1
|
Gäßler M, Stahl J, Schowalter M, Pokhrel S, Rosenauer A, Mädler L, Güttel R. The Impact of Support Material of Cobalt‐Based Catalysts Prepared by Double Flame Spray Pyrolysis on CO2 Methanation Dynamics. ChemCatChem 2022. [DOI: 10.1002/cctc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Max Gäßler
- Ulm University: Universitat Ulm Institute of Chemical Engineering GERMANY
| | - Jakob Stahl
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Marco Schowalter
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Suman Pokhrel
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Andreas Rosenauer
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Lutz Mädler
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Robert Güttel
- Universitat Ulm Institute of Chemical Process Engineering Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
2
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Wang Z, Chen K, Jiang Y, Trébosc J, Yang W, Amoureux JP, Hung I, Gan Z, Baiker A, Lafon O, Huang J. Revealing Brønsted Acidic Bridging SiOHAl Groups on Amorphous Silica-Alumina by Ultrahigh Field Solid-State NMR. J Phys Chem Lett 2021; 12:11563-11572. [PMID: 34806885 PMCID: PMC9162276 DOI: 10.1021/acs.jpclett.1c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amorphous silica-aluminas (ASAs) are important acidic catalysts and supports for many industrially essential and sustainable processes. The identification of surface acid sites with their local structures on ASAs is of critical importance for tuning their catalytic properties but still remains a great challenge and is under debate. Here, ultrahigh magnetic field (35.2 T) 27Al-{1H} D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation) two-dimensional NMR experiments demonstrate two types of Brønsted acid sites in ASA catalysts. In addition to the known pseudobridging silanol acid sites, the use of ultrahigh field NMR provides the first direct experimental evidence for the existence of bridging silanol (BS: SiOHAl) acid sites in ASAs, which has been hotly debated in the past few decades. This discovery provides new opportunities for scientists and engineers to develop and apply ASAs in various reaction processes due to the significance of BS in chemical and fuel productions based on its strong Brønsted acidity.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, FR 2638, Federation Chevreul, F-59000 Lille, France
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Bruker Biospin, 34, rue de l'industrie, 67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zürich, HCI, CH-8093 Zürich, Switzerland
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Institut Universitaire de France
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Stahl J, Ilsemann J, Pokhrel S, Schowalter M, Tessarek C, Rosenauer A, Eickhoff M, Bäumer M, Mädler L. Comparing Co‐catalytic Effects of ZrO
x
, SmO
x
, and Pt on CO
x
Methanation over Co‐based Catalysts Prepared by Double Flame Spray Pyrolysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jakob Stahl
- Faculty of Production Engineering University of Bremen Badgasteiner Straße 1 28359 Bremen Germany
| | - Jan Ilsemann
- Institute of Applied and Physical Chemistry and Center for Environmental Research (UFT) University of Bremen Leobener Straße 6 28359 Bremen Germany
| | - Suman Pokhrel
- Faculty of Production Engineering University of Bremen Badgasteiner Straße 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Straße 3 28359 Bremen Germany
| | - Marco Schowalter
- Institute of Solid State Physics University of Bremen Otto-Hahn-Allee 1 28359 Bremen Germany
| | - Christian Tessarek
- Institute of Solid State Physics University of Bremen Otto-Hahn-Allee 1 28359 Bremen Germany
| | - Andreas Rosenauer
- Institute of Solid State Physics University of Bremen Otto-Hahn-Allee 1 28359 Bremen Germany
- MAPEX Center for Materials and Processes University of Bremen Postfach 330 440 Germany
| | - Martin Eickhoff
- Institute of Solid State Physics University of Bremen Otto-Hahn-Allee 1 28359 Bremen Germany
- MAPEX Center for Materials and Processes University of Bremen Postfach 330 440 Germany
| | - Marcus Bäumer
- Institute of Applied and Physical Chemistry and Center for Environmental Research (UFT) University of Bremen Leobener Straße 6 28359 Bremen Germany
- MAPEX Center for Materials and Processes University of Bremen Postfach 330 440 Germany
| | - Lutz Mädler
- Faculty of Production Engineering University of Bremen Badgasteiner Straße 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Straße 3 28359 Bremen Germany
- MAPEX Center for Materials and Processes University of Bremen Postfach 330 440 Germany
| |
Collapse
|
5
|
Li H, Erinmwingbovo C, Birkenstock J, Schowalter M, Rosenauer A, La Mantia F, Mädler L, Pokhrel S. Double Flame-Fabricated High-Performance AlPO 4/LiMn 2O 4 Cathode Material for Li-Ion Batteries. ACS APPLIED ENERGY MATERIALS 2021; 4:4428-4443. [PMID: 34060544 PMCID: PMC8157533 DOI: 10.1021/acsaem.1c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 06/02/2023]
Abstract
The spinel LiMn2O4 (LMO) is a promising cathode material for rechargeable Li-ion batteries due to its excellent properties, including cost effectiveness, eco-friendliness, high energy density, and rate capability. The commercial application of LiMn2O4 is limited by its fast capacity fading during cycling, which lowers the electrochemical performance. In the present work, phase-pure and crystalline LiMn2O4 spinel in the nanoscale were synthesized using single flame spray pyrolysis via screening 16 different precursor-solvent combinations. To overcome the drawback of capacity fading, LiMn2O4 was homogeneously mixed with different percentages of AlPO4 using versatile multiple flame sprays. The mixing was realized by producing AlPO4 and LiMn2O4 aerosol streams in two independent flames placed at 20° to the vertical axis. The structural and morphological analyses by X-ray diffraction indicated the formation of a pure LMO phase and/or AlPO4-mixed LiMn2O4. Electrochemical analysis indicated that LMO nanoparticles of 17.8 nm (d BET) had the best electrochemical performance among the pure LMOs with an initial capacity and a capacity retention of 111.4 mA h g-1 and 88% after 100 cycles, respectively. A further increase in the capacity retention to 93% and an outstanding initial capacity of 116.1 mA h g-1 were acquired for 1% AlPO4.
Collapse
Affiliation(s)
- Haipeng Li
- Faculty
of Production Engineering, University of
Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
- Leibniz
Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Collins Erinmwingbovo
- Energiespeicher-
und Energiewandlersysteme, Universität
Bremen, Bibliothekstr.
1, 28325 Bremen, Germany
| | - Johannes Birkenstock
- Central
Laboratory for Crystallography and Applied Materials, University of Bremen, 28359 Bremen, Germany
| | - Marco Schowalter
- Institute
of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Andreas Rosenauer
- Institute
of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Fabio La Mantia
- Energiespeicher-
und Energiewandlersysteme, Universität
Bremen, Bibliothekstr.
1, 28325 Bremen, Germany
| | - Lutz Mädler
- Faculty
of Production Engineering, University of
Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
- Leibniz
Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Suman Pokhrel
- Faculty
of Production Engineering, University of
Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
- Leibniz
Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
- Central
Laboratory for Crystallography and Applied Materials, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
6
|
Wang Z, Buechel R, Jiang Y, Wang L, Xu H, Castignolles P, Gaborieau M, Lafon O, Amoureux JP, Hunger M, Baiker A, Huang J. Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica-Alumina toward Biorefining. JACS AU 2021; 1:262-271. [PMID: 34467291 PMCID: PMC8395625 DOI: 10.1021/jacsau.0c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Amorphous silica-aluminas (ASAs) are important solid catalysts and supports for many industrially essential and sustainable processes, such as hydrocarbon transformation and biorefining. However, the wide distribution of acid strength on ASAs often results in undesired side reactions, lowering the product selectivity. Here we developed a strategy for the synthesis of a unique class of ASAs with unvarying strength of Brønsted acid sites (BAS) and Lewis acid sites (LAS) using double-flame-spray pyrolysis. Structural characterization using high-resolution transmission electron microscopy (TEM) and solid-state nuclear magnetic resonance (NMR) spectroscopy showed that the uniform acidity is due to a distinct nanostructure, characterized by a uniform interface of silica-alumina and homogeneously dispersed alumina domains. The BAS population density of as-prepared ASAs is up to 6 times higher than that obtained by classical methods. The BAS/LAS ratio, as well as the population densities of BAS and LAS of these ASAs, could be tuned in a broad range. In cyclohexanol dehydration, the uniform Brønsted acid strength provides a high selectivity to cyclohexene and a nearly linear correlation between acid site densities and cyclohexanol conversion. Moreover, the concerted action of these BAS and LAS leads to an excellent bifunctional Brønsted-Lewis acid catalyst for glucose dehydration, affording a superior 5-hydroxymethylfurfural yield.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert Buechel
- Particle
Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zuürich, Sonneggstrasse 3, CH-8092 Zuürich, Switzerland
| | - Yijiao Jiang
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lizhuo Wang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
| | - Haimei Xu
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Patrice Castignolles
- Australian
Centre for Research on Separation Science (ACROSS), School of Science, Western Sydney University, Parramatta, New South Wales 2150, Australia
| | - Marianne Gaborieau
- Australian
Centre for Research on Separation Science (ACROSS), School of Science, Western Sydney University, Parramatta, New South Wales 2150, Australia
| | - Olivier Lafon
- Univ.
Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse
et de Chimie du Solide, F-59000 Lille, France
- Institut
Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ.
Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse
et de Chimie du Solide, F-59000 Lille, France
- Bruker
Biospin, 34, rue de l’industrie, 67166 Wissembourg, France
- Riken
NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| | - Michael Hunger
- Institute
of Chemical Technology, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Alfons Baiker
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Bioscience, ETH Zürich, Hönggerberg, HCI,
Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Zhao Y, Wang L, Kochubei A, Yang W, Xu H, Luo Y, Baiker A, Huang J, Wang Z, Jiang Y. Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica-Alumina. J Phys Chem Lett 2021; 12:2536-2546. [PMID: 33683898 DOI: 10.1021/acs.jpclett.1c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alumina and its mixed oxides are popular industrial supports for emerging supported metal catalysts. Pentacoordinated Al (AlV) species are identified as key surface sites for anchoring and stabilizing metal single-site catalysts; however, AlV is rare in conventional amorphous silica-alumina (ASA). Recently, we have developed AlV-enriched ASA, which was applied as a support for the synthesis of Pt single-site catalysts in this work. Each preparation stage and the interaction between Pt and surface Al species were explored by 1H and 27Al solid-state nuclear magnetic resonance spectroscopy, and the formation of the dominant Pt single sites on the surface of AlV-enriched ASA was confirmed by high-angle annular dark-field imaging scanning transmission electron microscopy and energy dispersive spectroscopy line scanning. On the surface of supports without a significant AlV population (Pt/Al2O3 and Pt/SiO2), mainly Pt nanoparticles were formed. This indicates that AlV contributes to the strong metal-support interaction to stabilize the Pt single sites on Pt/ASA, which was characterized by diffuse reflectance infrared Fourier transform spectroscopy combined with CO adsorption, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. Pt single sites supported on AlV-enriched ASA exhibit excellent chemoselectivity in the hydrogenation of C═O groups, affording 2-3-fold higher yields compared to those of Pt nanoparticles supported on Al2O3 and SiO2.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Haimei Xu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Hönggerberg, HCI, Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zichun Wang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
8
|
Pokhrel S, Mädler L. Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2020; 34:13209-13224. [PMID: 33343081 PMCID: PMC7743895 DOI: 10.1021/acs.energyfuels.0c02220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Indexed: 05/15/2023]
Abstract
Flame spray pyrolysis of precursor-solvent combinations with high enthalpy density allows the design of functional nanoscale materials. Within the last two decades, flame spray pyrolysis was utilized to produce more than 500 metal oxide particulate materials for R&D and commercial applications. In this short review, the particle formation mechanism is described based on the micro-explosions observed in single droplet experiments for various precursor-solvent combinations. While layer fabrication is a key to successful industrial applications toward gas sensors, catalysis, and energy storage, the state-of-the-art technology of innovative in situ thermophoretic particle production and deposition technology is described. In addition, noble metal stabilized oxide matrices with tight chemical contact catalyze surface reactions for enhanced catalytic performance. The metal-support interaction that is vital for redox catalytic performance for various surface reactions is presented.
Collapse
Affiliation(s)
- Suman Pokhrel
- Faculty
of Production Engineering, University of
Bremen, Badgasteiner Strasse 1, 28359 Bremen, Germany
- Leibniz
Institute for Materials Engineering IWT, Badgasteiner Strasse 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Faculty
of Production Engineering, University of
Bremen, Badgasteiner Strasse 1, 28359 Bremen, Germany
- Leibniz
Institute for Materials Engineering IWT, Badgasteiner Strasse 3, 28359 Bremen, Germany
- Phone: +49
421 218-51200. Fax: +49 421 218-51211. E-mail:
| |
Collapse
|
9
|
Wang Z, Jiang Y, Stampfl C, Baiker A, Hunger M, Huang J. NMR Spectroscopic Characterization of Flame‐Made Amorphous Silica‐Alumina for Cyclohexanol and Glyceraldehyde Conversion. ChemCatChem 2019. [DOI: 10.1002/cctc.201901728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zichun Wang
- Department of Engineering Macquarie University Sydney NSW-2109 Australia
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sidney NSW-2006 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW-2109 Australia
| | | | - Alfons Baiker
- Department of Chemistry and Applied Bioscience ETH Zürich Zürich CH-8093 Switzerland
| | - Michael Hunger
- Institute of Chemical Technology University of Stuttgart Stuttgart D-70550 Germany
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sidney NSW-2006 Australia
| |
Collapse
|
10
|
Kim KD, Wang Z, Tao Y, Ling H, Yuan Y, Zhou C, Liu Z, Gaborieau M, Huang J, Yu A. The Comparative Effect of Particle Size and Support Acidity on Hydrogenation of Aromatic Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyung Duk Kim
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yongwen Tao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Huajuan Ling
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yuan Yuan
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Cuifeng Zhou
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zongwen Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Marianne Gaborieau
- Molecular Medicine Research Group School of Science and Health Australian Centre for Research of Separation Science (ACROSS) Western Sydney University Parramatta NSW 2150 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Aibing Yu
- Laboratory for Simulation and Modelling of Particulate Systems Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
11
|
Afrin S, Bollini P. Cerium Oxide Catalyzes the Selective Vapor-Phase Hydrodeoxygenation of Anisole to Benzene at Ambient Pressures of Hydrogen. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sadia Afrin
- Department of Chemical & Biomolecular Engineering, University of Houston, 4726 Calhoun Rd., Houston, Texas 77004, United States
| | - Praveen Bollini
- Department of Chemical & Biomolecular Engineering, University of Houston, 4726 Calhoun Rd., Houston, Texas 77004, United States
| |
Collapse
|
12
|
Wang Z, Jiang Y, Jin F, Stampfl C, Hunger M, Baiker A, Huang J. Strongly enhanced acidity and activity of amorphous silica–alumina by formation of pentacoordinated AlV species. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Horlyck J, Pokhrel S, Lovell E, Bedford NM, Mädler L, Amal R, Scott J. Unifying double flame spray pyrolysis with lanthanum doping to restrict cobalt–aluminate formation in Co/Al 2O 3 catalysts for the dry reforming of methane. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01293a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Atomic-sized lanthanum doping via double flame spray pyrolysis leads to remarkable dry reforming of methane performance.
Collapse
Affiliation(s)
- Jonathan Horlyck
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Suman Pokhrel
- Faculty of Production Engineering
- University of Bremen
- 28359 Bremen
- Germany
- Leibniz Institute for Materials Engineering IWT
| | - Emma Lovell
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nicholas M. Bedford
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Lutz Mädler
- Faculty of Production Engineering
- University of Bremen
- 28359 Bremen
- Germany
- Leibniz Institute for Materials Engineering IWT
| | - Rose Amal
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jason Scott
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
14
|
Sheng Y, Kraft M, Xu R. Emerging applications of nanocatalysts synthesized by flame aerosol processes. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Meierhofer F, Li H, Gockeln M, Kun R, Grieb T, Rosenauer A, Fritsching U, Kiefer J, Birkenstock J, Mädler L, Pokhrel S. Screening Precursor-Solvent Combinations for Li 4Ti 5O 12 Energy Storage Material Using Flame Spray Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37760-37777. [PMID: 28960057 DOI: 10.1021/acsami.7b11435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development and industrial application of advanced lithium based energy-storage materials are directly related to the innovative production techniques and the usage of inexpensive precursor materials. Flame spray pyrolysis (FSP) is a promising technique that overcomes the challenges in the production processes such as scalability, process control, material versatility, and cost. In the present study, phase pure anode material Li4Ti5O12 (LTO) was designed using FSP via extensive systematic screening of lithium and titanium precursors dissolved in five different organic solvents. The effect of precursor and solvent parameters such as chemical reactivity, boiling point, and combustion enthalpy on the particle formation either via gas-to-particle (evaporation/nucleation/growth) or via droplet-to-particle (precipitation/incomplete evaporation) is discussed. The presence of carboxylic acid in the precursor solution resulted in pure (>95 mass %) and homogeneous LTO nanoparticles of size 4-9 nm, attributed to two reasons: (1) stabilization of water sensitive metal alkoxides precursor and (2) formation of volatile carboxylates from lithium nitrate evidenced by attenuated total reflection Fourier transform infrared spectroscopy and single droplet combustion experiments. In contrast, the absence of carboxylic acids resulted in larger inhomogeneous crystalline titanium dioxide (TiO2) particles with significant reduction of LTO content as low as ∼34 mass %. In-depth particle characterization was performed using X-ray diffraction with Rietveld refinement, thermogravimetric analysis coupled with differential scanning calorimetry and mass spectrometry, gas adsorption, and vibrational spectroscopy. High-resolution transmission electron microscopy of the LTO product revealed excellent quality of the particles obtained at high temperature. In addition, high rate capability and efficient charge reversibility of LTO nanoparticles demonstrate the vast potential of inexpensive gas-phase synthesis for energy-storage materials.
Collapse
Affiliation(s)
- Florian Meierhofer
- Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
| | - Haipeng Li
- Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
| | - Michael Gockeln
- Innovative Sensor and Functional Materials Research Group, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
| | - Robert Kun
- Innovative Sensor and Functional Materials Research Group, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, IFAM , 28359 Bremen, Germany
| | - Tim Grieb
- Institute of Solid State Physics, Electron Microscopy, University of Bremen , 28359 Bremen, Germany
| | - Andreas Rosenauer
- Institute of Solid State Physics, Electron Microscopy, University of Bremen , 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Udo Fritsching
- Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Johannes Kiefer
- Technische Thermodynamik, University of Bremen , 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Johannes Birkenstock
- Central Laboratory for Crystallography and Applied Materials, University of Bremen , 28359 Bremen, Germany
| | - Lutz Mädler
- Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen , 28359 Bremen, Germany
| |
Collapse
|
16
|
Ichikawa T, Netsu M, Mizuno M, Mizusaki T, Takagi Y, Sawama Y, Monguchi Y, Sajiki H. Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki-Miyaura Reaction using (Hetero)aryl Chlorides and Chemoselective Hydrogenation. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tomohiro Ichikawa
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Moeko Netsu
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Masahiro Mizuno
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Tomoteru Mizusaki
- Chemical Catalysts R & D Department, Catalyst Development Center; N.E. Chemcat Corporation; 25-3 Kojindaira Bando, Ibaraki 306-0608 Japan
| | - Yukio Takagi
- Chemical Catalysts R & D Department, Catalyst Development Center; N.E. Chemcat Corporation; 25-3 Kojindaira Bando, Ibaraki 306-0608 Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Yasunari Monguchi
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
17
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
18
|
Sun B, Wang X, Liao YP, Ji Z, Chang CH, Pokhrel S, Ku J, Liu X, Wang M, Dunphy DR, Li R, Meng H, Mädler L, Brinker CJ, Nel AE, Xia T. Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure-Activity Relationships and Biopersistence in the Lung. ACS NANO 2016; 10:8054-66. [PMID: 27483033 PMCID: PMC5214959 DOI: 10.1021/acsnano.6b04143] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Contrary to the notion that the use of fumed silica in consumer products can "generally (be) regarded as safe" (GRAS), the high surface reactivity of pyrogenic silica differs from other forms of synthetic amorphous silica (SAS), including the capacity to induce membrane damage and acute proinflammatory changes in the murine lung. In addition, the chain-like structure and reactive surface silanols also allow fumed silica to activate the NLRP3 inflammasome, leading to IL-1β production. This pathway is known to be associated with subchronic inflammation and profibrogenic effects in the lung by α-quartz and carbon nanotubes. However, different from the latter materials, bolus dose instillation of 21 mg/kg fumed silica did not induce sustained IL-1β production or subchronic pulmonary effects. In contrast, the NLRP3 inflammasome pathway was continuously activated by repetitive-dose administration of 3 × 7 mg/kg fumed silica, 1 week apart. We also found that while single-dose exposure failed to induce profibrotic effects in the lung, repetitive dosing can trigger increased collagen production, even at 3 × 3 mg/kg. The change between bolus and repetitive dosing was due to a change in lung clearance, with recurrent dosing leading to fumed silica biopersistence, sustained macrophage recruitment, and activation of the NLRP3 pathway. These subchronic proinflammatory effects disappeared when less surface-reactive titanium-doped fumed silica was used for recurrent administration. All considered, these data indicate that while fumed silica may be regarded as safe for some applications, we should reconsider the GRAS label during repetitive or chronic inhalation exposure conditions.
Collapse
Affiliation(s)
- Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Justine Ku
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Darren R. Dunphy
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - C. Jeffrey Brinker
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Self-Assembled Materials Department, Sandia National Laboratories, PO Box 5800 MS1349, Albuquerque, New Mexico 87185, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Address correspondence to or
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Address correspondence to or
| |
Collapse
|
19
|
Schubert M, Pokhrel S, Thomé A, Zielasek V, Gesing TM, Roessner F, Mädler L, Bäumer M. Highly active Co–Al2O3-based catalysts for CO2 methanation with very low platinum promotion prepared by double flame spray pyrolysis. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01252c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alumina supported Co catalysts are often promoted with noble metals to improve their reducibility and provide a high number of metallic Co sites. A flame spray pyrolysis based approach for the preparation is described which allows a fine dispersion of Pt so that very low concentrations are necessary.
Collapse
Affiliation(s)
- Miriam Schubert
- Institute of Applied and Physical Chemistry
- University of Bremen
- Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT)
- Department of Production Engineering
- University of Bremen
- Germany
| | - Andreas Thomé
- Institute of Chemistry
- Carl v. Ossietzky University of Oldenburg
- Germany
| | - Volkmar Zielasek
- Institute of Applied and Physical Chemistry
- University of Bremen
- Germany
- MAPEX Center for Materials and Processes
- University of Bremen
| | - Thorsten M. Gesing
- Solid State Chemical Crystallography
- Institute of Inorganic Chemistry and Crystallography
- University of Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Frank Roessner
- Institute of Chemistry
- Carl v. Ossietzky University of Oldenburg
- Germany
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT)
- Department of Production Engineering
- University of Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Marcus Bäumer
- Institute of Applied and Physical Chemistry
- University of Bremen
- Germany
- MAPEX Center for Materials and Processes
- University of Bremen
| |
Collapse
|