collapse
Affiliation(s)
- Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Guangli Zhou
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
12
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Wu P, Cao F, Zhou Y, Xue Z, Zhang N, Shi L, Luo G. Substrate Facilitating Roles in Rare-Earth-Catalyzed C-H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorg Chem 2022; 61:17330-17341. [PMID: 36259978 DOI: 10.1021/acs.inorgchem.2c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.
Collapse
Affiliation(s)
- Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
14
|
Hammarback LA, Eastwood JB, Burden TJ, Pearce CJ, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. A comprehensive understanding of carbon-carbon bond formation by alkyne migratory insertion into manganacycles. Chem Sci 2022; 13:9902-9913. [PMID: 36199635 PMCID: PMC9431456 DOI: 10.1039/d2sc02562k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps.
Collapse
Affiliation(s)
| | | | - Thomas J Burden
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Callum J Pearce
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Alan Robinson
- Syngenta Crop Protection AG Münchwilen Breitenloh 5,4333 Switzerland
| | - Ian J S Fairlamb
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
15
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
16
|
Chen BH, Du YD, Shu W. Organophotocatalytic Regioselective C-H Alkylation of Electron-Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200773. [PMID: 35286774 DOI: 10.1002/anie.202200773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/27/2022]
Abstract
Direct alkylation of the C-H bond arenes in a selective manner is a long-standing challenge. Herein, a metal-free photocatalytic regioselective C-H alkylation method for electron-rich arenes with both activated and unactivated alkenes was developed. The reaction tolerates a wide range of aromatic rings with diverse substitution patterns, as well as terminal and internal alkenes, providing a general and straightforward metal-free method for C-C bond formation from inert C-H bonds. Moreover, alkynes are also compatible to give the C-H vinylation of electron-rich arenes.
Collapse
Affiliation(s)
- Bi-Hong Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
17
|
Kong D, Wu H, Ge J, Shen Z, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroarylation/Cyclization of 1,6-Enynes with N-Pyridylindoles. J Org Chem 2022; 87:6438-6443. [PMID: 35405065 DOI: 10.1021/acs.joc.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroarylation/cyclization of 1,6-enynes with N-pyridylindoles. The computations reveal that the reaction begins with the oxidative cyclization of 1,6-enyne to afford the five-membered cobaltacycle, from which the metal-assisted σ-bond metathesis/C-C reductive elimination led to the final hydroarylation/cyclization product. The initial oxidative cyclization constitutes the rate-determining step of the overall reaction. The steric repulsion and π···π interaction were found to play a crucial role in dictating the experimentally observed enantioselectivity.
Collapse
Affiliation(s)
- Deping Kong
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaao Ge
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
18
|
Chen B, Du Y, Shu W. Organophotocatalytic Regioselective C−H Alkylation of Electron‐Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bi‐Hong Chen
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yi‐Dan Du
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
19
|
Theoretical study of nickel-catalyzed hydroalkylation of 3-pyrrolines: Origin of ligand-controlled regioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Xiong M, Shu Y, Tang J, Yang F, Xing D. Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C-H Alkylation with Simple Alkenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061923. [PMID: 35335286 PMCID: PMC8954050 DOI: 10.3390/molecules27061923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
We report an iridium(I)-catalyzed branched-selective C–H alkylation of N-arylisoindolinones with simple alkenes as the alkylating agents. The amide carbonyl group of the isoindolinone motif acts as the directing group to assist the ortho C–H activation of the N-aryl ring. With this atom-economic and highly branched-selective protocol, an array of biologically relevant N-arylisoindolinones were obtained in good yields. Asymmetric control was achieved with up to 87:13 er when a BiPhePhos-like chiral ligand was employed.
Collapse
|
21
|
Xu J, Ma X, Liu C, Zhang D. Density Functional Theory Study of Gold-Catalyzed 1,2-Diarylation of Alkenes: π-Activation versus Migratory Insertion Mechanisms. J Org Chem 2022; 87:4078-4087. [PMID: 35232016 DOI: 10.1021/acs.joc.1c02861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory calculations are carried out to better understand the first gold-catalyzed 1,2-diarylation reactions of alkenes reported in the recent literature. The calculations on two representative reactions, aryl alkene/aryl iodide coupling pair (the aryl-I bond is located outside the aryl alkene) versus iodoaryl alkene/indole coupling pair (the aryl-I bond is located in the aryl alkene), confirm that the reaction involves a π-activation mechanism rather than the general migratory insertion mechanism in previously known metal catalysis by Pd, Ni, and Cu complexes. Theoretical results rationalize the regioselectivity of the reactions controlled by the aryl-I bond position (intermolecular or intramolecular) and also the ligand and substituent effects on the reactivity.
Collapse
Affiliation(s)
- Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
22
|
Nonami R, Morimoto Y, Kanemoto K, Yamamoto Y, Shirai T. Cationic Iridium‐Catalyzed Asymmetric Decarbonylative Aryl Addition of Aromatic Aldehydes to Bicyclic Alkenes. Chemistry 2022; 28:e202104347. [DOI: 10.1002/chem.202104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Reina Nonami
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Yusei Morimoto
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1-3-27, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| |
Collapse
|
23
|
Teng S, Zhou JS. Metal-catalyzed asymmetric heteroarylation of alkenes: diverse activation mechanisms. Chem Soc Rev 2022; 51:1592-1607. [PMID: 35166742 DOI: 10.1039/d1cs00426c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarizes the state-of-the-art in transition metal-catalyzed asymmetric alkylation of heteroarenes using alkenes (covering literature from 2000 to late 2021). Based on elementary reactions on metals for substrate activation, these reactions are broadly classified in several categories: (A) concerted oxidative addition of heteroaryl C-H bonds on rhodium(I) and iridium(I), (B) ligand-to-ligand hydrogen transfer (LLHT) on low-valent 3d metal complexes of nickel and cobalt, (C) different ways for deprotonation of heteroaryl C-H bonds by late transition metal complexes, especially palladium, including electrophilic aromatic substitution and a related mechanism, base-assisted intramolecular electrophilic substitution, concerted and nonconcerted metalation deprotonation, (D) σ-bond metathesis by d0 early transition metal complexes, (E) electrophilic activation of olefins by Pd(II), Pt(II) and Au(I), and (F) metal hydride insertion of aryl olefins and dienes. The demand to achieve enantiocontrol in the heteroarylation reactions has also driven innovation in chiral ancillary ligands, exemplified by extremely bulky, chiral N-heterocyclic carbenes for nickel catalysts, bulky monodentate oxazolines for Wacker-type reactions and chiral cyclopentadienyl ligands for half-sandwich complexes of scandium.
Collapse
Affiliation(s)
- Shenghan Teng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
24
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|
25
|
Yang J, Kong D, Wu H, Shen Z, Zou H, Zhao W, Huang G. Palladium-Catalyzed Regio- and Chemoselective Double-Alkoxycarbonylation of 1,3-Diynes: A Computational Study. Org Chem Front 2022. [DOI: 10.1039/d2qo00122e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The palladium-catalyzed double-alkoxycarbonylation of 1,3-diynes provides an efficient approach for the selective synthesis of 1,2,3,4-tetrasubstituted conjugated dienes. In this report, density functional theory calculations have been performed to elucidate the...
Collapse
|
26
|
Qin Z, Zhang R, Ying S, Ma Y. Iron-catalyzed [3+2+1] annulation of 2-aminobenzimidazoles/3-aminopyrazoles and aromatic alkynes using N,N-dimethylaminoethanol as one carbon synthon for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-b]indazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient method for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-b]indazoles from 2-aminobenzimidazoles/3-aminoindazoles, alkynes and N,N-dimethylaminoethanol in a three-component [3+2+1] annulation catalyzed by FeCl3 has been established, where N,N-dimethylaminoethanol...
Collapse
|
27
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origin of Ligand Effects on Stereoinversion in Pd-Catalyzed Synthesis of Tetrasubstituted Olefins. J Org Chem 2021; 86:18128-18138. [PMID: 34878798 DOI: 10.1021/acs.joc.1c02400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism and origin of ligand effects on stereoinversion of Pd-catalyzed synthesis of tetrasubstituted olefins were investigated using DFT calculations and the approach of energy decomposition analysis (EDA). The results reveal that the stereoselectivity-determining steps are different when employing different phosphine ligands. This is mainly due to the steric properties of ligands. With the bulkier Xantphos ligand, the syn/anti-to-Pd 1,2-migrations determine the stereoselectivity. While using the less hindered P(o-tol)3 ligand, the 1,3-migration is the stereoselectivity-determining step. The EDA results demonstrate that Pauli repulsion and polarization are the dominant factors for controlling the stereochemistry in 1,2- and 1,3-migrations, respectively. The origins of differences of Pauli repulsion and polarization between the two stereoselective transition states are further identified.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Laboratory for Materials of Energy Conversion and Storage of Shanxi Province and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
28
|
Champagne PA. Identifying the true origins of selectivity in chiral phosphoric acid catalyzed N-acyl-azetidine desymmetrizations. Chem Sci 2021; 12:15662-15672. [PMID: 35003597 PMCID: PMC8654023 DOI: 10.1039/d1sc04969k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 01/01/2023] Open
Abstract
The first catalytic intermolecular desymmetrization of azetidines was reported by Sun and coworkers in 2015 using a BINOL-derived phosphoric acid catalyst (J. Am. Chem. Soc. 2015, 137, 5895-5898). To uncover the mechanism of the reaction and the origins of the high enantioselectivity, Density Functional Theory (DFT) calculations were performed at the B97D3/6-311+G(2d,2p)/SMD(toluene)//B97D3/6-31G(d,p)/CPCM(toluene) level of theory. Comparison of four possible activation modes confirms that this reaction proceeds through the bifunctional activation of the azetidine nitrogen and the thione tautomer of the 2-mercaptobenzothiazole nucleophile. Upon thorough conformational sampling of the enantiodetermining transition structures (TSs), a free energy difference of 2.0 kcal mol-1 is obtained, accurately reproducing the experimentally measured 88% e.e. at 80 °C. This energy difference is due to both decreased distortion and increased non-covalent interactions in the pro-(S) TS. To uncover the true origins of selectivity, the TSs optimized with the full catalyst were compared to those optimized with a model catalyst through steric maps. It is found that the arrangements displayed by the substrates are controlled by strict primary orbital interaction requirements at the transition complex, and their ability to fit into the catalyst pocket drives the selectivity. A general model of selectivity for phosphoric acid-catalyzed azetidine desymmetrizations is proposed, which is based on the preference of the nucleophile and benzoyl group to occupy empty quadrants of the chiral catalyst pocket.
Collapse
Affiliation(s)
- Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology Newark NJ USA
| |
Collapse
|
29
|
Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α,β-unsaturated ketones: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Zhou B, Qi X, Liu P, Dong G. Development and Mechanistic Studies of the Iridium‐Catalyzed C−H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Zhou
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
31
|
Zhou B, Qi X, Liu P, Dong G. Development and Mechanistic Studies of the Iridium-Catalyzed C-H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angew Chem Int Ed Engl 2021; 60:20926-20934. [PMID: 34288309 DOI: 10.1002/anie.202107331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/21/2023]
Abstract
Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C-H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium-catalyzed transformation, two structurally and electronically similar alkenes-enamide and vinyl acetate-underwent selective cross-coupling through C-H activation. No reaction partner was used in large excess. The reaction is also pH- and redox-neutral with HOAc as the only stoichiometric by-product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2-Ir-C migratory insertion followed by syn-β-acetoxy elimination, which is different from that of previous vinyl acetate mediated C-H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
32
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
33
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
34
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
35
|
Xu H, Li B, Liu Z, Dang Y. Mechanistic Origins of Stereodivergence in Asymmetric Cascade Allylation and Cyclization Reactions Enabled by Synergistic Cu/Ir Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Pang X, Zhao ZZ, Wei XX, Qi L, Xu GL, Duan J, Liu XY, Shu XZ. Regiocontrolled Reductive Vinylation of Aliphatic 1,3-Dienes with Vinyl Triflates by Nickel Catalysis. J Am Chem Soc 2021; 143:4536-4542. [DOI: 10.1021/jacs.1c00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guang-Li Xu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jicheng Duan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
37
|
Liu S, Zhu L, Zhang T, Zhong K, Li SJ, Bai R, Lan Y. How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Org Lett 2021; 23:1489-1494. [PMID: 33565315 DOI: 10.1021/acs.orglett.1c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations have been performed to reveal the chemoselectivity of Rh-catalyzed chiral C-F cleavage and γ-site functionalization. We found that the chemoselectivity is controlled by β-F elimination in methanol solvent, leading to formation of the alkynylic product. In isobutyronitrile solvent, the chemoselectivity is controlled by the allene insertion step, where the fluoroalkenylic product can be observed. The difference can be explained by analysis of the explicit solvent models.
Collapse
Affiliation(s)
- Shihan Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.,Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
38
|
Li X, Ren X, Wu H, Zhao W, Tang X, Huang G. Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Chen XY, Zhou X, Wang J, Dong G. FMPhos: Expanding the Catalytic Capacity of Small-Bite-Angle Bisphosphine Ligands in Regioselective Alkene Hydrofunctionalizations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianchun Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Liu JB, Wang X, Messinis AM, Liu XJ, Kuniyil R, Chen DZ, Ackermann L. Understanding the unique reactivity patterns of nickel/JoSPOphos manifold in the nickel-catalyzed enantioselective C-H cyclization of imidazoles. Chem Sci 2020; 12:718-729. [PMID: 34163805 PMCID: PMC8178989 DOI: 10.1039/d0sc04578k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 3d transition metal-catalyzed enantioselective C–H functionalization provides a sustainable strategy for the construction of chiral molecules. A better understanding of the catalytic nature of the reactions and the factors controlling the enantioselectivity is important for rational design of more efficient systems. Herein, the mechanisms of Ni-catalyzed enantioselective C–H cyclization of imidazoles are investigated by density functional theory (DFT) calculations. Both the π-allyl nickel(ii)-promoted σ-complex-assisted metathesis (σ-CAM) and the nickel(0)-catalyzed oxidative addition (OA) mechanisms are disfavored. In addition to the typically proposed ligand-to-ligand hydrogen transfer (LLHT) mechanism, the reaction can also proceed via an unconventional σ-CAM mechanism that involves hydrogen transfer from the JoSPOphos ligand to the alkene through P–H oxidative addition/migratory insertion, C(sp2)–H activation via σ-CAM, and C–C reductive elimination. Importantly, computational results based on this new mechanism can indeed reproduce the experimentally observed enantioselectivities. Further, the catalytic activity of the π-allyl nickel(ii) complex can be rationalized by the regeneration of the active nickel(0) catalyst via a stepwise hydrogen transfer, which was confirmed by experimental studies. The calculations reveal several significant roles of the secondary phosphine oxide (SPO) unit in JoSPOphos during the reaction. The improved mechanistic understanding will enable design of novel enantioselective C–H transformations. Several unique reactivity patterns of the Ni/JoSPOphos manifold, including facile hydrogen transfer via the two-step oxidative addition/migratory insertion and C(sp2)–H activation via an unconventional σ-CAM mechanism, were disclosed in this work.![]()
Collapse
Affiliation(s)
- Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Xiao-Jun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| |
Collapse
|
41
|
Fernández DF, Mascareñas JL, López F. Catalytic addition of C-H bonds across C-C unsaturated systems promoted by iridium(i) and its group IX congeners. Chem Soc Rev 2020; 49:7378-7405. [PMID: 32926061 DOI: 10.1039/d0cs00359j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal-catalyzed hydrocarbonations of unsaturated substrates have emerged as powerful synthetic tools for increasing molecular complexity in an atom-economical manner. Although this field was traditionally dominated by low valent rhodium and ruthenium catalysts, in recent years, there have been many reports based on the use of iridium complexes. In many cases, these reactions have a different course from those of their rhodium homologs, and even allow performing otherwise inviable transformations. In this review we aim to provide an informative journey, from the early pioneering examples in the field, most of them based on other metals than iridium, to the most recent transformations catalyzed by designed Ir(i) complexes. The review is organized by the type of C-H bond that is activated (with C sp2, sp or sp3), as well as by the C-C unsaturated partner that is used as a hydrocarbonation partner (alkyne, allene or alkene). Importantly, we discuss the mechanistic foundations of the methods highlighting the differences from those previously proposed for processes catalyzed by related metals, particularly those of the same group (Co and Rh).
Collapse
Affiliation(s)
- David F Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
42
|
Woźniak Ł, Tan JF, Nguyen QH, Madron du Vigné A, Smal V, Cao YX, Cramer N. Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chem Rev 2020; 120:10516-10543. [DOI: 10.1021/acs.chemrev.0c00559] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Łukasz Woźniak
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Qui-Hien Nguyen
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Adrien Madron du Vigné
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Vitalii Smal
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yi-Xuan Cao
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Wang J, Ling B, Liu P, Liu Y, Jiang YY, Bi S. Density Functional Theory Study on the Mechanism of Iridium-Catalyzed Benzylamine ortho C-H Alkenylation with Ethyl Acrylate. ACS OMEGA 2020; 5:15446-15453. [PMID: 32637819 PMCID: PMC7331057 DOI: 10.1021/acsomega.0c01587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 05/02/2023]
Abstract
Iridium-catalyzed oxidative o-alkenylation of benzylamines with acrylates was enabled by the directing group pentafluorobenzoyl (PFB). Density functional theory calculations were performed to explore the detailed reaction mechanism. The calculated results reveal that N-deprotonation prior to C-H activation is favored over direct C-H activation. Moreover, C-H activation is reversible and not the rate-determining step, which has been supported by the experimental observation. The regio- and stereoselectivity of ethyl acrylate insertion are controlled by the steric effect and the carbon atom with a larger orbital coefficient of the π* antibonding orbital in the nucleophilic attack, respectively. The migratory insertion of ethyl acrylate is computationally found to be rate-determining for the whole catalytic cycle. Finally, the seven-membered ring intermediate IM11 undergoes a sequential N-protonation and β-H elimination with the assistance of AcOH, rather than β-H elimination and reductive elimination proposed experimentally, to afford the o-alkenylated product. IM11 is unable to directly cyclize through C-N reductive elimination because both sp3-hybridized N and C atoms are unfavorable for N-C reductive elimination. The origin of the directing group PFB preventing the product and intermediates undergoing aza-Michael addition has been explained.
Collapse
|
44
|
Yang ZH, Wang Q, Zhuo S, Xu LP. Mechanistic Study on Palladium-Catalyzed Regioselective Oxidative Amination: Roles of Ammonium Salts. J Org Chem 2020; 85:6981-6991. [PMID: 32396725 DOI: 10.1021/acs.joc.0c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-Markovnikov selective oxidative amination reaction with simple alkenes is particularly promising but challenging because of the inherent electronic effect of the alkene substrate which is in favor of the Markovnikov product. In a recently reported Pd-catalyzed anti-Markovnikov oxidative amination reaction, the addition of quaternary ammonium salts is shown to be critical. We performed a comprehensive DFT study to elucidate the reaction mechanism and the origin of the regioselectivity, as well as the roles of the ammonium salts. Our results show that without and with the ammonium salts the reaction mechanisms are different. Detailed analyses indicate that the steric effects account for the switch of regioselectivity. The roles of the quaternary ammonium salts have been elucidated: (1) Me4NOAc plays the role of base in deprotonating the phthalimide and allows the reaction to proceed through a trans-aminopalladation mechanism; (2) Me4NCl facilitates the thermodynamically favorable transformation of Pd(OAc)2 to the palladate ([Pd(AcO)2Cl2]2-), which lessens the polarity of the carbon-carbon double bond, minimizes the inherent electronic effects, and leads to a steric-effect-controlled reaction; (3) Me4NCl is essential in decreasing the activation barrier in the rate-determining ligand exchange step by Cl- acting as a better leaving group (compared to AcO-).
Collapse
Affiliation(s)
- Zhen-Hua Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| |
Collapse
|
45
|
Liu Y, Jiang Z, Chen J. Origin of the ligand effect in the cobalt catalyzed regioselective hydroboration of 1,3-diene. Org Biomol Chem 2020; 18:3747-3753. [PMID: 32367108 DOI: 10.1039/d0ob00628a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydroboration of 1,3-dienes can provide useful intermediates with multiple functionalities. However, achieving high regioselectivity is still a challenge. Recent experimental research studies indicate that this challenge could be overcome by the ligand effect. We made DFT calculations to elucidate the origin of ligand controlled regioselectivity in cobalt catalyzed hydroboration of 2-substituted 1,3-diene. The following conclusions have been reached: when using PHOX ((2-oxazolinyl)-phenyldiphenylphosphine) as the ligand, the favorable 1,4-selective oxidative hydrogen migration pathway was suggested to start with the rate-determining step of 1,4-selective oxidative hydrogen migration followed by reductive boryl migration. The unique 1,4-selectivity is proposed to be a result of the less steric hindrance between the substrate and the ligand PHOX. When dppp (1,3-bis-(diphenylphosphino)propane) is used as the ligand, the favorable pathway is proposed to be a 1,2-selective oxidative boryl migration pathway which involves 1,2-selective oxidative boryl migration and reductive hydrogen migration. Interestingly, another smaller-bite angle bisphosphine ligand dppe (1,2-bis(diphenylphosphino)ethane) favors the 1,4-selective oxidative boryl migration pathway. DFT calculations revealed that the preferred oxidative boryl migration pathway with both dppp and dppe is attributed to their electron-rich properties which accelerate the oxidative boryl migration step. The larger bite angle of dppp than that of dppe leads to bulkier steric hindrance and promotes 1,2-selective reductive hydrogen migration. On the other hand, for dppe with a smaller bite angle, the steric effect in the reductive hydrogen migration step is not dominant and 1,4-selective reductive hydrogen migration is favored. It is expected that the analysis of the ligand effect on the regioselectivity would enable further catalyst design.
Collapse
Affiliation(s)
- Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - ZhongJie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jipei Chen
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
46
|
Saputri WD, Sulaiman SS, Sari FR, Sudiono S, Pranowo HD, Saleh M, Hofer TS. Co3+ and Ir3+ in pure liquid ammonia: Structure and dynamics from ab initio quantum mechanical charge field molecular dynamics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Liu S, Zhang T, Zhu L, Liu F, Bai R, Lan Y. Layered Chirality Relay Model in Rh(I)-Mediated Enantioselective C–Si Bond Activation: A Theoretical Study. Org Lett 2020; 22:2124-2128. [DOI: 10.1021/acs.orglett.9b04636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shihan Liu
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Tao Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
48
|
Romero-Arenas A, Hornillos V, Iglesias-Sigüenza J, Fernández R, López-Serrano J, Ros A, Lassaletta JM. Ir-Catalyzed Atroposelective Desymmetrization of Heterobiaryls: Hydroarylation of Vinyl Ethers and Bicycloalkenes. J Am Chem Soc 2020; 142:2628-2639. [DOI: 10.1021/jacs.9b12858] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Antonio Romero-Arenas
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, Sevilla 41092, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, Sevilla 41092, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García Gonza′lez, 1, Sevilla 41012, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García Gonza′lez, 1, Sevilla 41012, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García Gonza′lez, 1, Sevilla 41012, Spain
| | - Joaquín López-Serrano
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovaciones Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, Sevilla 41092, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, Sevilla 41092, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García Gonza′lez, 1, Sevilla 41012, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, Sevilla 41092, Spain
| |
Collapse
|
49
|
Wu Z, Zhang M, Shi Y, Huang G. Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes via dynamic kinetic resolution: a computational study. Org Chem Front 2020. [DOI: 10.1039/d0qo00174k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT calculations were performed to investigate the Pd-catalyzed hydroamination of racemic internal allenes with pyrazoles.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Mei Zhang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
50
|
Liu JB, Zhang X, Tian YY, Wang X, Zhu XK, Chen DZ. Mechanism and origins of ligand-controlled Pd(ii)-catalyzed regiodivergent carbonylation of alkynes. Dalton Trans 2019; 48:15059-15067. [PMID: 31549706 DOI: 10.1039/c9dt03294k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transition-metal-catalyzed carbonylation provides a useful approach to synthesize carbonyl-containing compounds and their derivatives. Controlling the regio-, chemo-, and stereoselectivity remains a significant challenge and is the key to the success of transformation. In the present study, we explored the mechanism and origins of the ligand-controlled regiodivergent carbonylation of alkynes with competitive nucleophilic amino and hydroxy groups by density functional theory (DFT) calculations. The proposed mechanism involves O(N)-cyclization, CO insertion, N-H(O-H) cleavage, C-N(C-O) reductive elimination and regeneration of the catalyst. The chemoselectivity is determined by cyclization. Instead of the originally proposed switch of competitive coordination sites, a new type of concerted deprotonation/cyclization model was proposed to rationalize the ligand-tuned chemoselectivity. The electron-deficient nitrogen-containing ligand promotes the flow of electrons during cyclization, and so it favors the O-cyclization/N-carbonylation pathway. However, sterically bulky and electron-rich phosphine controls the selectivity by a combination of electronic and steric effects. The improved mechanistic understanding will enable further design of selective transition-metal-catalyzed carbonylation.
Collapse
Affiliation(s)
- Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | |
Collapse
|