1
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
2
|
Medvedev AG, Egorov PA, Mikhaylov AA, Belyaev ES, Kirakosyan GA, Gorbunova YG, Filippov OA, Belkova NV, Shubina ES, Brekhovskikh MN, Kirsanova AA, Babak MV, Lev O, Prikhodchenko PV. Synergism of primary and secondary interactions in a crystalline hydrogen peroxide complex with tin. Nat Commun 2024; 15:5758. [PMID: 38982085 PMCID: PMC11233698 DOI: 10.1038/s41467-024-50164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Despite the significance of H2O2-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between H2O2 and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of H2O2, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain H2O2-metal complexes that employs neat H2O2 as both solvent and ligand. SnCl4 effectively binds H2O2, forming a SnCl4(H2O2)2 complex, as confirmed by 119Sn and 17O NMR spectroscopy. Crystalline adducts, SnCl4(H2O2)2·H2O2·18-crown-6 and 2[SnCl4(H2O2)(H2O)]·18-crown-6, are isolated and characterized by X-ray diffraction, providing the complete characterization of the hydrogen bonding of H2O2 ligands including geometric parameters and energy values. DFT analysis reveals the synergy between a coordinative bond of H2O2 with metal cation and its hydrogen bonding with a second coordination sphere. This synergism of primary and secondary interactions might be a key to understanding H2O2 reactivity in biological systems.
Collapse
Affiliation(s)
- Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel A Egorov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey A Mikhaylov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Gayane A Kirakosyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia G Gorbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg A Filippov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia V Belkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria N Brekhovskikh
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna A Kirsanova
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Ovadia Lev
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
3
|
Santra A, Das A, Kaur S, Jain P, Ingole PP, Paria S. Catalytic reduction of oxygen to water by non-heme iron complexes: exploring the effect of the secondary coordination sphere proton exchanging site. Chem Sci 2024; 15:4095-4105. [PMID: 38487234 PMCID: PMC10935699 DOI: 10.1039/d3sc06753j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we prepared non-heme FeIII complexes (1, 2, and 3) of an N4 donor set of ligands (H2L, Me2L, and BPh2L). 1 is supported by a monoanionic bispyridine-dioxime ligand (HL). In 2 and 3, the primary coordination sphere of Fe remained similar to that in 1, except that the oxime protons of the ligand were replaced with two methyl groups and a bridging -BPh2 moiety, respectively. X-ray structures of the FeII complexes (1a and 3a) revealed similar Fe-N distances; however, they were slightly elongated in 2a. The FeIII/FeII potential of 1, 2, and 3 appeared at -0.31 V, -0.25 V, and 0.07 V vs. Fc+/Fc, respectively, implying that HL and Me2L have comparable donor properties. However, BPh2L is more electron deficient than HL or Me2L. 1 showed electrocatalytic oxygen reduction reaction (ORR) activity in acetonitrile in the presence of trifluoroacetic acid (TFAH) as the proton source at Ecat/2 = -0.45 V and revealed selective 4e-/4H+ reduction of O2 to H2O. 1 showed an effective overpotential (ηeff) of 0.98 V and turnover frequency (TOFmax) of 1.02 × 103 s-1. Kinetic studies revealed a kcat of 2.7 × 107 M-2 s-1. Strikingly, 2 and 3 remained inactive for electrocatalytic ORR, which established the essential role of the oxime scaffolds in the electrocatalytic ORR of 1. Furthermore, a chemical ORR of 1 has been investigated using decamethylferrocene as the electron source. For 1, a similar rate equation was noted to that of the electrocatalytic pathway. A kcat of 6.07 × 104 M-2 s-1 was found chemically. Complex 2, however, underwent a very slow chemical ORR. Complex 3 chemically enhances the 4e-/4H+ reduction of O2 and exhibits a TOF of 0.24 s-1 and a kcat value of 2.47 × 102 M-1 s-1. Based on the experimental observations, we demonstrate that the oxime backbone of the ligand in 1 works as a proton exchanging site in the 4e-/4H+ reduction of O2. The study describes how the ORR is affected by the tuning of the ligand scaffold in a family of non-heme Fe complexes.
Collapse
Affiliation(s)
- Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
4
|
Egorov PA, Grishanov DA, Medvedev AG, Churakov AV, Mikhaylov AA, Ottenbacher RV, Bryliakov KP, Babak MV, Lev O, Prikhodchenko PV. Organoantimony Dihydroperoxides: Synthesis, Crystal Structures, and Hydrogen Bonding Networks. Inorg Chem 2023. [PMID: 37311066 DOI: 10.1021/acs.inorgchem.3c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite growing interest in the potential applications of p-block hydroperoxo complexes, the chemistry of inorganic hydroperoxides remains largely unexplored. For instance, single-crystal structures of antimony hydroperoxo complexes have not been reported to date. Herein, we present the synthesis of six triaryl and trialkylantimony dihydroperoxides [Me3Sb(OOH)2, Me3Sb(OOH)2·H2O, Ph3Sb(OOH)2·0.75(C4H8O), Ph3Sb(OOH)2·2CH3OH, pTol3Sb(OOH)2, pTol3Sb(OOH)2·2(C4H8O)], obtained by the reaction of the corresponding dibromide antimony(V) complexes with an excess of highly concentrated hydrogen peroxide in the presence of ammonia. The obtained compounds were characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared and Raman spectroscopies, and thermal analysis. The crystal structures of all six compounds reveal hydrogen-bonded networks formed by hydroperoxo ligands. In addition to the previously reported double hydrogen bonding, new types of hydrogen-bonded motifs formed by hydroperoxo ligands were found, including infinite hydroperoxo chains. Solid-state density functional theory calculation of Me3Sb(OOH)2 revealed reasonably strong hydrogen bonding between OOH ligands with an energy of 35 kJ/mol. Additionally, the potential application of Ph3Sb(OOH)2·0.75(C4H8O) as a two-electron oxidant for the enantioselective epoxidation of olefins was investigated in comparison with Ph3SiOOH, Ph3PbOOH, t-BuOOH, and H2O2.
Collapse
Affiliation(s)
- Pavel A Egorov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Dmitry A Grishanov
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Alexey A Mikhaylov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Roman V Ottenbacher
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Konstantin P Bryliakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii pr. 47, Moscow 119991, Russian Federation
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ovadia Lev
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| |
Collapse
|
5
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
6
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
7
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
8
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
9
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Macroheterocyclic μ-Nitrido- and μ-Carbido Dimeric Iron and Ruthenium Complexes as a Molecular Platform for Modeling Oxidative Enzymes (A Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Masih Uzza M, Khalilulla H, Osman Elha G, Mahmood T, Ahsan F, Karim S, Siddiqui NA, Ahamad SR, Alam Khan M, Khan A, Uzzaman Kh W, A.M. Abdul M, Ben Salah G. Anti-Diabetic Potential of Common Saudi Medicinal Herbs Commiphora molmol and Astragalus membranaceus Extracts in Diabetic Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.475.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Yao S, Zhao X, Wan X, Wang X, Huang T, Zhang J, Li L. π-π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. MATERIALS HORIZONS 2021; 8:3457-3467. [PMID: 34755162 DOI: 10.1039/d1mh01273h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of reactive oxygen species (ROS) to elicit lethal cellular oxidative damage is an attractive pathway to kill cancer cells, but it is still hindered by the low ROS production efficiency of the current methods. Herein, we design a one-dimensional (1D) π-π conjugated ferriporphyrin covalent organic framework on carbon nanotubes (COF-CNT) for activating nanocatalytic and photodynamic cancer therapy. The COF-CNT can catalyze the generation of ROS and O2 in the tumor microenvironment (TME), and realize a self-oxygen-supplying PDT under near-infrared (NIR) light irradiation, simultaneously. With the full electron delocalization at the atomically dispersed active center, the catalytic activity of COF-CNT with extended π-conjugation is 6.8 times higher than that without the π-conjugated structure. The formation of the COF structure with π-π conjugation also changes the density of states (DOS) profile of its functional building block for improving PDT. Through one single treatment, it successfully achieves complete tumor regression of 4T1 breast carcinoma in mice with immunoregulation.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingru Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
| | - Tian Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
| | - Jiaming Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Kiselev AN, Zaitseva SV, Zdanovich SA, Shagalov EV, Aleksandriysky VV, Syrbu SA, Koifman OI. Direct Cobalt‐Catalyzed Phosphorylation of Porphyrins. ChemistrySelect 2021. [DOI: 10.1002/slct.202102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexey N. Kiselev
- Laboratory 2–2 New materials based on macrocyclic compounds G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences 1 Akademicheskaya st. Ivanovo 153045 Russia
| | - Svetlana V. Zaitseva
- Laboratory 2–2 New materials based on macrocyclic compounds G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences 1 Akademicheskaya st. Ivanovo 153045 Russia
| | - Sergei A. Zdanovich
- Laboratory 2–2 New materials based on macrocyclic compounds G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences 1 Akademicheskaya st. Ivanovo 153045 Russia
| | - Evgeny V. Shagalov
- Faculty of Organic Chemistry and Technology Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Pr. Ivanovo 153000 Russia
| | - Viktor V. Aleksandriysky
- Faculty of Organic Chemistry and Technology Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Pr. Ivanovo 153000 Russia
| | - Sergei A. Syrbu
- Laboratory 2–2 New materials based on macrocyclic compounds G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences 1 Akademicheskaya st. Ivanovo 153045 Russia
| | - Oscar I. Koifman
- Laboratory 2–2 New materials based on macrocyclic compounds G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences 1 Akademicheskaya st. Ivanovo 153045 Russia
- Faculty of Organic Chemistry and Technology Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Pr. Ivanovo 153000 Russia
| |
Collapse
|
13
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
14
|
Wang Y, Gayet F, Daran JC, Guillo P, Agustin D. Replacement of Volatile Acetic Acid by Solid SiO 2@COOH Silica (Nano)Beads for (Ep)Oxidation Using Mn and Fe Complexes Containing BPMEN Ligand. Molecules 2021; 26:5435. [PMID: 34576906 PMCID: PMC8470966 DOI: 10.3390/molecules26185435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Mn and Fe BPMEN complexes showed excellent reactivity in catalytic oxidation with an excess of co-reagent (CH3COOH). In the straight line of a cleaner catalytic system, volatile acetic acid was replaced by SiO2 (nano)particles with two different sizes to which pending carboxylic functions were added (SiO2@COOH). The SiO2@COOH beads were obtained by the functionalization of SiO2 with pending nitrile functions (SiO2@CN) followed by CN hydrolysis. All complexes and silica beads were characterized by NMR, infrared, DLS, TEM, X-ray diffraction. The replacement of CH3COOH by SiO2@COOH (100 times less on molar ratio) has been evaluated for (ep)oxidation on several substrates (cyclooctene, cyclohexene, cyclohexanol) and discussed in terms of activity and green metrics.
Collapse
Affiliation(s)
- Yun Wang
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| | - Florence Gayet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- INPT, École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, CS 44362, CEDEX 4, F-31030 Toulouse, France
| | - Jean-Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
| | - Pascal Guillo
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| | - Dominique Agustin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| |
Collapse
|
15
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Singha A, Mondal A, Nayek A, Dey SG, Dey A. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol. J Am Chem Soc 2020; 142:21810-21828. [PMID: 33320658 DOI: 10.1021/jacs.0c10385] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenols and quinols participate in both proton transfer and electron transfer processes in nature either in distinct elementary steps or in a concerted fashion. Recent investigations using synthetic heme/Cu models and iron porphyrins have indicated that phenols/quinols can react with both ferric superoxide and ferric peroxide intermediates formed during O2 reduction through a proton coupled electron transfer (PCET) process as well as via hydrogen atom transfer (HAT). Oxygen reduction by iron porphyrins bearing covalently attached pendant phenol and quinol groups is investigated. The data show that both of these can electrochemically reduce O2 selectively by 4e-/4H+ to H2O with very similar rates. However, the mechanism of the reaction, investigated both using heterogeneous electrochemistry and by trapping intermediates in organic solutions, can be either PCET or HAT and is governed by the thermodynamics of these intermediates involved. The results suggest that, while the reduction of the FeIII-O2̇- species to FeIII-OOH proceeds via PCET when a pendant phenol is present, it follows a HAT pathway with a pendant quinol. In the absence of the hydroxyl group the O2 reduction proceeds via an electron transfer followed by proton transfer to the FeIII-O2̇- species. The hydrogen bonding from the pendant phenol group to FeIII-O2̇- and FeIII-OOH species provides a unique advantage to the PCET process by lowering the inner-sphere reorganization energy by limiting the elongation of the O-O bond upon reduction.
Collapse
Affiliation(s)
- Asmita Singha
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Mondal
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhijit Nayek
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
17
|
|
18
|
Ghatak A, Bhunia S, Dey A. Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
19
|
Mukherjee M, Dey A. A heterogeneous bio-inspired peroxide shunt for catalytic oxidation of organic molecules. Chem Commun (Camb) 2020; 56:11593-11596. [PMID: 32852503 DOI: 10.1039/d0cc03468a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme enzymes are capable of catalytically oxidising organic substrates using peroxide via the formation of a high-valent intermediate. Iron porphyrins with three different axial ligands are created on self-assembled monolayer-modified gold electrodes, which can oxidize C-H bonds and epoxidize alkenes efficiently. The kinetic isotope effects suggest that the hydrogen atom transfer reaction by a highly reactive oxidant is likely to be the rate-determining step. Effect of different axial ligands and different secondary structures of the iron porphyrin confirms that the thiolate axial ligand with a hydrophobic distal pocket is the most efficient for this oxidation chemistry.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata, India.
| | | |
Collapse
|
20
|
Mukherjee S, Nayek A, Bhunia S, Dey SG, Dey A. A Single Iron Porphyrin Shows pH Dependent Switch between "Push" and "Pull" Effects in Electrochemical Oxygen Reduction. Inorg Chem 2020; 59:14564-14576. [PMID: 32970430 DOI: 10.1021/acs.inorgchem.0c02408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "push-pull" effects associated with heme enzymes manifest themselves through highly evolved distal amino acid environments and axial ligands to the heme. These conserved residues enhance their reactivities by orders of magnitude relative to small molecules that mimic the primary coordination. An instance of a mononuclear iron porphyrin with covalently attached pendent phenanthroline groups is reported which exhibit reactivity indicating a pH dependent "push" to "pull" transition in the same molecule. The pendant phenanthroline residues provide proton transfer pathways into the iron site, ensuring selective 4e-/4H+ reduction of O2 to water. The protonation of these residues at lower pH mimics the pull effect of peroxidases, and a coordination of an axial hydroxide ligand at high pH emulates the push effect of P450 monooxygenases. Both effects enhance the rate of O2 reduction by orders of magnitude over its value at neutral pH while maintaining exclusive selectivity for 4e-/4H+ oxygen reduction reaction.
Collapse
Affiliation(s)
- Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
21
|
Mukherjee M, Dey A. Catalytic C–H Bond Oxidation Using Dioxygen by Analogues of Heme Superoxide. Inorg Chem 2020; 59:7415-7425. [DOI: 10.1021/acs.inorgchem.9b03767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
22
|
Koyappayil A, Berchmans S, Lee MH. Dual enzyme-like properties of silver nanoparticles decorated Ag 2WO 4 nanorods and its application for H 2O 2 and glucose sensing. Colloids Surf B Biointerfaces 2020; 189:110840. [PMID: 32035289 DOI: 10.1016/j.colsurfb.2020.110840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
The facile one-pot hydrothermal synthesis of silver nanoparticles decorated silver tungstate nanorods (Ag@Ag2WO4 NRs) and their catalytic activities similar to those of natural enzymes catalase and peroxidase were reported. The Ag@Ag2WO4 NRs could catalyze the decomposition reaction of H2O2 into water and oxygen besides catalyzing the reduction of H2O2 into water in the presence of peroxidase substrates. Spectrophotometric and electrochemical methods were used to investigate the pH-dependent dual enzyme mimics exhibited by Ag@Ag2WO4 NRs. The Ag@Ag2WO4 NRs showed a lower Km value when compared to the natural horseradish peroxidase enzyme showing the stronger affinity for hydrogen peroxide and TMB. The peroxidase-like property of the synthesized Ag@Ag2WO4 NRs was exploited to develop a H2O2 sensor with a broad linear range and low detection limit. Thus, a wide linear range of 45.4 μM- 2.38 mM and a low detection limit of 5.4 μM was obtained by spectrophotometry while a wide linear range of 62.34 μM- 2.4 mM and a low detection limit of 6.25 μM was obtained by amperometry for H2O2. Further, the detection method was extended for the detection of glucose with a wide linear range of 27.7 μM- 0.33 mM and a low detection limit of 2.6 μM.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea; Academy of Scientific and Innovative Research (AcSIR), India
| | - Sheela Berchmans
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
23
|
Ghatak A, Bhakta S, Bhunia S, Dey A. Influence of the distal guanidine group on the rate and selectivity of O 2 reduction by iron porphyrin. Chem Sci 2019; 10:9692-9698. [PMID: 32055338 PMCID: PMC6993607 DOI: 10.1039/c9sc02711d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
The O2 reduction reaction (ORR) catalysed by iron porphyrins with covalently attached pendant guanidine groups is reported. The results show a clear enhancement in the rate and selectivity for the 4e-/4H+ ORR. In situ resonance Raman investigations show that the rate determining step (rds) is O2 binding to ferrous porphyrins in contrast to the case of mononuclear iron porphyrins and heme/Cu analogues where the O-O bond cleavage of a heme peroxide is the rds. The selectivity is further enhanced when an axial imidazole ligand is introduced. Thus, the combination of the axial imidazole ligand and pendant guanidine ligand, analogous to the active site of peroxidases, is determined to be very effective in enabling a facile and selective 4e-/4H+ ORR.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Snehadri Bhakta
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Sarmistha Bhunia
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| |
Collapse
|
24
|
Zaitseva SV, Tyurin DV, Zdanovich SA, Koifman OI. Kinetics of the Formation of an Active Oxo Species of µ-Carbidodimeric Water-Soluble Iron(IV) Sulfophthalocyanine in the Reaction with tert-Butyl Hydroperoxide. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s0036023619060184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Mukherjee M, Dey A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C-H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS CENTRAL SCIENCE 2019; 5:671-682. [PMID: 31041387 PMCID: PMC6487540 DOI: 10.1021/acscentsci.9b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 05/11/2023]
Abstract
Catalytic oxidation of organic substrates, using a green oxidant like O2, has been a long-term goal of the scientific community. In nature, these oxidations are performed by metalloenzymes that generate highly oxidizing species from O2, which, in turn, can oxidize very stable organic substrates, e.g., mono-/dioxygenases. The same oxidants are produced during O2 reduction/respiration in the mitochondria but are reduced by electron transfer, i.e., reductases. Iron porphyrin mimics of the active site of cytochrome P450 (Cyt P450) are created atop a self-assembled monolayer covered electrode. The rate of electron transfer from the electrode to the iron porphyrin site is attenuated to derive monooxygenase reactivity from these constructs that otherwise show O2 reductase activity. Catalytic hydroxylation of strong C-H bonds to alcohol and epoxidation of alkenes, using molecular O2 (with 18O2 incorporation), is demonstrated with turnover numbers >104. Uniquely, one of the two iron porphyrin catalysts used shows preferential oxidation of 2° C-H bonds of cycloalkanes to alcohols over 3° C-H bonds without overoxidation to ketones. Mechanistic investigations with labeled substrates indicate that a compound I (FeIV=O bound to a porphyrin cation radical) analogue, formed during O2 reduction, is the primary oxidant. The selectivity is determined by the shape of the distal pocket of the catalyst, which, in turn, is determined by the substituents on the periphery of the porphyrin macrocycle.
Collapse
Affiliation(s)
| | - Abhishek Dey
- Address:
Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, 2A&2B
Raja SC Mullick Road, Jadavpur, Kolkata, West Bengal, India 700032.
E-mail:
| |
Collapse
|
26
|
Zhang P, Hu J, Liu B, Yang J, Hou H. Recent advances in metalloporphyrins for environmental and energy applications. CHEMOSPHERE 2019; 219:617-635. [PMID: 30554049 DOI: 10.1016/j.chemosphere.2018.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Porphyrin-based chemistry has reached an unprecedented period of rapid development after decades of study. Due to attractive multifunctional properties, porphyrins and their analogues have emerged as multifunctional organometals for environmental and energy purposes. In particular, pioneer works have been conducted to explore their application in pollution abatement, energy conversion and storage and molecule recognition. This review summarizes recent advances of porphyrins chemistry, focusing on elucidating the nature of catalytic process. The Fenton-like redox chemistry and photo-excitability of porphyrins and their analogues are discussed, highlighting the generation of high-valent iron oxo porphyrin species. Finally, challenges in current research are identified and perspectives for future development in this area are presented.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
27
|
Highly stable enzyme-mimicking nanocomposite of antioxidant activity. J Colloid Interface Sci 2019; 543:174-182. [PMID: 30802764 DOI: 10.1016/j.jcis.2019.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/31/2022]
Abstract
A highly stable nanocomposite of antioxidant activity was developed by immobilization of a superoxide dismutase-mimicking metal complex on copolymer-functionalized nanoclay. The layered double hydroxide (LDH) nanoclays were synthesized and surface modification was performed by adsorbing poly(vinylpyridine-b-methacrylic acid) (PVPMAA). The effect of the adsorption on the charging and aggregation properties was investigated and the copolymer dose was optimized to obtain stable LDH dispersions. The LDH-PVPMAA hybrid particles showed high resistance against salt-induced destabilization in aqueous dispersions. Copper(II)-histamine (Cu(Hsm)2) complexes were immobilized via the formation of dative bonds between the metal ions and the nitrogen atoms of the functional groups of the copolymer adsorbed on the particles. Changes in the coordination geometry of the complex upon immobilization led to higher superoxide radical anion scavenging activity than the one determined for the non-immobilized complex. Comparison of superoxide dismutase (SOD)-like activity of the obtained hybrid LDH-PVPMAA-Cu(Hsm)2 with the nanoclay-immobilized SOD enzyme revealed that the developed composite maintained its activity over several days and was able to function at elevated temperature, while the immobilized native enzyme lost its activity under these experimental conditions. The developed nanocomposite is a promising antioxidant candidate in applications, where high electrolyte concentration and elevated temperature are applied.
Collapse
|
28
|
Dutta B, Purkait R, Bhunia S, Khan S, Sinha C, Mir MH. Selective detection of trinitrophenol by a Cd(ii)-based coordination compound. RSC Adv 2019; 9:38718-38723. [PMID: 35540192 PMCID: PMC9075976 DOI: 10.1039/c9ra08614e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
A Cd(ii)-based coordination compound, [CdI2(4-nvp)2] (1), has been synthesized using CdI2 and monodentate N-donor ligand 4-(1-naphthylvinyl)pyridine (4-nvp). The solid-state supramolecular architecture has been characterized by X-ray crystallography. An acute thermal stability and excellent level of phase purity tempted us to use it for material applications. Interestingly, compound 1 exhibits a high selectivity towards trinitrophenol (TNP) in the presence of other nitroaromatics. Therefore, this material may be used for anti-terrorist activities in the detection of explosive materials as well as in the recognition of TNP in analytical laboratories. A Cd(ii)-based coordination compound, [CdI2(4-nvp)2] (1), has been synthesized using CdI2 and monodentate N-donor ligand 4-(1-naphthylvinyl)pyridine (4-nvp).![]()
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Rakesh Purkait
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Suprava Bhunia
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Samim Khan
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | | | | |
Collapse
|
29
|
Das A, Chakraborty M, Maity S, Ghosh A. The catalytic activities and magnetic behaviours of rare μ3-chlorido and μ1,1,1-azido bridged defective dicubane tetranuclear Mn(ii) complexes. Dalton Trans 2019; 48:9342-9356. [DOI: 10.1039/c9dt01567a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A μ3-chlorido and a μ1,1,1-azido bridged defective dicubane tetranuclear Mn(ii) complexes of polynucleating Mannich base ligand show significant catalytic oxidase activities and are antiferromagnetically coupled which is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Avijit Das
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Maharudra Chakraborty
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Souvik Maity
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
30
|
Wegeberg C, Browne WR, McKenzie CJ. Catalytic Alkyl Hydroperoxide and Acyl Hydroperoxide Disproportionation by a Nonheme Iron Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
31
|
Fidalgo-Marijuan A, Amayuelas E, Barandika G, Larrea ES, Bazán B, Urtiaga MK, Iglesias M, Arriortua MI. Double role of metalloporphyrins in catalytic bioinspired supramolecular metal-organic frameworks (SMOFs). IUCRJ 2018; 5:559-568. [PMID: 30224959 PMCID: PMC6126652 DOI: 10.1107/s2052252518007856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Heterogeneous catalysts are of great interest in many industrial processes for environmental reasons and, during recent years, a great effort has been devoted to obtain metal-organic frameworks (MOFs) with improved catalytic behaviour. Few supramolecular metal-organic frameworks (SMOFs) are stable under ambient conditions and those with anchored catalysts exhibit favourable properties. However, this paper presents an innovative approach that consists of using metal nodes as both structural synthons and catalysts. Regarding the latter, metalloporphyrins are suitable candidates to play both roles simultaneously. In fact, there are a number of papers that report coordination compounds based on metalloporphyrins exhibiting these features. Thus, the aim of this bioinspired work was to obtain stable SMOFs (at room temperature) based on metallo-porphyrins and explore their catalytic activity. This work reports the environmentally friendly microwave-assisted synthesis and characterization of the compound [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O (TPPS = meso-tetra-phenyl-porphine-4,4',4'',4'''-tetra-sulfonic acid and bipy = 4,4'-bi-pyridine). This compound is the first example of an MnTPPS-based SMOF, as far as we are aware, and has been structurally and thermally characterized through single-crystal X-ray diffraction, IR spectroscopy, thermogravimetry and transmission electron microscopy. Additionally, this work explores not only the catalytic activity of this compound but also of the compounds μ-O-[FeTCPP]2·16DMF and [CoTPPS0.5(bipy)(H2O)2]·6H2O. The structural features of these supra-molecular materials, with accessible networks and high thermal stability, are responsible for their excellent behaviour as heterogeneous catalysts for different oxidation, condensation (aldol and Knoevenagel) and one-pot cascade reactions.
Collapse
Affiliation(s)
- Arkaitz Fidalgo-Marijuan
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, 3rd Floor, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Eder Amayuelas
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Gotzone Barandika
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, 3rd Floor, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- Química Inorgánica, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Edurne S. Larrea
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Begoña Bazán
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, 3rd Floor, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Miren Karmele Urtiaga
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Marta Iglesias
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid-CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - María Isabel Arriortua
- Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, 3rd Floor, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| |
Collapse
|
32
|
Neumann B, Götz R, Wrzolek P, Scheller FW, Weidinger IM, Schwalbe M, Wollenberger U. Enhancement of the Electrocatalytic Activity of Thienyl‐Substituted Iron Porphyrin Electropolymers by a Hangman Effect. ChemCatChem 2018. [DOI: 10.1002/cctc.201800934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bettina Neumann
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Robert Götz
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Pierre Wrzolek
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Inez M. Weidinger
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Matthias Schwalbe
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Ulla Wollenberger
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| |
Collapse
|
33
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Molecular Complexes of μ-Carbidodimeric Iron(IV) Tetra-4-tert-butylphthalocyaninate with Nitrogenous Bases. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218060166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e -/4H + O 2 Reduction: Activation of O-O Bond by 2nd Sphere Hydrogen Bonding. J Am Chem Soc 2018; 140:9444-9457. [PMID: 29975839 DOI: 10.1021/jacs.8b02983] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Atanu Rana
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Pronay Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bijan Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| |
Collapse
|
35
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
|
37
|
Chatterjee S, Sengupta K, Mondal B, Dey S, Dey A. Factors Determining the Rate and Selectivity of 4e -/4H + Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes. Acc Chem Res 2017; 50:1744-1753. [PMID: 28686419 DOI: 10.1021/acs.accounts.7b00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactivity as well as selectivity are crucial in the activation and electrocatalytic reduction of molecular oxygen. Recent developments in the understanding of the mechanism of electrocatalytic O2 reduction by iron porphyrin complexes in situ using surface enhanced resonance Raman spectroscopy coupled to rotating disc electrochemistry (SERRS-RDE) in conjunction with H/D isotope effects on electrocatalytic current reveals that the rate of O2 reduction, ∼104 to 105 M-1 s-1 for simple iron porphyrins, is limited by the rate of O-O bond cleavage of an intermediate ferric peroxide species (FeIII-OOH). SERRS-RDE probes the system in operando when it is under steady state such that any intermediate species that has a greater rate of formation relative to its rate of decay, including the rate determining species, would accumulate and can be identified. This technique is particularly well suited to investigate iron porphyrin electrocatalysts as the intense symmetric ligand vibrations allow determination of the oxidation and spin states of the bound iron with high fidelity. The rate of O2 reduction could be tuned up by 3 orders of magnitude by incorporating residues in the catalyst design that can exert "push" or "pull" effects, that is, axial phenolate and thiolate ligands and distal arginine residues. Similarly the rate of O-O bond cleavage can be enhanced by several orders of magnitude upon incorporating a distal Cu site and installing the active site in a hydrophobic protein environment in synthetic models and biosynthetic protein scaffolds. The selectivity, however, is solely determined by the site of protonation of a ferric peroxide (FeIII-OOH) intermediate and can be governed by installing preorganized second sphere residues in the distal pocket. The 4e-/4H+ reduction of O2 entails protonation of the distal oxygen of the FeIII-OOH species, while 2e-/2H+ reduction requires the proximal oxygen to be protonated. Mechanistic investigations of CO2 reduction by iron porphyrins reveal that the rate-determining step is the C-O bond cleavage of a FeII-COOH species analogous to the O-O bond cleavage step of a FeIII-OOH species in O2 reduction. The selectivity, resulting in either CO or HCOOH, is determined by the site of protonation of this species. These similarities suggests that the chemical principles governing the rate and selectivity of reduction of small molecules like O2, CO2, NOx, and SOx may be quite similar in nature.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Mondal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subal Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
38
|
Buron C, Groni S, Ségaud N, Mazerat S, Dragoe D, Fave C, Sénéchal-David K, Schöllhorn B, Banse F. Self-assembled monolayer formation of a (N 5)Fe(ii) complex on gold electrodes: electrochemical properties and coordination chemistry on a surface. Dalton Trans 2016; 45:19053-19061. [PMID: 27858029 DOI: 10.1039/c6dt03870k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coordinatively unsaturated FeII complex bearing a pentadentate ligand (N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane) functionalized with a cyclic disulfide group has been prepared in order to graft reactive metal entities as self-assembled monolayers (SAMs) on gold electrodes. Prior to grafting, exogenous ligand exchange has been investigated by cyclic voltammetry (CV) in solution, showing that the nature of the first coordination sphere (N5)FeII-X (X = Cl-, OTf-, MeCN, acetone) can be tuned, thanks to the control of the chemical conditions. The FeII complex has been immobilized on gold electrodes by spontaneous (passive) adsorption as well as by an electro-assisted method. The resulting SAMs were characterised by XPS and AFM analyses. CV experiments implementing these SAMs as working electrodes showed that the first coordination sphere of the grafted FeII complex can be controlled by adjusting the chemical conditions, similarly to the studies in a homogeneous solution. Finally, the supported FeII complex proved to be reactive with superoxide generated at the electrode surface by reduction of dissolved dioxygen. Under the employed conditions, leaking of the metal complex was not observed.
Collapse
Affiliation(s)
- Charlotte Buron
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oliveira R, Zouari W, Herrero C, Banse F, Schöllhorn B, Fave C, Anxolabéhère-Mallart E. Characterization and Subsequent Reactivity of an Fe-Peroxo Porphyrin Generated by Electrochemical Reductive Activation of O 2. Inorg Chem 2016; 55:12204-12210. [PMID: 27934428 DOI: 10.1021/acs.inorgchem.6b01804] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reductive activation of O2 is achieved by using the [FeIII(F20TPP)Cl] (F20TPP = 5,10,15,20-tetrakis(pentafluorophenyl) porphyrinate) porphyrin through electrochemical reduction of the [FeIII(F20TPP)(O2•-)] superoxo complex. Formation of the [FeIII(F20TPP)(OO)]- peroxo species is monitored by using low-temperature electronic absorption spectroscopy, electron paramagnetic resonance, and cyclic voltammetry. Its subsequent protonation to yield the [FeIII(F20TPP)(OOH)] hydroperoxo intermediate is probed using low-temperature electronic absorption spectroscopy and electron paramagnetic resonance.
Collapse
Affiliation(s)
- Raquel Oliveira
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591 , 75205 PARIS Cedex 13, France
| | - Wiem Zouari
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591 , 75205 PARIS Cedex 13, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris Sud, Université Paris Saclay, UMR CNRS 8182 , 91405 Orsay Cedex, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris Sud, Université Paris Saclay, UMR CNRS 8182 , 91405 Orsay Cedex, France
| | - Bernd Schöllhorn
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591 , 75205 PARIS Cedex 13, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591 , 75205 PARIS Cedex 13, France
| | - Elodie Anxolabéhère-Mallart
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591 , 75205 PARIS Cedex 13, France
| |
Collapse
|
40
|
Sengupta K, Chatterjee S, Dey A. In Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
41
|
Realista S, Ramgi P, Cardoso BDP, Melato AI, Viana AS, Calhorda MJ, Martinho PN. Heterodinuclear Ni(ii) and Cu(ii) Schiff base complexes and their activity in oxygen reduction. Dalton Trans 2016; 45:14725-33. [DOI: 10.1039/c6dt01903j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New hetero- and homo-dinuclear Cu/Ni complexes electropolymerise potentiodynamically on glassy carbon electrodes and the polymers reduce dioxygen in water.
Collapse
Affiliation(s)
- Sara Realista
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Priscila Ramgi
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Bernardo de P. Cardoso
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Ana I. Melato
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Ana S. Viana
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Maria José Calhorda
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Paulo N. Martinho
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| |
Collapse
|