1
|
Liu C, Feng W, Liu S, Kan Z, Li Z. Development of Group IV Metal Complexes Bearing Thioether-Amido Ligands with Enhanced High-Temperature Catalytic Performance toward Olefin Copolymerization. Inorg Chem 2024; 63:19676-19686. [PMID: 39365980 DOI: 10.1021/acs.inorgchem.4c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of homogeneous metal catalysts with both high activity and exceptional thermal stability is crucial for the efficient synthesis of polyolefin elastomers (POEs) through solution-phase olefin polymerization. In this study, a series of Hf (Hf1-Hf5), Zr (Zr1), and Ti (Ti1) complexes featuring thioether-amido ligands were synthesized and carefully characterized using advanced techniques such as 1H and 13C NMR spectroscopy as well as single-crystal X-ray diffraction analysis for Hf4 and Hf5. The results revealed that the catalytic activity and 1-octene incorporation efficiency of these metal complexes followed the trend Hf > Zr > Ti, underscoring the significant impact of the metal center on catalytic performance. Furthermore, the choice of ligands was found to play a critical role in dictating the catalytic properties, with ligands bearing less steric hindrance on the sulfur atom proving to be more favorable for copolymerization reactions. Notably, the Hf complex Hf1, featuring a methyl group on the sulfur atom, displayed exceptional catalytic activity as high as 21,060 kg(polymer)·mol-1(Hf)·h-1 toward ethylene/1-octene copolymerization at 120 °C and produced POE with a high molecular weight (Mw = 6.3 × 104 g·mol-1), relatively narrow distribution (Đ = 2.4), and high incorporation of 1-octene (34.1 mol %). This study demonstrates the potential of tailored ligand design in developing efficient metal catalysts for the production of high-value-added POEs.
Collapse
Affiliation(s)
- Chuanhui Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenzheng Feng
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ze Kan
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Guo L, Li J, Zhao W, Wei P, Ju Y, Cui X, Yuan L, Ji M, Liu Z. Steric Influences on Chain Microstructure in Palladium-Catalyzed α-Olefin (Co)polymerization: Unveiling the Steric-Deficient Effect. Inorg Chem 2024. [PMID: 39267326 DOI: 10.1021/acs.inorgchem.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
This study addresses the challenge of controlling branching density and branch-type distribution in late-transition-metal-catalyzed chain walking polymerizations. We explored α-diimine Pd(II) complexes with incrementally increased ortho-aryl sterics for long-chain α-olefin (co)polymerization. Pd0-Pd3 catalysts, which feature gradually increased ortho-aryl sterics and at least one small CH3 substituent, exhibited similar 2,1-insertion fractions (44-50%), polymer branching densities (55-63/1000C), and melting temperatures (26-28 °C). In contrast, Pd4 with bulky ortho-aryl sterics covering all sides demonstrated a significant increase in 2,1-insertion fractions up to 82%, leading to "PE-like" polymers with high melting temperatures (Tm > 111 °C). This abrupt change in polymerization behavior, termed the "steric-deficient effect", contrasts with the gradual changes observed in similar Ni(II) systems that we reported previously. Furthermore, due to the rapid chain walking ability of Pd(II) catalysts in long-chain α-olefin (co)polymerization, these catalysts favor the production of polyolefins with higher proportions of methyl branches compared to those produced by Ni(II) catalysts. Particularly, these Pd(II) catalysts are capable of synthesizing functionalized semicrystalline copolymers by copolymerizing 1-octene with a variety of polar comonomers, thereby significantly altering the surface properties of the materials.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wei Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peng Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanping Ju
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoru Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liqing Yuan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mingjun Ji
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
3
|
Dashti A, Ahmadi M. Recent Advances in Controlled Production of Long-Chain Branched Polyolefins. Macromol Rapid Commun 2024; 45:e2300746. [PMID: 38488683 DOI: 10.1002/marc.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Polyolefins, composed of carbon and hydrogen atoms, dominate global polymer production. This stems from the wide range of physical and mechanical properties that various polyolefins can cover. Their versatile properties are largely tuned by chain microstructure, including molar mass distribution, comonomer content, and long-chain branching (LCB). Specifically, LCB imparts unique characteristics, notably enhances processability crucial for downstream applications. Tailoring LCB structural features has encouraged academic and industrial efforts, chronicle in this review from a chemistry standpoint. While encompassing post-reaction modification based traditional methods like peroxide grafting, ionizing beam irradiation, and coupling reactions, the main focus is given to catalyst-centric strategies and innovative polymerization schemes. The advent of single-site catalysts-metallocenes and late transition metals catalysts-amplifies interest in tailored chemical methods, but the progress in LCB formation flourishes via tandem catalytic systems and bimetallic catalysts under controlled reaction conditions. Specifically, the breakthrough in coordinative chain transfer polymerization unveils a novel avenue for controlled LCB synthesis by sequential chain propagation, transfer, liberation, and enchainment. This short review highlights recent approaches for the production of LCB polyolefins that can provide a roadmap crucial for researchers in academia and industry, steering their efforts toward further advancements in the production of tailored polyolefin.
Collapse
Affiliation(s)
- Arezoo Dashti
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
| | - Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
4
|
Wu R, Lenz TM, Alfayez FAS, Zhao R, Rupper P, Perret E, Lehner S, Jovic M, Gaan S, Rieger B, Heuberger M. Ambient Catalytic Spinning of Polyethylene Nanofibers. Angew Chem Int Ed Engl 2024; 63:e202315326. [PMID: 38226704 DOI: 10.1002/anie.202315326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
A novel single-atom Ni(II) catalyst (Ni-OH) is covalently immobilized onto the nano-channels of mesoporous Santa Barbara Amorphous (SBA)-15 particles and isotropic Anodized Aluminum Oxide (AAO) membrane for confined-space ethylene extrusion polymerization. The presence of surface-tethered Ni complexes (Ni@SBA-15 and Ni@AAO) is confirmed by the inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray photoelectron spectroscopy (XPS). In the catalytic spinning process, the produced PE materials exhibit very homogeneous fibrous morphology at nanoscale (diameter: ~50 nm). The synthesized PE nanofibers extrude in a highly oriented manner from the nano-reactors at ambient temperature. Remarkably high Mw (1.62×106 g mol-1 ), melting point (124 °C), and crystallinity (41.8 %) are observed among PE samples thanks to the confined-space polymerization. The chain-walking behavior of surface tethered Ni catalysts is greatly limited by the confinement inside the nano-channels, leading to the formation of very low-branched PE materials (13.6/1000 C). Due to fixed supported catalytic topology and room temperature, the filaments are expected to be free of entanglement. This work signifies an important step towards the realization of a continuous mild catalytic-spinning (CATSPIN) process, where the polymer is directly synthesized into fiber shape at negligible chain branching and elegantly avoiding common limitations like thermal degradation or molecular entanglement.
Collapse
Affiliation(s)
- Ruikai Wu
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Materials, ETH, Zurich, 8092, Zurich, Switzerland
| | - Tim M Lenz
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Fayez Abdullah S Alfayez
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Ruohan Zhao
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Patrick Rupper
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Edith Perret
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Sandro Lehner
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Milijana Jovic
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Sabyasachi Gaan
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Manfred Heuberger
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Materials, ETH, Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
5
|
Li M, Cai Z, Eisen MS. Norbornene Copolymerization with Polar Monomers Catalyzed by Palladium Catalysts Containing Imidazolidin-2-imine/Guanidine Ligands. Inorg Chem 2024; 63:1774-1783. [PMID: 38104269 DOI: 10.1021/acs.inorgchem.3c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The development of a palladium catalyst that has enhanced catalytic performance, such as low aluminum cocatalyst loading, good copolymerization ability, high molecular weight, and excellent solubility of the (co)polymers, is still a challenge in norbornene copolymerizations. Here, a series of PdCl2 and PdMeCl complexes containing differently substituted anilines and imidazolidin-2-imine/guanidine ligands was successfully synthesized and characterized. X-ray diffraction analysis results revealed that these Pd complexes adopted an almost square-planar geometry, and the six-membered chelate ring showed structural distinctions as compared to traditional N^N-based α-diimine and β-diimine Pd complexes. These Pd complexes were activated by EtAlCl2 and then exhibited moderate activity (104-105 g mol-1 h-1) and good thermal stability (up to 90 °C) for norbornene polymerization to produce high-molecular-weight PNBs (Mn up to 96.4 kg mol-1) with narrow polydispersities (PDI as low as 1.39). These Pd complexes also exhibited good polar group tolerance in the copolymerization of norbornene with methyl 5-norbornene-2-carboxylate and methyl 10-undecenoate, in which the activity was achieved up to 7.04 × 104 g mol-1 h-1. It furnished polar functionalized norbornene-based copolymers with high molecular weight (Mn up to 63.1 kg mol-1), narrow PDI, reasonable polar monomer incorporation, and good solubility. These Pd catalysts exhibited an enhanced copolymerization ability to produce PNB or NB-based copolymers, representing significant progress in this field.
Collapse
Affiliation(s)
- Mingyuan Li
- Department of Chemistry, Guangdong Technion - Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Moris S Eisen
- Department of Chemistry, Guangdong Technion - Israel Institute of Technology, Shantou 515063, P. R. China
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Cheung CS, Qiu Z, Li D, Deng H, Zheng H, Gao H. Experimental and theoretical insights into palladium-mediated polymerization of para-N, N-disubstituted aminostyrene. Dalton Trans 2023; 52:17573-17582. [PMID: 37966170 DOI: 10.1039/d3dt03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Experimental and theoretical insights into polymerization of para-N,N-disubstituted aminostyrene monomers (St-4-NR2, R = Me, Et, Ph) using cationic α-diimine palladium complexes have been initially reported. The effects of the catalyst structure and monomer substituent were studied systematically. Polymerization turnover frequency (TOF) was shown to decrease in the order of monomer substituents Me > Et > Ph, whereas the molecular weight of the produced polymers showed an opposite trend (Me < Et < Ph). Methanol-mediated polymerization of para-N,N-dimethylaminostyrene (DMAS), along with polymer chain-end analysis, and palladium intermediate isolation proved that palladium-initiated DMAS polymerization obeyed a cationic mechanism. Comprehensive theoretical calculations further revealed that the carbocation was generated from the insertion of DMAS into the palladium center rather than the polarization of the methyl palladium intermediate with a coordinated DMAS. The produced amine-functionalized amorphous polystyrenes have low stereoregularity and exhibit good hydrophilic properties. The poly(para-N,N-disphenylaminostyrene) is a luminescent polymer and shows fluorescence properties, rendering this material a promising candidate for versatile potential applications.
Collapse
Affiliation(s)
- Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zonglin Qiu
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Zeng R. Photoinduced iron-catalyzed C-H alkylation of polyolefins. Chem Sci 2023; 14:9374-9379. [PMID: 37712034 PMCID: PMC10498505 DOI: 10.1039/d3sc03252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Chemically introducing diverse polar groups into polyolefins via carbon-hydrogen bond alkylation with polar olefins is of substantial value in the synthesis of next-generation lightweight thermoplastics, which is still underdeveloped. In this work, we report a new approach for efficient carbon-hydrogen bond alkylation in commodity polyolefins using photoinduced iron catalysis. Various polyolefins could be functionalized with broad scope. Polar groups could be incorporated in a single step. The controllable synthesis of multi-polar functional polyolefins could be achieved by a designed module-assembled process. Remarkably, even low levels of functionalization could upcycle the polyolefin materials to exhibit unusual physical properties, such as enhancement of the transparencies, strains, stresses at break of the materials, and hydrophilicity.
Collapse
Affiliation(s)
- Zongnan Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
8
|
Kong W, Bao Y, Lu L, Han Z, Zhong Y, Zhang R, Li Y, Yin G. Base-Modulated 1,3-Regio- and Stereoselective Carboboration of Cyclohexenes. Angew Chem Int Ed Engl 2023; 62:e202308041. [PMID: 37428115 DOI: 10.1002/anie.202308041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
While chain-walking stimulates wide interest in both polymerization and organic synthesis, site- and stereoselective control of chain-walking on rings is still a challenging task in the realm of organometallic catalysis. Inspired by a controllable chain-walking on cyclohexane rings in olefin polymerization, we have developed a set of chain-walking carboborations of cyclohexenes based on nickel catalysis. Different from the 1,4-trans-selectivity disclosed in polymer science, a high level of 1,3-regio- and cis-stereoselectivity is obtained in our reactions. Mechanistically, we discovery that the base affects the reduction ability of B2 pin2 and different bases lead to different catalytic cycles and different regioselective products (1,2- Vs 1,3-addition). This study provides a concise and modular method for the synthesis of 1,3-disubstituted cyclohexylboron compounds. The incorporation of a readily modifiable boronate group greatly enhances the value of this method, the synthetic potential of which was highlighted by the synthesis of a series of high-valued commercial chemicals and pharmaceutically interesting molecules.
Collapse
Affiliation(s)
- Weiyu Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yang Bao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liguo Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Zhipeng Han
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yifan Zhong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ran Zhang
- Core Facility of Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yuqiang Li
- Shanghai AI Laboratory, Shanghai, 200030, P. R. China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
9
|
Dashti A, Ahmadi M, Haddadi-Asl V, Ahmadjo S, Mortazavi SMM. Tandem coordinative chain transfer polymerization for long chain branched Polyethylene: The role of chain displacement. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
11
|
Peng D, Xu M, Tan C, Chen C. Emulsion Polymerization Strategy for Heterogenization of Olefin Polymerization Catalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Dan Peng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Menghe Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Ullah Khan W, Mazhar H, Shehzad F, Al-Harthi MA. Recent Advances in Transition Metal-Based Catalysts for Ethylene Copolymerization with Polar Comonomer. CHEM REC 2023; 23:e202200243. [PMID: 36715494 DOI: 10.1002/tcr.202200243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The synthesis of polar functionalized polyolefin (PFP) offers improvement in mixing properties, polymer surface, and rheological properties with the potential of upgraded polyolefins for modern and ingenious applications. The synthesis of PFP from metal-based catalyzed olefin (non-polar in nature) copolymerization with polar comonomers embodies energy-efficient, atom-efficient, and apparently an upfront methodology. Despite their outstanding success during conventional polymerization of olefin, 3rd and 4th group (early transition metal)-based catalysts, owing to their electrophilic nature, face challenges mainly due to Lewis basic sites of the polar monomers. On the contrary, late transition metal-based catalysts have also made progress, in recent years, for PFP synthesis. The recent past has also witnessed several advancements in the development of dominating palladium-based catalysts while their lower resistance towards ligand functional groups has limited the practical application of abundant and cheaper nickel-based catalysts. However, the relentless efforts of the scientific community, during the past half-decade, have indicated rigorous progress in the development of nickel-based catalysts for PFP synthesis. In this review, we have abridged the recent research trends in both early as well as late transition metal-based catalyst development. Furthermore, we have highlighted the role of transition metal-based catalysts in influencing the polymer properties.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mamdouh A Al-Harthi
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
13
|
Zong Y, Wang C, Zhang Y, Jian Z. Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers. Polymers (Basel) 2023; 15:1044. [PMID: 36850326 PMCID: PMC9967981 DOI: 10.3390/polym15041044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine-sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.
Collapse
Affiliation(s)
- Yanlin Zong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Rational Design of Aldimine Imidazolidin-2-imine/Guanidine Nickel Catalysts for Norbornene (Co)Polymerizations with Enhanced Catalytic Performance. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
15
|
Zheng H, Pei L, Deng H, Gao H, Gao H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
17
|
‘Catalyst + X’ strategies for transition metal-catalyzed olefin-polar monomer copolymerization. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Wu R, Klingler Wu W, Stieglitz L, Gaan S, Rieger B, Heuberger M. Recent advances on α-diimine Ni and Pd complexes for catalyzed ethylene (Co)polymerization: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Unsymmetrical Strategy on α-Diimine Nickel and Palladium Mediated Ethylene (Co)Polymerizations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248942. [PMID: 36558079 PMCID: PMC9785926 DOI: 10.3390/molecules27248942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived from the dibenzobarrelene backbone were constructed via the combination of pentiptycenyl and diisopropylphenyl substituents, and investigated toward ethylene (co)polymerization. Both of these catalysts were capable of polymerizing ethylene in a broad temperature range of 0-120 °C, in which Ipty/iPr-Ni could maintain activity in the level of 106 g mol-1 h-1 even at 120 °C. The branching densities of polyethylenes generated by both nickel and palladium catalysts could be modulated by the reaction temperature. Compared with symmetrical Ipty-Ni and iPr-Ni, Ipty/iPr-Ni exhibited the highest activity, the highest polymer molecular weight, and the lowest branching density. In addition, Ipty/iPr-Pd could produce copolymers of ethylene and methyl acrylate, with the polar monomer incorporating both on the main chain and the terminal of branches. Remarkably, the ratio of the in-chain and end-chain polar monomer incorporations could be modulated by varying the temperature.
Collapse
|
20
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Ji M, Si G, Pan Y, Tan C, Chen M. Polymeric α-diimine palladium catalysts for olefin (co)polymerization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Liao YD, Cai Q, Dai SY. Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang Y, Qin Y, Dong JY. Trouble-free combination of ω-alkenylmethyldichlorosilane copolymerization-hydrolysis chemistry and metallocene catalyst system for highly effective and efficient direct synthesis of long-chain-branched polypropylene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Hong C, Wang Z, Jiang H, Si G, Song M, Chen C. Dual roles of trifluoroborate in nickel-catalyzed ethylene polymerization: Electronic perturbation and anchoring for heterogenization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
26
|
Sun Y, Wang Q, Pan Y, Pang W, Zou C, Chen M.
SiO
2
‐supported Ni(
II
) and Fe(
II
) Catalysts bearing Sodium ‐Sulfonate Group for Olefin Polymerization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Sun
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Quan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Yao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Min Chen
- Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| |
Collapse
|
27
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
28
|
Dau H, Tsogtgerel E, Matyjaszewski K, Harth E. One-For-All Polyolefin Functionalization: Active Ester as Gateway to Combine Insertion Polymerization with ROP, NMP, and RAFT. Angew Chem Int Ed Engl 2022; 61:e202205931. [PMID: 35588082 DOI: 10.1002/anie.202205931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/29/2022]
Abstract
This work develops the Polyolefin Active-Ester Exchange (PACE) process to afford well-defined polyolefin-polyvinyl block copolymers. α-Diimine PdII -catalyzed olefin polymerizations were investigated through in-depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro-mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring-opening polymerization (ROP), nitroxide-mediated polymerization (NMP), and photoiniferter reversible addition-fragmentation chain transfer (PI-RAFT). The significant difference in the properties of polyolefin-polyacrylamide block copolymers was harnessed to carry out polymerization-induced self-assembly (PISA) and study the nanostructure behaviors.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, Center of Excellence in Polymer Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77030, USA
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, Center of Excellence in Polymer Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77030, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Eva Harth
- Department of Chemistry, Center of Excellence in Polymer Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77030, USA
| |
Collapse
|
29
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
30
|
Dockhorn R, Sommer JU. Theory of chain walking catalysis: From disordered dendrimers to dendritic bottle-brushes. J Chem Phys 2022; 157:044902. [DOI: 10.1063/5.0098263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chain walking (CW) polymerization technique has the unique property of a movable catalyst synthesizing its own path by creating branch-on-branch structures. By successive attachment of monomers, the resulting architecture ranges from dendritic to linear growth depending on the walking rate, which is defined by the ratio of walking steps and reaction events of the catalyst. The transition regime is characterized by local dendritic sub-structures (dendritic blobs) and a global linear chain feature forming a dendritic bottle-brush. A scaling model for structures obtained by CW catalysis is presented and validated by computer simulation relating the extensions of CW structures to the catalyst’s walking ability. The limiting case of linear (low walking rate) and dendritic growth (high walking rate) is recovered, and the latter is shown to bear analogies to the Barabási–Albert graph and Bernoulli growth random walk. We could quantify the size of the dendritic blob as a function of the walking rate by using spectral properties of the connectivity matrix of the simulated macromolecules. This allows us to fit the numerical constants in the scaling approach. We predict that independent of the underlying chemical process, all CW polymerization syntheses involving a highly mobile catalyst ultimately result in bottle-brush structures whose properties depend on a unique parameter: the walking rate.
Collapse
Affiliation(s)
- R. Dockhorn
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - J.-U. Sommer
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, D-01069 Dresden, Germany
| |
Collapse
|
31
|
Hosseini ES, Jandaghian MH, Maddah Y. Statistical analysis of parameters involved in the synthesis of polar copolymers using a nickel (II) α-diimine complex. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2099287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Elahe Sadat Hosseini
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Jandaghian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Bushehr, Iran
| | - Yasaman Maddah
- Department of Chemical Engineering, University of Waterloo, Ontario, Canada
| |
Collapse
|
32
|
Shoshani MM, Xiong S, Lawniczak JJ, Zhang X, Miller TF, Agapie T. Phosphine-Phenoxide Nickel Catalysts for Ethylene/Acrylate Copolymerization: Olefin Coordination and Complex Isomerization Studies Relevant to the Mechanism of Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manar M. Shoshani
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd., Brownsville, Texas 78520, United States
| | - Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - James J. Lawniczak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
33
|
Fan H, Liao Y, Dai S. Propylene polymerization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Lei T, Ma Z, Liu H, Wang X, Li P, Wang F, Wu W, Zhang S, Xu G, Wang F. Preparation of highly branched polyolefins by controlled chain‐walking olefin polymerization. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Lei
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Zhanshan Ma
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Hongju Liu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Xiaoyue Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Pei Li
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Feifei Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid surfaces Xiamen University Xiamen China
| | - Shaojie Zhang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Fuzhou Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| |
Collapse
|
35
|
Guo L, Chen W, Wang W, An W, Gao S, Zhao Y, Luo M, He G, Liu T. Ortho-substituent Effect on Metal Coordination Geometry, Chain Microstructure and Polymer Properties in α-Diimine Nickel-catalyzed Long Chain α-Olefin Polymerization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Chen M, Chen C. Nickel catalysts for the preparation of functionalized polyolefin materials. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Harth E, Dau H, Tsogtgerel E, Matyjaszewski K. One‐For‐All Polyolefin Functionalization: Active Ester as Gateway to Combine Insertion Polymerization with ROP, NMP, and RAFT. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eva Harth
- University of Houston Chemistry 406 STL BuildingUnited States 77004 Houston UNITED STATES
| | - Huong Dau
- University of Houston Chemistry UNITED STATES
| | | | | |
Collapse
|
38
|
One-pot synthesis of symmetrical and unsymmetrical α-diimine Nickel complexes in comparison with two-pot synthesis method for ethylene polymerization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Gao J, Dorn RW, Laurent GP, Perras FA, Rossini AJ, Conley MP. A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R
3
Si
+
Species. Angew Chem Int Ed Engl 2022; 61:e202117279. [DOI: 10.1002/anie.202117279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| | - Rick W. Dorn
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Guillaume P. Laurent
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
- CNRS Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, LCMCP 75005 Paris France
| | | | - Aaron J. Rossini
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Matthew P. Conley
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| |
Collapse
|
40
|
Lu W, Liao Y, Dai S. Facile Access to Ultra-Highly Branched Polyethylenes Using Hybrid “Sandwich” Ni(II) and Pd(II) Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Lu W, Wang H, Fan W, Dai S. Exploring the Relationship between the Polyethylene Microstructure and Spatial Structure of α-Diimine Pd(II) Catalysts via a Hybrid Steric Strategy. Inorg Chem 2022; 61:6799-6806. [PMID: 35476412 DOI: 10.1021/acs.inorgchem.1c03969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The branching density of polyethylene generated in the α-diimine Pd(II) system is usually very high, largely independent of simple ligand modifications with steric or electronic perturbations, or the polymerization conditions. In this study, we designed and synthesized a class of bulky hybrid α-diimine Pd(II) catalysts combining ortho-diarylmethyl and ortho-phenyl moieties to explore the relationship between the polyethylene microstructure and the spatial structure of catalysts. In ethylene polymerization, the hybrid α-diimine Pd(II) catalysts exhibited high activities (well above 105 g·mol-1·h-1) and yielded highly branched (90-110/1000C) polyethylenes with high molecular weights (up to 278.3 kg/mol). Compared with the two corresponding symmetrical ortho-diarylmethyl-based or ortho-phenyl-based Pd(II) catalysts, the hybrid catalysts generated polyethylene of significantly higher branching densities (92 vs 28-34/1000C) in marked higher activities. Similar phenomena are also observed in the copolymerization of ethylene with polar monomers. Moreover, the hybrid Pd(II) catalysts can more efficiently promote the copolymerization of ethylene with various polar monomers in comparison to the corresponding symmetrical catalysts. The more open spatial environment around the metal center by using a hybrid steric strategy was proposed to be responsible for above advantages.
Collapse
Affiliation(s)
- Weiqing Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Hui Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
42
|
Zheng H, Li Y, Du W, Cheung CS, Li D, Gao H, Deng H, Gao H. Unprecedented Square-Planar α-Diimine Dibromonickel Complexes and Their Ethylene Polymerizations Modulated by Ni–Phenyl Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
43
|
Kenyon P, Leung DWJ, Turner ZR, Buffet JC, O’Hare D. Tuning Polyethylene Molecular Weight Distributions Using Catalyst Support Composition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Philip Kenyon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - D. W. Justin Leung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zoë R. Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jean-Charles Buffet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Dermot O’Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
44
|
Du W, Zheng H, Li Y, Cheung CS, Li D, Gao H, Deng H, Gao H. Neutral Tridentate α-Sulfonato-β-diimine Nickel Catalyst for (Co)polymerizations of Ethylene and Acrylates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
45
|
Yan Z, Xu G, Wang H, Dai S. Synthesis of thermoplastic polyethylene elastomers and ethylene–methyl acrylate copolymers using methylene-bridged binuclear bulky dibenzhydryl α-diimine Ni(II) and Pd(II) catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Wang H, Duan G, Fan H, Dai S. Second coordination sphere effect of benzothiophene substituents on chain transfer and chain walking in ethylene insertion polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Chu YK, Hu XQ, Zhang Y, Liu DJ, Zhang YX, Jian ZB. Influence of Backbone and Axial Substituent of Catalyst on α-Imino-ketone Nickel Mediated Ethylene (Co)Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2691-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Gao J, Dorn RW, Laurent GP, Perras FA, Rossini AJ, Conley MP. A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R
3
Si
+
Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| | - Rick W. Dorn
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Guillaume P. Laurent
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
- CNRS Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, LCMCP 75005 Paris France
| | | | - Aaron J. Rossini
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Matthew P. Conley
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| |
Collapse
|
49
|
Wang Y. Olefin polymerization cocatalysts: Development, applications, and prospects. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Tan C, Zou C, Chen C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|