1
|
Zhang X, Li Z, Sun W, Zhang Y, Li J, Wang L. Shielding the Hägg carbide by a graphene layer for ultrahigh carbon efficiency during syngas conversion. Proc Natl Acad Sci U S A 2024; 121:e2407624121. [PMID: 39630863 DOI: 10.1073/pnas.2407624121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Fischer-Tropsch synthesis represents a key endeavor aimed at converting nonpetroleum carbon resources into clean fuels and valuable chemicals. However, the current state-of-the-art industrial FTS employing Fe-based catalysts is still challenged by the low carbon efficiency (<50%), mainly attributed to the prominent formation of CO2 and CH4 resulting from the nonregulated side water gas shift reaction. Herein, we describe a shielding strategy involving the encapsulation of the active Hägg carbide (χ-Fe5C2) by a graphene layer, exhibiting excellent resilience under reaction conditions and exposure to air, thereby eliminating the need for reduction or activation before the Fischer-Tropsch synthesis reaction. The graphene layer helps to stabilize the Hägg carbide active phase, and more importantly, greatly suppresses the side water gas shift reaction. Theoretical calculations suggest that graphene shielding inhibits the water gas shift reaction by reducing the absorption strength of OHx species. Remarkably, the optimum χ-Fe5C2@Graphene catalyst demonstrates a minimized CO2 and CH4 formation of only 4.6% and 5.9%, resulting in a high carbon efficiency (ca. 90%) for value-added products. These results are expected to inspire unique designs of Fe-based nanocomposite for highly efficient FTS with regulated carbon transfer pathways.
Collapse
Affiliation(s)
- Xueqing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wei Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024; 14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
In order to meet the climate goals of the Paris Agreement and limit the potentially catastrophic consequences of climate change, we must move away from the use of fossil feedstocks for the production of chemicals and fuels. The conversion of synthesis gas (a mixture of hydrogen, carbon monoxide and/or carbon dioxide) can contribute to this. Several reactions allow to convert synthesis gas to oxygenates (such as methanol), olefins or waxes. In a consecutive step, these products can be further converted into chemicals, such as dimethyl ether, short olefins, or aromatics. Alternatively, fuels like gasoline, diesel, or kerosene can be produced. These two different steps can be combined using bifunctional catalysis for direct conversion of synthesis gas to chemicals and fuels. The synergistic effects of combining two different catalysts are discussed in terms of activity and selectivity and compared to processes based on consecutive reaction with single conversion steps. We found that bifunctional catalysis can be a strong tool for the highly selective production of dimethyl ether and gasoline with high octane numbers. In terms of selectivity bifunctional catalysis for short olefins or aromatics struggles to compete with processes consisting of single catalytic conversion steps.
Collapse
Affiliation(s)
- J L Weber
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - C Hernández Mejía
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - K P de Jong
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - P E de Jongh
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| |
Collapse
|
4
|
Yu F, Lin T, An Y, Gong K, Wang X, Sun Y, Zhong L. Recent advances in Co 2C-based nanocatalysts for direct production of olefins from syngas conversion. Chem Commun (Camb) 2022; 58:9712-9727. [PMID: 35972448 DOI: 10.1039/d2cc03048a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syngas conversion provides an important platform for efficient utilization of various carbon-containing resources such as coal, natural gas, biomass, solid waste and even CO2. Various value-added fuels and chemicals including paraffins, olefins and alcohols can be directly obtained from syngas conversion via the Fischer-Tropsch Synthesis (FTS) route. However, the product selectivity control still remains a grand challenge for FTS due to the limitation of Anderson-Schulz-Flory (ASF) distribution. Our previous works showed that, under moderate reaction conditions, Co2C nanoprisms with exposed (101) and (020) facets can directly convert syngas to olefins with low methane and high olefin selectivity, breaking the limitation of ASF. The application of Co2C-based nanocatalysts unlocks the potential of the Fischer-Tropsch process for producing olefins. In this feature article, we summarized the recent advances in developing highly efficient Co2C-based nanocatalysts and reaction pathways for direct syngas conversion to olefins via the Fischer-Tropsch to olefin (FTO) reaction. We mainly focused on the following aspects: the formation mechanism of Co2C, nanoeffects of Co2C-based FTO catalysts, morphology control of Co2C nanostructures, and the effects of promoters, supports and reactors on the catalytic performance. From the viewpoint of carbon utilization efficiency, we presented the recent efforts in decreasing the CO2 selectivity for FTO reactions. In addition, the attempt to expand the target products to aromatics by coupling Co2C-based FTO catalysts and H-ZSM-5 zeolites was also made. In the end, future prospects for Co2C-based nanocatalysts for selective syngas conversion were proposed.
Collapse
Affiliation(s)
- Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
| | - Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China. .,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinxing Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China. .,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China. .,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
5
|
Chernyak SA, Stolbov DN, Maslakov KI, Maksimov SV, Kazantsev RV, Eliseev OL, Moskovskikh DO, Savilov SV. Consolidated Co- and Fe-based Fischer-Tropsch catalysts supported on jellyfish-like graphene nanoflake framework. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
7
|
Development of iron supported carbon foam catalyst for Fischer–Tropsch synthesis. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the only renewable organic carbon source, abundant biomass has long been established and developed to mass-produce functionalized carbon materials. Herein, an extremely facile and green strategy was executed for the first time to in situ construct K-Fe3C@C nanohybrids directly by one-pot carbonizing the pomelo peel impregnated with Fe(NO3)3 solutions. The pyrolytically self-assembled nanohybrids were successfully applied in Fischer–Tropsch synthesis (FTS) and demonstrated high catalytic performance. Accordingly, the optimized K-Fe3C@C catalysts revealed excellent FTS activity (92.6% CO conversion) with highlighted C5+ hydrocarbon selectivity of 61.3% and light olefin (C2-4=) selectivity of 26.0% (olefin/paraffin (O/P) ratio of 6.2). Characterization results further manifest that the high performance was correlated with the in situ formation of the core-shell nanostructure consisting of Fe3C nanoparticles enwrapped by graphitized carbon shells and the intrinsic potassium promoter originated in pomelo peel during high-temperature carbonization. This work provided a facile approach for the low-cost mass-fabrication of high-performance FTS catalysts directly utilizing waste biomass without any chemical pre-treatment or purification.
Collapse
|
9
|
Zhao M, Sun J, Li X, Zhang Q. Synthesis of Light Olefins from Syngas Catalyzed by Supported Iron-based Catalysts on Alumina. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Rashed AE, Nasser A, Elkady MF, Matsushita Y, El-Moneim AA. Fe Nanoparticle Size Control of the Fe-MOF-Derived Catalyst Using a Solvothermal Method: Effect on FTS Activity and Olefin Production. ACS OMEGA 2022; 7:8403-8419. [PMID: 35309432 PMCID: PMC8928532 DOI: 10.1021/acsomega.1c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The design of a highly active Fe-supported catalyst with the optimum particle and pore size, dispersion, loading, and stability is essential for obtaining the desired product selectivity. This study employed a solvothermal method to prepare two Fe-MIL-88B metal-organic framework (MOF)-derived catalysts using triethylamine (TEA) or NaOH as deprotonation catalysts. The catalysts were analyzed using X-ray diffraction, N2-physisorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, H2 temperature-programed reduction, and thermogravimetric analysis and were evaluated for the Fischer-Tropsch synthesis performance. It was evident that the catalyst preparation in the presence of TEA produces a higher MOF yield and smaller crystal size than those produced using NaOH. The pyrolysis of MOFs yielded catalysts with different Fe particle sizes of 6 and 35 nm for the preparation in the presence of TEA and NaOH, respectively. Also, both types of catalysts exhibited a high Fe loading (50%) and good stability after 100 h reaction time. The smaller particle size TEA catalyst showed higher activity and higher olefin yield, with 94% CO conversion and a higher olefin yield of 24% at a lower reaction temperature of 280 °C and 20 bar at H2/CO = 1. Moreover, the smaller particle size TEA catalyst exhibited higher Fe time yield and CH4 selectivity but with lower chain growth probability (α) and C5+ selectivity.
Collapse
Affiliation(s)
- Ahmed E. Rashed
- Basic
and Applied Science Institute, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Alhassan Nasser
- Chemical
Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt
| | - Marwa F. Elkady
- Chemical
and Petroleum Engineering Department, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
- Fabrication
Technology Department, Advanced Technology and New Materials Research
Institute (ATNMRI), City of Scientific Research
and Technological Applications, Alexandria 21934, Egypt
| | | | - Ahmed Abd El-Moneim
- Basic
and Applied Science Institute, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
| |
Collapse
|
11
|
Liu Y, Liu X, Yang Z, Li H, Ding X, Xu M, Li X, Tu WF, Zhu M, Han YF. Unravelling the metal–support interactions in χ-Fe5C2/MgO catalysts for olefin synthesis directly from syngas. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02022f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural and electronic modifications of χ-Fe5C2 by MgO contribute to the high selectivity towards lower olefins and the high catalyst stability.
Collapse
Affiliation(s)
- Yitao Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianglin Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zixu Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hu Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoxu Ding
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minjie Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinli Li
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Feng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi-Fan Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Liu Y, Lu K, Liu X, Liu J, Guo WP, Chen W, Peng Q, Song YF, Yang Y, Li YW, Wen XD. C2 weakens the turnover frequency during the melting of Fe xC y: insights from reactive MD simulations. NEW J CHEM 2022. [DOI: 10.1039/d1nj05114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbon accumulation in the form of C2 on the surface at high temperatures blocks the surface catalytic active sites, reducing the activity of melted FexCy nanoparticles.
Collapse
Affiliation(s)
- Yubing Liu
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Kuan Lu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wen-Ping Guo
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qing Peng
- Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| |
Collapse
|
13
|
Fellenberg AK, Addad A, Hong J, Simon P, Kosto Y, Šmíd B, Ji G, Khodakov AY. Iron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Zhai P, Li Y, Wang M, Liu J, Cao Z, Zhang J, Xu Y, Liu X, Li YW, Zhu Q, Xiao D, Wen XD, Ma D. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
16
|
|
17
|
Development of an Iron-Based Fischer—Tropsch Catalyst with High Attrition Resistance and Stability for Industrial Application. Catalysts 2021. [DOI: 10.3390/catal11080908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to develop an iron-based catalyst with high attrition resistance and stability for Fischer–Tropsch synthesis (FTS), a series of experiments were carried out to investigate the effects of SiO2 and its hydroxyl content and a boron promoter on the attrition resistance and catalytic behavior of spray-dried precipitated Fe/Cu/K/SiO2 catalysts. The catalysts were characterized by means of N2 physisorption, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectrum, X-ray photoelectron spectroscopy (XPS), H2-thermogravimetric analysis (H2-TGA), temperature-programmed reduction and hydrogenation (TPR and TPH), and scanning and transmission electron microscopy (SEM and TEM). The FTS performance of the catalysts was tested in a slurry-phase continuously stirred tank reactor (CSTR), while the attrition resistance study included a physical test with the standard method and a chemical attrition test under simulated reaction conditions. The results indicated that the increase in SiO2 content enhances catalysts’ attrition resistance and FTS stability, but decreases activity due to the suppression of further reduction of the catalysts. Moreover, the attrition resistance of the catalysts with the same silica content was greatly improved with an increase in hydroxyl number within silica sources, as well as the FTS activity and stability to some degree. Furthermore, the boron element was found to show remarkable promotion of FTS stability, and the promotion mechanism was discussed with regard to probable interactions between Fe and B, K and B, and SiO2 and B, etc. An optimized catalyst based on the results of this study was finalized, scaled up, and successfully applied in a megaton industrial slurry bubble FTS unit, exhibiting excellent FTS performance.
Collapse
|
18
|
Cheng Q, Liu Y, Lyu S, Tian Y, Ma Q, Li X. Manipulating metal-support interactions of metal catalysts for Fischer-Tropsch synthesis. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Gioria E, Duarte-Correa L, Bashiri N, Hetaba W, Schomaecker R, Thomas A. Rational design of tandem catalysts using a core-shell structure approach. NANOSCALE ADVANCES 2021; 3:3454-3459. [PMID: 36133711 PMCID: PMC9419585 DOI: 10.1039/d1na00310k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 06/16/2023]
Abstract
A facile and rational approach to synthesize bimetallic heterogeneous tandem catalysts is presented. Using core-shell structures, it is possible to create spatially controlled ensembles of different nanoparticles and investigate coupled chemocatalytic reactions. The CO2 hydrogenation to methane and light olefins was tested, achieving a tandem process successfully.
Collapse
Affiliation(s)
- Esteban Gioria
- Technische Universität Berlin, Fakultät II, Institut für Chemie: Funktionsmaterialen, Sekretariat BA2 Hardenbergstraße 40 10623 Berlin Germany
- Institute of Research on Catalysis and Petrochemistry, INCAPE, UNL-CONICET Santiago del Estero 2829 3000 Santa Fe Argentina
| | - Liseth Duarte-Correa
- Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin Germany
| | - Najmeh Bashiri
- Technische Universität Berlin, Fakultät II, Institut für Chemie: Funktionsmaterialen, Sekretariat BA2 Hardenbergstraße 40 10623 Berlin Germany
- Technische Universität Berlin, Fakultät II, Institut für Chemie Sekretariat TC 8 Straße des 17. Juni 124 10623 Berlin Germany
| | - Walid Hetaba
- Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin Germany
- Max Planck Institute for Chemical Energy Conversion, Department of Heterogeneous Reactions Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Reinhard Schomaecker
- Technische Universität Berlin, Fakultät II, Institut für Chemie Sekretariat TC 8 Straße des 17. Juni 124 10623 Berlin Germany
| | - Arne Thomas
- Technische Universität Berlin, Fakultät II, Institut für Chemie: Funktionsmaterialen, Sekretariat BA2 Hardenbergstraße 40 10623 Berlin Germany
| |
Collapse
|
20
|
Wang A, Luo M, Lü B, Song Y, Li M, Yang Z. Effect of Na, Cu and Ru on metal-organic framework-derived porous carbon supported iron catalyst for Fischer-Tropsch synthesis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer–Tropsch Synthesis. REACTIONS 2021. [DOI: 10.3390/reactions2010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review emphasizes the importance of the catalytic conversion techniques in the production of clean liquid and hydrogen fuels (XTF) and chemicals (XTC) from the carbonaceous materials including coal, natural gas, biomass, organic wastes, biogas and CO2. Dependence of the performance of Fischer–Tropsch Synthesis (FTS), a key reaction of the XTF/XTC process, on catalyst structure (crystal and size) is comparatively examined and reviewed. The contribution illustrates the very complicated crystal structure effect, which indicates that not only the particle type, but also the particle shape, facets and orientation that have been evidenced recently, strongly influence the catalyst performance. In addition, the particle size effects over iron, cobalt and ruthenium catalysts were carefully compared and analyzed. For all Fe, Co and Ru catalysts, the metal turnover frequency (TOF) for CO hydrogenation increased with increasing metal particle size in the small size region i.e., less than the size threshold 7–8 nm, but was found to be independent of particle size for the catalysts with large particle sizes greater than the size threshold. There are some inconsistencies in the small particle size region for Fe and Ru catalysts, i.e., an opposite activity trend and an abnormal peak TOF value were observed on a Fe catalyst and a Ru catalyst (2 nm), respectively. Further study from the literature provides deeper insights into the catalyst behaviors. The intrinsic activity of Fe catalysts (10 nm) at 260–300 °C is estimated in the range of 0.046–0.20 s−1, while that of the Co and Ru catalysts (7–70 nm) at 220 °C are 0.1 s−1 and 0.4 s−1, respectively.
Collapse
|
22
|
Abstract
Fischer–Tropsch synthesis (FTS) is considered as one of the non-oil-based alternatives for liquid fuel production. This gas-to-liquid (GTL) technology converts syngas to a wide range of hydrocarbons using metal (Fe and Co) unsupported and supported catalysts. Effective design of the catalyst plays a significant role in enhancing syngas conversion, selectivity towards C5+ hydrocarbons, and decreasing selectivity towards methane. This work presents a review on catalyst design and the most employed support materials in FTS to synthesize heavier hydrocarbons. Furthermore, in this report, the recent achievements on mechanisms of this reaction will be discussed. Catalyst deactivation is one of the most important challenges during FTS, which will be covered in this work. The selectivity of FTS can be tuned by operational conditions, nature of the catalyst, support, and reactor configuration. The effects of all these parameters will be analyzed within this report. Moreover, zeolites can be employed as a support material of an FTS-based catalyst to direct synthesis of liquid fuels, and the specific character of zeolites will be elaborated further. Furthermore, this paper also includes a review of some of the most employed characterization techniques for Fe- and Co-based FTS catalysts. Kinetic study plays an important role in optimization and simulation of this industrial process. In this review, the recent developed reaction rate models are critically discussed.
Collapse
|
23
|
Zhang Z, Yin H, Yu G, He S, Kang J, Liu Z, Cheng K, Zhang Q, Wang Y. Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Wu X, Qian W, Zhang H, Han Z, Zhang H, Ma H, Liu D, Sun Q, Ying W. Mn-Decorated CeO 2 nanorod supported iron-based catalyst for high-temperature Fischer–Tropsch synthesis of light olefins. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02193h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect between Mn and Ce can improve electrons transfer from Ce to Fe and the oxygen migration. The remarkable properties promote the dissociation of CO, suppress the hydrogenation, and improve the selectivity of light olefins.
Collapse
Affiliation(s)
- Xian Wu
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Weixin Qian
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Haitao Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Zhonghao Han
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Hewei Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Hongfang Ma
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| | - Qiwen Sun
- State Key Laboratory of Coal Liquefaction and Coal Chemical Technology
- Shanghai 201203
- China
| | - Weiyong Ying
- Engineering Research Center of Large Scale Reactor Engineering and Technology
- Ministry of Education
- State Key Laboratory of Chemical Engineering
- School of chemical engineering
- East China University of Science and Technology
| |
Collapse
|
25
|
Effect of EDTA-2Na modification on Fe-Co/Al2O3 for hydrogenation of carbon dioxide to lower olefins and gasoline. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions. Nat Commun 2020; 11:6219. [PMID: 33277482 PMCID: PMC7719174 DOI: 10.1038/s41467-020-20068-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/06/2020] [Indexed: 12/04/2022] Open
Abstract
The development of efficient catalysts for Fischer–Tropsch (FT) synthesis, a core reaction in the utilization of non-petroleum carbon resources to supply energy and chemicals, has attracted much recent attention. ε-Iron carbide (ε-Fe2C) was proposed as the most active iron phase for FT synthesis, but this phase is generally unstable under realistic FT reaction conditions (> 523 K). Here, we succeed in stabilizing pure-phase ε-Fe2C nanocrystals by confining them into graphene layers and obtain an iron-time yield of 1258 μmolCO gFe−1s−1 under realistic FT synthesis conditions, one order of magnitude higher than that of the conventional carbon-supported Fe catalyst. The ε-Fe2C@graphene catalyst is stable at least for 400 h under high-temperature conditions. Density functional theory (DFT) calculations reveal the feasible formation of ε-Fe2C by carburization of α-Fe precursor through interfacial interactions of ε-Fe2C@graphene. This work provides a promising strategy to design highly active and stable Fe-based FT catalysts. ε-Fe2C has been identified as the highly active phase for Fischer-Tropsch synthesis (FTS), but is stable only at low-temperature. Here, the authors show that ε-Fe2C phase can be stabilized even at ~ 573 K by being encapsulated inside graphene layers, and retains high activity in FTS.
Collapse
|
27
|
Dalebout R, Visser NL, Pompe CL, de Jong KP, de Jongh PE. Interplay between carbon dioxide enrichment and zinc oxide promotion of copper catalysts in methanol synthesis. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Size and promoter effects on iron nanoparticles confined in carbon nanotubes and their catalytic performance in light olefin synthesis from syngas. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Paalanen PP, Vreeswijk SH, Dugulan AI, Weckhuysen BM. Identification of Iron Carbides in Fe(−Na−S)/α‐Al
2
O
3
Fischer‐Tropsch Synthesis Catalysts with X‐ray Powder Diffractometry and Mössbauer Absorption Spectroscopy. ChemCatChem 2020. [DOI: 10.1002/cctc.202000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pasi P. Paalanen
- Inorganic Chemistry and Catalysis Group Debye Institute of Nanomaterial Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Sophie H. Vreeswijk
- Inorganic Chemistry and Catalysis Group Debye Institute of Nanomaterial Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - A. Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group Delft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute of Nanomaterial Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
31
|
Chernyak SA, Ivanov AS, Maksimov SV, Maslakov KI, Isaikina OY, Chernavskii PA, Kazantsev RV, Eliseev OL, Savilov SS. Fischer-Tropsch synthesis over carbon-encapsulated cobalt and iron nanoparticles embedded in 3D-framework of carbon nanotubes. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Yang S, Chun HJ, Lee S, Han SJ, Lee KY, Kim YT. Comparative Study of Olefin Production from CO and CO2 Using Na- and K-Promoted Zinc Ferrite. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sunkyu Yang
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Hee-Joon Chun
- Corporate R&D Institute, Samsung Electro-Mechanics Co., Ltd., 150, Maeyoung-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16674, Republic of Korea
| | - Sungwoo Lee
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seung Ju Han
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Yong Tae Kim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
33
|
Paalanen PP, van Vreeswijk SH, Weckhuysen BM. Combined In Situ X-ray Powder Diffractometry/Raman Spectroscopy of Iron Carbide and Carbon Species Evolution in Fe(−Na–S)/α-Al2O3 Catalysts during Fischer–Tropsch Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pasi P. Paalanen
- Inorganic Chemistry and Catalysis Group, Debye Institute of Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sophie H. van Vreeswijk
- Inorganic Chemistry and Catalysis Group, Debye Institute of Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute of Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
34
|
De Coster V, Poelman H, Dendooven J, Detavernier C, Galvita VV. Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis with Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition. Molecules 2020; 25:E3735. [PMID: 32824236 PMCID: PMC7464189 DOI: 10.3390/molecules25163735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst's performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.
Collapse
Affiliation(s)
- Valentijn De Coster
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Hilde Poelman
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| |
Collapse
|
35
|
Paalanen PP, Weckhuysen BM. Carbon Pathways, Sodium‐Sulphur Promotion and Identification of Iron Carbides in Iron‐based Fischer‐Tropsch Synthesis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000535] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pasi P. Paalanen
- Inorganic Chemistry and Catalysis group, Debye Institute of Nanomaterials Science Utrecht University Universiteitsweg 99, postCode/>3584 CG Utrecht The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute of Nanomaterials Science Utrecht University Universiteitsweg 99, postCode/>3584 CG Utrecht The Netherlands
| |
Collapse
|
36
|
Numpilai T, Chanlek N, Poo‐Arporn Y, Cheng CK, Siri‐Nguan N, Sornchamni T, Chareonpanich M, Kongkachuichay P, Yigit N, Rupprechter G, Limtrakul J, Witoon T. Tuning Interactions of Surface‐adsorbed Species over Fe−Co/K−Al
2
O
3
Catalyst by Different K Contents: Selective CO
2
Hydrogenation to Light Olefins. ChemCatChem 2020. [DOI: 10.1002/cctc.202000347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thanapha Numpilai
- Center of Excellence on Petrochemical and Materials TechnologyDepartment of Chemical Engineering, Faculty of EngineeringKasetsart University Bangkok 10900 Thailand
- Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and EnvironmentKasetsart University Bangkok 10900 Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute Nakhon Ratchasima 30000 Thailand
| | | | - Chin Kui Cheng
- Faculty of Chemical & Natural Resources EngineeringUniversity Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang Kuantan Pahang Malaysia
| | - Nuchanart Siri‐Nguan
- Innovation InstitutePTT Public Company Limited Phra Nakhon Si Ayutthaya 13170 Thailand
| | - Thana Sornchamni
- Innovation InstitutePTT Public Company Limited Phra Nakhon Si Ayutthaya 13170 Thailand
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials TechnologyDepartment of Chemical Engineering, Faculty of EngineeringKasetsart University Bangkok 10900 Thailand
- Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and EnvironmentKasetsart University Bangkok 10900 Thailand
| | - Paisan Kongkachuichay
- Center of Excellence on Petrochemical and Materials TechnologyDepartment of Chemical Engineering, Faculty of EngineeringKasetsart University Bangkok 10900 Thailand
- Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and EnvironmentKasetsart University Bangkok 10900 Thailand
| | - Nevzat Yigit
- Institute of Materials ChemistryTechnische Universität Wien Getreidemarkt 9/BC/01 Vienna 1060 Austria
| | - Günther Rupprechter
- Institute of Materials ChemistryTechnische Universität Wien Getreidemarkt 9/BC/01 Vienna 1060 Austria
| | - Jumras Limtrakul
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials TechnologyDepartment of Chemical Engineering, Faculty of EngineeringKasetsart University Bangkok 10900 Thailand
- Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and EnvironmentKasetsart University Bangkok 10900 Thailand
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
37
|
Gong Y, Liao MD, Liu P, Jin YZ, Chen J, Tang YJ. Large-scale Synthesis of Carbon Fiber Sponges by Chemical Vapor Deposition. CHEM LETT 2020. [DOI: 10.1246/cl.200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong Gong
- Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Ming-dong Liao
- Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Ping Liu
- Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yong-zhong Jin
- Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Jian Chen
- Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yong-jian Tang
- Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
38
|
Wang X, Zhang C, Chang Q, Wang L, Lv B, Xu J, Xiang H, Yang Y, Li Y. Enhanced Fischer-Tropsch synthesis performances of Fe/h-BN catalysts by Cu and Mn. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Krans NA, Weber JL, van den Bosch W, Zečević J, de Jongh PE, de Jong KP. Influence of Promotion on the Growth of Anchored Colloidal Iron Oxide Nanoparticles during Synthesis Gas Conversion. ACS Catal 2020; 10:1913-1922. [PMID: 32064142 PMCID: PMC7011703 DOI: 10.1021/acscatal.9b04380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Indexed: 11/29/2022]
Abstract
![]()
Using colloidal iron
oxide nanoparticles with organic ligands,
anchored in a separate step from the supports, has been shown to be
beneficial to obtain homogeneously distributed metal particles with
a narrow size distribution. Literature indicates that promoting these
particles with sodium and sulfur creates an active Fischer–Tropsch
catalyst to produce olefins, while further adding an H-ZSM-5 zeolite
is an effective way to obtain aromatics. This research focused on
the promotion of iron oxide colloids with sodium and sulfur using
an inorganic ligand exchange followed by the attachment to H-ZSM-5
zeolite crystals. The catalyst referred to as FeP/Z, which consists
of iron particles with inorganic ligands attached to a H-ZSM-5 catalyst,
was compared to an unpromoted Fe/Z catalyst and an Fe/Z-P catalyst,
containing the colloidal nanoparticles with organic ligands, promoted
after attachment. A low CO conversion was observed on both FeP/Z and
Fe/Z-P, originating from an overpromotion effect for both catalysts.
However, when both promoted catalysts were washed (FeP/Z-W and Fe/Z–P-W)
to remove the excess of promoters, the activity was much higher. Fe/Z-P-W
simultaneously achieved low selectivity toward methane as part of
the promoters were still present after washing, whereas for FeP/Z-W
the majority of promoters was removed upon washing, which increased
the methane selectivity. Moreover, due to the addition of Na+S promoters,
the iron nanoparticles in the FeP/Z(-W) catalysts had grown considerably
during catalysis, while those in Fe/Z-P(-W) and Fe/Z(-W) remained
relatively stable. Lastly, as a large broadening of particle sizes
for the used FeP/Z-W was found, where particle sizes had both increased
and decreased, Ostwald ripening is suggested for particle growth accelerated
by the presence of the promoters.
Collapse
Affiliation(s)
- N. A. Krans
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. L. Weber
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - W. van den Bosch
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - P. E. de Jongh
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - K. P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
40
|
Kolesnichenko NV, Ezhova NN, Snatenkova YM. Lower olefins from methane: recent advances. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modern methods for methane conversion to lower olefins having from 2 to 4 carbon atoms per molecule are generalized. Multistage processing of methane into ethylene and propylene via syngas or methyl chloride and methods for direct conversion of CH4 to ethylene are described. Direct conversion of syngas to olefins as well as indirect routes of the process via methanol or dimethyl ether are considered. Particular attention is paid to innovative methods of olefin synthesis. Recent achievements in the design of catalysts and development of new techniques for efficient implementation of oxidative coupling of methane and methanol conversion to olefins are analyzed and systematized. Advances in commercializing these processes are pointed out. Novel catalysts for Fischer – Tropsch synthesis of lower olefins from syngas and for innovative technique using oxide – zeolite hybrid catalytic systems are described. The promise of a new route to lower olefins by methane conversion via dimethyl ether is shown. Prospects for the synthesis of lower olefins via methyl chloride and using non-oxidative coupling of methane are discussed. The most efficient processes used for processing of methane to lower olefins are compared on the basis of degree of conversion of carbonaceous feed, possibility to integrate with available full-scale production, number of reaction stages and thermal load distribution.
The bibliography includes 346 references.
Collapse
|
41
|
Li Y, Gao W, Peng M, Zhang J, Sun J, Xu Y, Hong S, Liu X, Liu X, Wei M, Zhang B, Ma D. Interfacial Fe 5C 2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols. Nat Commun 2020; 11:61. [PMID: 31900400 PMCID: PMC6941981 DOI: 10.1038/s41467-019-13691-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Long-chain alcohols synthesis (LAS, C5+OH) from syngas provides a promising route for the conversion of coal/biomass/natural gas into high-value chemicals. Cu-Fe binary catalysts, with the merits of cost effectiveness and high CO conversion, have attracted considerable attention. Here we report a nano-construct of a Fe5C2-Cu interfacial catalyst derived from Cu4Fe1Mg4-layered double hydroxide (Cu4Fe1Mg4-LDH) precursor, i.e., Fe5C2 clusters (~2 nm) are immobilized onto the surface of Cu nanoparticles (~25 nm). The interfacial catalyst exhibits a CO conversion of 53.2%, a selectivity of 14.8 mol% and a space time yield of 0.101 g gcat−1 h−1 for long-chain alcohols, with a surprisingly benign reaction pressure of 1 MPa. This catalytic performance, to the best of our knowledge, is comparable to the optimal level of Cu-Fe catalysts operated at much higher pressure (normally above 3 MPa). Long-chain alcohols synthesis from syngas conversion is a promising route for the production of high-value chemicals. Here the authors show that a heterogeneous Fe5C2/Cu catalyst derived from layered double hydroxides precursor exhibits excellent performance with a space time yield of 0.101 g gcat−1 h−1 at a low pressure of 1 MPa.
Collapse
Affiliation(s)
- Yinwen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wa Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Junbo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jialve Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Song Hong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xi Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan, Shanxi, 030001, P. R. China.,Synfuels China Beijing, 100195, Beijing, P. R. China
| | - Xingwu Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan, Shanxi, 030001, P. R. China.,Synfuels China Beijing, 100195, Beijing, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Bingsen Zhang
- Shenyang National Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Beijing, 100871, P. R. China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Li Z, Yao N, Cen J, Li X, Zhong L, Sun Y, He M. Effects of alkali metal promoters on the structure–performance relationship of CoMn catalysts for Fischer–Tropsch synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02441g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkali metal promoters are beneficial for the formation and facet-stabilization of Co2C nanoprisms for the FTO reaction.
Collapse
Affiliation(s)
- Zhengjia Li
- Institute of Industrial Catalysis
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Nan Yao
- Institute of Industrial Catalysis
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Jie Cen
- Institute of Industrial Catalysis
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xiaonian Li
- Institute of Industrial Catalysis
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-carbon Conversion Science & Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- PR China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science & Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- PR China
| | - Mingyuan He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- PR China
| |
Collapse
|
43
|
|
44
|
de Alwis C, Leftwich TR, Mukherjee P, Denofre A, Perrine KA. Spontaneous selective deposition of iron oxide nanoparticles on graphite as model catalysts. NANOSCALE ADVANCES 2019; 1:4729-4744. [PMID: 36133117 PMCID: PMC9418714 DOI: 10.1039/c9na00472f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/24/2019] [Indexed: 06/12/2023]
Abstract
Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe3+ oxidation state and two different oxygen species, Fe-O and Fe-OH/Fe-OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Timothy R Leftwich
- Department of Material Science & Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Pinaki Mukherjee
- Department of Material Science & Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Alex Denofre
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| |
Collapse
|
45
|
Wu X, Ma H, Zhang H, Qian W, Liu D, Sun Q, Ying W. High-Temperature Fischer–Tropsch Synthesis of Light Olefins over Nano-Fe 3O 4@MnO 2 Core–Shell Catalysts. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xian Wu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongfang Ma
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weixin Qian
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiwen Sun
- State Key Laboratory of Coal Liquefaction and Coal Chemical Technology, Shanghai 201203, China
| | - Weiyong Ying
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
46
|
Wang J, Huang S, Howard S, Muir BW, Wang H, Kennedy DF, Ma X. Elucidating Surface and Bulk Phase Transformation in Fischer–Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01104] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Wang
- Key Laboratory
for Green Chemical Technology of Ministry of Education, Collaborative
Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shouying Huang
- Key Laboratory
for Green Chemical Technology of Ministry of Education, Collaborative
Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaun Howard
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, CSIRO, Clayton, Victoria 3168, Australia
| | - Benjamin W. Muir
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, CSIRO, Clayton, Victoria 3168, Australia
| | - Hongyu Wang
- Key Laboratory
for Green Chemical Technology of Ministry of Education, Collaborative
Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danielle F. Kennedy
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, CSIRO, Clayton, Victoria 3168, Australia
| | - Xinbin Ma
- Key Laboratory
for Green Chemical Technology of Ministry of Education, Collaborative
Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Cui C, Luo Z, Yao J. Enhanced Catalysis of Pt3 Clusters Supported on Graphene for N–H Bond Dissociation. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report an in-depth study of catalytic N–H bond dissociation with typical platinum clusters on graphene supports. Among all the pristine graphene- and defective graphene-supported Pt clusters of different sizes that were studied, the Pt 3/G cluster possesses the highest reactivity and lowest activation barriers for each step of N–H dissociation in the decomposition of ammonia. In analyzing the reaction coordinates and projected density of states of the outermost orbitals, we found that the standing triangular Pt 3 on graphene creates prominent Lewis acid/base pair sites, which accommodate the adsorption and subsequent dissociation of *NH x . In comparison, Pt 1 lacks complementary active sites (CAS), causing it to be adverse to nucleophilic reactions, and in contrast, the Pt 13 cluster has weakened interactions and depleted charge density from the support, resulting in the elimination of the CAS effect. A stable pyramid-structured Pt 4 also develops Lewis acid/base sites, especially on defective graphene, but the density of states is still lower than the stand-up Pt 3/G. These findings strongly demonstrate the importance and necessity of cluster active sites for catalytic reactions of polar molecules, novel three-atoms metal cluster catalysis, and the selectivity and catalytic performance in the designing of ammonia fuel cells.
Collapse
|
48
|
Enhancement of Light Olefins Selectivity Over N-Doped Fischer-Tropsch Synthesis Catalyst Supported on Activated Carbon Pretreated with KMnO4. Catalysts 2019. [DOI: 10.3390/catal9060505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ammonium iron citrate was used as an iron precursor in order to prepare N-doped catalysts supported on KMnO4 pretreated activated carbon (10MnK-AC). Iron nitride was synthesized in company with the formation of α-Fe2O3 on 10MnK-AC. The characterizations of the catalysts show that nitrogen atoms were doped into iron lattice rather than the networks of the carbon support. The performance of Fischer-Tropsch synthesis to light olefins (FTO) suggest an improvement in O/P ratio (olefins to paraffins molar ratio of C2–C4) over the iron catalysts supported on 10MnK-AC. The further promotion of light olefins selectivity (up to 44.7%) was obtained over FeN-10MnK-AC catalyst owing to the collaborative contribution of the electron donor effect of nitrogen and the suppression effect on the second hydrogenation over 10MnK-AC support.
Collapse
|
49
|
Zhuo O, Yang L, Gao F, Xu B, Wu Q, Fan Y, Zhang Y, Jiang Y, Huang R, Wang X, Hu Z. Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and strategy. Chem Sci 2019; 10:6083-6090. [PMID: 31360413 PMCID: PMC6585598 DOI: 10.1039/c9sc01210a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
An iron carbonyl-mediated Ostwald-ripening-like growth mechanism of an FexCy active phase in Fischer–Tropsch synthesis is firstly revealed by in situ mass-spectrometric and theoretical analysis.
Fischer–Tropsch synthesis of lower olefins (FTO) is a classical yet modern topic of great significance in which the supported Fe-based nanoparticles are the most promising catalysts. The performance deterioration of catalysts is a big challenge due to the instability of the nanosized active phase of iron carbides. Herein, by in situ mass spectrometry, theoretical analysis, and atmospheric- and high-pressure experimental examinations, we revealed the Ostwald-ripening-like growth mechanism of the active phase of iron carbides in FTO, which involves the cyclic formation–decomposition of iron carbonyl intermediates to transport iron species from small particles to large ones. Accordingly, by suppressing the formation of iron carbonyl species with a high-N-content carbon support, the size and structure of the active phase were regulated and stabilized, and durable iron-based catalysts were conveniently obtained with the highest selectivity for lower olefins up to 54.1%. This study provides a practical strategy for exploring advanced FTO catalysts.
Collapse
Affiliation(s)
- Ou Zhuo
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Fujie Gao
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Yu Zhang
- School of Physics , Nanjing University , Nanjing 210093 , China
| | - Yufei Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Runsheng Huang
- School of Physics , Nanjing University , Nanjing 210093 , China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ; ;
| |
Collapse
|
50
|
Liu J, Li Z, Zhang X, Otake KI, Zhang L, Peters AW, Young MJ, Bedford NM, Letourneau SP, Mandia DJ, Elam JW, Farha OK, Hupp JT. Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04828] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron W. Peters
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthias J. Young
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Steven P. Letourneau
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - David J. Mandia
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Jeffrey W. Elam
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|