1
|
Laeim H, Molahalli V, Prajongthat P, Pattanaporkratana A, Pathak G, Phettong B, Hongkarnjanakul N, Chattham N. Porosity Tunable Metal-Organic Framework (MOF)-Based Composites for Energy Storage Applications: Recent Progress. Polymers (Basel) 2025; 17:130. [PMID: 39861203 PMCID: PMC11768229 DOI: 10.3390/polym17020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated. These advantages stem from their high specific surface area, highly adjustable structure, and multifunctional nature. MOFs are promising porous materials for energy storage and conversion technologies, according to research on their many applications. Moreover, MOFs have served as sacrificial materials for the synthesis of different nanostructures for energy applications and as support substrates for metals, metal oxides, semiconductors, and complexes. One of the most intriguing characteristics of MOFs is their porosity, which permits space on the micro- and meso-scales, revealing and limiting their functions. The main goals of MOF research are to create high-porosity MOFs and develop more efficient activation techniques to preserve and access their pore space. This paper examines the porosity tunable mixed and hybrid MOF, pore architecture, physical and chemical properties of tunable MOF, pore conditions, market size of MOF, and the latest development of MOFs as precursors for the synthesis of different nanostructures and their potential uses.
Collapse
Affiliation(s)
- Huddad Laeim
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (H.L.); (A.P.)
| | - Vandana Molahalli
- Department of Physics, B.M.S. College of Engineering, Bull Temple Road, Bengaluru 560019, India;
- Centre for Nano-Materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| | - Pongthep Prajongthat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Apichart Pattanaporkratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (H.L.); (A.P.)
| | - Govind Pathak
- Geo-Information and Space Technology Development Agency (GISTDA), Sriracha 20230, Thailand; (G.P.); (B.P.); (N.H.)
| | - Busayamas Phettong
- Geo-Information and Space Technology Development Agency (GISTDA), Sriracha 20230, Thailand; (G.P.); (B.P.); (N.H.)
| | - Natthawat Hongkarnjanakul
- Geo-Information and Space Technology Development Agency (GISTDA), Sriracha 20230, Thailand; (G.P.); (B.P.); (N.H.)
| | - Nattaporn Chattham
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (H.L.); (A.P.)
| |
Collapse
|
2
|
Guerrero R, Lemir ID, Carrasco S, Fernández-Ruiz C, Kavak S, Pizarro P, Serrano DP, Bals S, Horcajada P, Pérez Y. Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH 2 Catalysts for Selective Olefin Hydrogenation under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669483 PMCID: PMC11082845 DOI: 10.1021/acsami.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Collapse
Affiliation(s)
- Raúl
M. Guerrero
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Ignacio D. Lemir
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Sergio Carrasco
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Carlos Fernández-Ruiz
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Safiyye Kavak
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Pizarro
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - David P. Serrano
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - Sara Bals
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Yolanda Pérez
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- COMET-NANO
Group, ESCET, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| |
Collapse
|
3
|
Wang H, Zhang X, Zhang W, Zhou M, Jiang HL. Heteroatom-Doped Ag 25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202401443. [PMID: 38407530 DOI: 10.1002/anie.202401443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Yuan PX, Song SS, Zhan J, Chen C, Wang AJ, Feng JJ. Self-enhanced Electrochemiluminescence Luminophore Based on Pd Nanocluster-Anchored Metal Organic Frameworks via Ion Annihilation for Sensitive Cell Assay of Human Lung Cancer. Anal Chem 2023; 95:18572-18578. [PMID: 38064592 DOI: 10.1021/acs.analchem.3c04423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Electrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer. The enhanced mechanism through ion annihilation was critically proved by controlled experiments and density functional theory (DFT) calculations. Based on the above, a "signal off" ECL biosensor was built by assembly of tyrosine kinase 7 (PTK-7) aptamer (Apt) on the established sensing platform for analysis of human lung cancer cells (A549). The built sensor showed a lower detection limit of 8 cells mL-1, achieving the single-cell detection. This work reported a self-enhanced strategy for synthesis of advanced ECL emitters, combined by exploring the ECL biosensing devices in the single-cell analysis of cancers.
Collapse
Affiliation(s)
- Pei-Xin Yuan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Shu Song
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiale Zhan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Can Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Hu S, Xie C, Xu YP, Chen X, Gao ML, Wang H, Yang W, Xu ZN, Guo GC, Jiang HL. Selectivity Control in the Direct CO Esterification over Pd@UiO-66: The Pd Location Matters. Angew Chem Int Ed Engl 2023; 62:e202311625. [PMID: 37656120 DOI: 10.1002/anie.202311625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chenfan Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu-Ping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuelu Chen
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Wang S, Ai Z, Niu X, Yang W, Kang R, Lin Z, Waseem A, Jiao L, Jiang HL. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302512. [PMID: 37421606 DOI: 10.1002/adma.202302512] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwen Ai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinwei Niu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
8
|
Wen L, Sun K, Liu X, Yang W, Li L, Jiang HL. Electronic State and Microenvironment Modulation of Metal Nanoparticles Stabilized by MOFs for Boosting Electrocatalytic Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210669. [PMID: 36871151 DOI: 10.1002/adma.202210669] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Modulation of the local electronic structure and microenvironment of catalytic metal sites plays a critical role in electrocatalysis, yet remains a grand challenge. Herein, PdCu nanoparticles with an electron rich state are encapsulated into a sulfonate functionalized metal-organic framework, UiO-66-SO3 H (simply as UiO-S), and their microenvironment is further modulated by coating a hydrophobic polydimethylsiloxane (PDMS) layer, affording PdCu@UiO-S@PDMS. This resultant catalyst presents high activity toward the electrochemical nitrogen reduction reaction (NRR, Faraday efficiency: 13.16%, yield: 20.24 µg h-1 mgcat. -1 ), far superior to the corresponding counterparts. Experimental and theoretical results jointly demonstrate that the protonated and hydrophobic microenvironment supplies protons for the NRR yet suppresses the competitive hydrogen evolution reaction reaction, and electron-rich PdCu sites in PdCu@UiO-S@PDMS are favorable to formation of the N2 H* intermediate and reduce the energy barrier of NRR, thereby accounting for its good performance.
Collapse
Affiliation(s)
- Lulu Wen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kang Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Kong N, Du H, Li Z, Lu T, Xia S, Tang Z, Song S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Wang H, Liu X, Yang W, Mao G, Meng Z, Wu Z, Jiang HL. Surface-Clean Au 25 Nanoclusters in Modulated Microenvironment Enabled by Metal–Organic Frameworks for Enhanced Catalysis. J Am Chem Soc 2022; 144:22008-22017. [DOI: 10.1021/jacs.2c09136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- He Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Xiyuan Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Guangyang Mao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
11
|
Guo T, Bao S, Guo J, Chen W, Wen L. Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zahid M, Ismail A, Sohail M, Zhu Y. Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH 2. J Colloid Interface Sci 2022; 628:141-152. [PMID: 35987153 DOI: 10.1016/j.jcis.2022.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
The high selectivity in the hydrogenation reactions of α, β-unsaturated aldehydes is always a demanding task. Precious Pt-based catalysts play a pivotal role in selective catalytic hydrogenation of α, β-unsaturated aldehydes, but controlling the selectivity is still a great challenge. Herein, the Pt nanoparticles were encaged within the mesopores of amines (-NH2) functionalized MOFs via polyol reduction method as an efficient approach to enhance the selectivity of desired carbonyls bond reduction. The as-prepared 3-Pt/MOF-NH2(x) catalysts retained the inherent properties of MOF-NH2(x) supports such as crystallinity, surface area, pore texture, and surface acidity. Remarkably, the amines modified MOFs supported Pt-based catalysts (3-Pt/MOF-NH2(x)) improved the selective hydrogenation of carbonyls (CO) bond in cinnamaldehyde (CAL) and Furfural (FFL) with a higher selectivity (≥80 %) under mild conditions as compared to other reported catalysts. The improved catalytic performance for the selective hydrogenation of carbonyls (CO) bond is credited to the nitrogen (N) heteroatom of the amines group existing in the skeleton of MOFs and somewhat to the steric effect induced by mesopores of MOFs. The N heteroatom not only helps in the high uniform dispersion and stabilization of small-sized Pt nanoparticles (≈2nm) but also adjust the electron movement (electronic density) via synergistic effect resulting from the N to the vacant d-orbital of active Pt nanoparticles confined within MOFs, leading to more new interfacial electrophilic and nucleophilic sites, which are beneficial for selective hydrogenation of CO bond. Besides, the steric effect induced by mesopores of MOFs, encaging Pt nanoparticles, can also enhance the selective adsorption of the CO bond to interact with the catalyst active sites, resulting in higher selective hydrogenation of CO bond.
Collapse
Affiliation(s)
- Muhammad Zahid
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China; Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ahmed Ismail
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Yujun Zhu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
13
|
Sun Z, Sun K, Gao M, Metin Ö, Jiang H. Optimizing Pt Electronic States through Formation of a Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202206108. [DOI: 10.1002/anie.202206108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Zi‐Xuan Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Kang Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Ming‐Liang Gao
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Önder Metin
- Department of Chemistry College of Sciences Koç University Istanbul 34450 Turkey
| | - Hai‐Long Jiang
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| |
Collapse
|
14
|
Sun ZX, Sun K, Gao ML, Metin Ö, Jiang HL. Optimizing Pt Electronic States through Formation of Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zi-Xuan Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Kang Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Ming-Liang Gao
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Önder Metin
- Koç University: Koc Universitesi Chemistry TURKEY
| | - Hai-Long Jiang
- University of Science and Technology of China (USTC) Department of Chemistry No. 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
15
|
Khosravi F, Gholinejad M, Sansano JM, Luque R. Bimetallic Fe‐Cu Metal Organic Frameworks for room temperature catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faezeh Khosravi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Jose M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universidad de Alicante Alicante Spain
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C‐3) Córdoba Spain
- People’s Friendship University of Russia (RUDN University) Moscow Russian Federation
| |
Collapse
|
16
|
Wu Y, Feng X, Zhai Q, Wang H, Jiang H, Ren Y. Metal-Organic Framework Surface Functionalization Enhancing the Activity and Stability of Palladium Nanoparticles for Carbon-Halogen Bond Activation. Inorg Chem 2022; 61:6995-7004. [PMID: 35482971 DOI: 10.1021/acs.inorgchem.2c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported metal nanocatalyst is one of the efficient tools for organic transformations. However, catalyst deactivation caused by the migration, aggregation, and leaching of active metal species in the reaction process remains challenging. Herein, a metal-organic framework (MOF), MIL-101, was employed to covalently graft the PPh3 ligand on its surface and then supported palladium nanoparticles (Pd NPs), affording Pd/MIL-101-PPh3. A variety of spectral characterizations and DFT calculation reveal that there is an electron-donating effect of the MOF surface PPh3 toward Pd NPs, which markedly boosts the activation of the carbon-halogen bond in aryl halides. Consequently, Pd/MIL-101-PPh3 exhibits excellent activity for the three-component reaction of 2-iodoaniline, CO2, and isocyanide, as well as Suzuki-Miyaura and Heck coupling reactions, far exceeding amino-functionalized Pd/MIL-101-NH2, naked Pd/MIL-101, and other commercial-supported Pd catalysts. Furthermore, Pd/MIL-101-PPh3 can also frustrate the migration, aggregation, and leaching of reactive Pd species in the reaction process due to the molecular fence effect generated by MOF surface functionalization.
Collapse
Affiliation(s)
- Yida Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Xiao Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Qixiang Zhai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Haosen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| |
Collapse
|
17
|
Sadakiyo M. Support effects of metal-organic frameworks in heterogeneous catalysis. NANOSCALE 2022; 14:3398-3406. [PMID: 35179154 DOI: 10.1039/d1nr07659k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Catalytic support effects have been widely studied as a key factor for creating highly active heterogeneous catalysts with limited amounts of rare metal elements. Recently, support effects of metal-organic frameworks (MOFs) started to be investigated using their wide variety in pore size, electronic state, and selective adsorption property. Three types of support effects, namely molecular sieving, charge transfer, and substrate adsorption effects, have been reported on composite catalysts of metal nanoparticles supported on MOFs (M/MOFs). The current reports on heterogeneous catalysis in M/MOFs clearly demonstrated that both catalytic activity and product selectivity can be drastically enhanced and modulated by MOF supports through these support effects, and that application of MOFs as the supports is beneficial for creating novel high performance catalysts with metal nanoparticles. This minireview summarizes the catalytic properties and support effects observed on M/MOFs.
Collapse
Affiliation(s)
- Masaaki Sadakiyo
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
18
|
Cao LM, Zhang J, Zhang XF, He CT. Confinement synthesis in porous molecule-based materials: a new opportunity for ultrafine nanostructures. Chem Sci 2022; 13:1569-1593. [PMID: 35282621 PMCID: PMC8827140 DOI: 10.1039/d1sc05983a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
A balance between activity and stability is greatly challenging in designing efficient metal nanoparticles (MNPs) for heterogeneous catalysis. Generally, reducing the size of MNPs to the atomic scale can provide high atom utilization, abundant active sites, and special electronic/band structures, for vastly enhancing their catalytic activity. Nevertheless, due to the dramatically increased surface free energy, such ultrafine nanostructures often suffer from severe aggregation and/or structural degradation during synthesis and catalysis, greatly weakening their reactivities, selectivities and stabilities. Porous molecule-based materials (PMMs), mainly including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and porous organic polymers (POPs) or cages (POCs), exhibit high specific surface areas, high porosity, and tunable molecular confined space, being promising carriers or precursors to construct ultrafine nanostructures. The confinement effects of their nano/sub-nanopores or specific binding sites can not only effectively limit the agglomeration and growth of MNPs during reduction or pyrolysis processes, but also stabilize the resultant ultrafine nanostructures and modulate their electronic structures and stereochemistry in catalysis. In this review, we highlight the latest advancements in the confinement synthesis in PMMs for constructing atomic-scale nanostructures, such as ultrafine MNPs, nanoclusters, and single atoms. Firstly, we illustrated the typical confinement methods for synthesis. Secondly, we discussed different confinement strategies, including PMM-confinement strategy and PMM-confinement pyrolysis strategy, for synthesizing ultrafine nanostructures. Finally, we put forward the challenges and new opportunities for further applications of confinement synthesis in PMMs.
Collapse
Affiliation(s)
- Li-Ming Cao
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Jia Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Xue-Feng Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Chun-Ting He
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
19
|
Guo T, Huang Y, Zhang N, Chen T, Wang C, Xing X, Lu Z, Wen L. Modulating the Chemical Microenvironment of Pt Nanoparticles within Ultrathin Nanosheets of Isoreticular MOFs for Enhanced Catalytic Activity. Inorg Chem 2022; 61:2538-2545. [PMID: 35080382 DOI: 10.1021/acs.inorgchem.1c03425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic activity of metal nanoparticles (MNPs) embedded in metal-organic frameworks (MOFs) is affected by the electronic interactions between MNPs and MOFs. In this report, we fabricate a series of ultrathin nanosheets of isoreticular MOFs (NMOFs) with different metal nodes as supports and successfully encapsulate Pt NPs within these NMOFs, affording Pt@NMOF-Co, Pt@NMOF-Ni1Co1, Pt@NMOF-Ni3Co1, and Pt@NMOF-Ni nanocomposites. The microchemical environment on the surface of Pt NPs can be modulated by varying the metal nodes of NMOFs. The catalytic activity of the nanocomposites toward liquid-phase hydrogenation of 1-hexene shows obvious difference, in which Pt@NMOF-Ni possesses the highest activity followed by Pt@NMOF-Ni3Co1, Pt@NMOF-Ni1Co1, and Pt@NMOF-Co in a decreasing order of activity. Obviously, increasing gradually the amount of Ni2+ nodes in the carriers can improve the catalytic activity. The difference of catalytic activity of the nanocomposites might originate from the distinct electron interactions between Pt NPs and NMOFs, as ascertained by X-ray photoelectron spectroscopy spectrum and density functional theory calculations. This work provides a rare example that the catalytic activity of MNPs could be controlled by accurately regulating the microchemical environment using ultrathin NMOFs as supports.
Collapse
Affiliation(s)
- Taolian Guo
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yi Huang
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nannan Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tian Chen
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chao Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xing Xing
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Lili Wen
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
20
|
Zhao H, Li B, Zhao H, Li J, Kou J, Zhu H, Liu B, Li Z, Sun X, Dong Z. Construction of a sandwich-like UiO-66-NH 2@Pt@mSiO 2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. J Colloid Interface Sci 2022; 606:1524-1533. [PMID: 34500155 DOI: 10.1016/j.jcis.2021.08.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. Herein, we designed the novel sandwich-like metal-organic-framework composite nanocatalyst UiO-66-NH2@Pt@mSiO2 using UiO-66-NH2@Pt as the core, and mesoporous SiO2 as the shell. The obtained UiO-66-NH2@Pt@mSiO2 catalyst shows a well-defined structure and interface, and the protection of the mSiO2 shell can efficiently prevent Pt NPs from aggregating and leaching in the reaction process. In the one-pot cascade reaction of nitroarenes and aromatic aldehydes to secondary amines, UiO-66-NH2@Pt@mSiO2 shows excellent catalytic performance due to acid catalytic sites provided by UiO-66-NH2 and Pt hydrogenation catalytic sites. Furthermore, the porous structure of the UiO-66-NH2@Pt@mSiO2 catalyst also enhances reactant diffusion and improves the reaction efficiency. This work provides a new avenue to meticulously design well-defined nanocatalysts with superior catalytic performance and stability for challenging reactions.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huacheng Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Bing Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Zhenhua Li
- Key Laboratory of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, Northwest Minzu University, Lanzhou 730030, PR China.
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
21
|
Ling L, Yang W, Yan P, Wang M, Jiang H. Light‐Assisted CO
2
Hydrogenation over Pd
3
Cu@UiO‐66 Promoted by Active Sites in Close Proximity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Li Ling
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Weijie Yang
- School of Energy and Power Engineering North China Electric Power University Baoding Hebei 071003 P.R. China
| | - Peng Yan
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Min Wang
- School of Energy and Power Engineering North China Electric Power University Baoding Hebei 071003 P.R. China
| | - Hai‐Long Jiang
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| |
Collapse
|
22
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
23
|
Ghosh S, Nagarjun N, Alam M, Dhakshinamoorthy A, Biswas S. Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kiani A, Alinezhad H, Ghasemi S. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Ling LL, Yang W, Yan P, Wang M, Jiang HL. Light-Assisted CO2 Hydrogenation over Pd3Cu@UiO-66 Promoted by Active Sites in Close Proximity. Angew Chem Int Ed Engl 2021; 61:e202116396. [PMID: 34931422 DOI: 10.1002/anie.202116396] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/05/2022]
Abstract
CO 2 hydrogenation to methanol has attracted great interest while suffering from low conversion and high energy input. Herein, tiny Pd 3 Cu nanoparticles are confined into a metal-organic framework (MOF), UiO-66, to afford Pd 3 Cu@UiO-66 for CO 2 hydrogenation. Remarkably, it achieves a methanol production rate of 340 µmol g -1 h -1 at 200 °C and 1.25 MPa under light irradiation, far surpassing that in the dark. The photo-generated electron transfer from the MOF to antibonding orbitals of CO 2 * promotes CO 2 activation and HCOO* formation. In addition, the Pd 3 Cu microenvironment plays a critical role in CO 2 hydrogenation. In contrast to the MOF-supported Pd 3 Cu (Pd 3 Cu/UiO-66), the Pd 3 Cu@UiO-66 exhibits a much higher methanol production rate due to the close proximity between CO 2 and H 2 activation sites, which greatly facilitates their interaction and conversion. This work provides a new avenue to the integration of solar and thermal energy for efficient CO 2 hydrogenation under moderate conditions.
Collapse
Affiliation(s)
- Li-Li Ling
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Weijie Yang
- North China Electric Power University - Baoding Campus, School of Energy and Power Engineering, CHINA
| | - Peng Yan
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Min Wang
- North China Electric Power University - Baoding Campus, School of Energy and Power Engineering, CHINA
| | - Hai-Long Jiang
- University of Science and Technology of China (USTC), Department of Chemistry, No. 96 Jinzhai Road, 230026, Hefei, CHINA
| |
Collapse
|
26
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
27
|
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007442. [PMID: 34050572 DOI: 10.1002/adma.202007442] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their excellent component tunability, high surface area, adjustable pore size, and uniform active sites. However, the overwhelming number of MOF materials and complex structures has brought difficulties for researchers to select and construct suitable MOF-based catalysts. Herein, a programmable design strategy is presented based on metal ions/clusters, organic ligands, modifiers, functional materials, and post-treatment modules, which can be used to design the components, structures, and morphologies of MOF catalysts for different reactions. By establishing the corresponding relationship between these modules and functions, researchers can accurately and efficiently construct heterometallic MOFs, chiral MOFs, conductive MOFs, hierarchically porous MOFs, defective MOFs, MOF composites, and MOF-derivative catalysts. Further, this programmable design approach can also be used to regulate the physical/chemical microenvironments of pristine MOFs, MOF composites, and MOF-derivative materials for heterogeneous catalysis, electrocatalysis, and photocatalysis. Finally, the challenging issues and opportunities for the future research of MOF-based catalysts are discussed. Overall, the modular design concept of this review can be applied as a potent tool for exploring the structure-activity relationships and accelerating the on-demand design of multicomponent catalysts.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
28
|
Qi Y, Wang B, Fan M, Li D, Zhang R. C2H2 semi-hydrogenation on the metal M (M = Cu, Ag, Au) alloyed single-atom Pd catalysts: Effects of Pd coordination number and environment on the catalytic performance. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Qin P, Yan J, Zhang W, Pan T, Zhang X, Huang W, Zhang W, Fu Y, Shen Y, Huo F. Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal-Organic Framework Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38325-38332. [PMID: 34365788 DOI: 10.1021/acsami.1c10140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal nanoparticles (MNPs) have exhibited superior catalytic performance in various heterogeneous catalysis applications, which is usually influenced or even determined by the physicochemical properties of their porous supports. It is well acknowledged that understanding the regulation mechanism of supports is an important prerequisite to predict the catalytic performance of supported MNPs as well as the development of advanced catalysts. Here, we demonstrated that different transition-metal clusters (from Group IIIB to Group IIB) within metal-organic frameworks (MOFs) could accurately regulate the surface electronic status of supported platinum nanoparticles (Pt NPs), and the Pt/MOF composites showed a periodic activity trend in hydrogenation of 1-hexene. A strong correlation was found between the catalytic activity of Pt/MOF composites and the number of electrons in their outmost d orbitals of the transition-metal species, suggesting that the latter could play the role of prediction descriptor. Furthermore, this descriptor can be extended to predict the hydrogenation activity of more Pt/MOF composites and provide an important guiding principle for the design of supported MNPs catalysts.
Collapse
Affiliation(s)
- Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Junyang Yan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
30
|
Zhang B, Li X, Chen J, Liu T, Cruz A, Pei Y, Chen M, Wu X, Huang W. Tandem Synthesis of ϵ‐Caprolactam from Cyclohexanone by an Acidified Metal‐organic Framework. ChemCatChem 2021. [DOI: 10.1002/cctc.202100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Biying Zhang
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Xinle Li
- Department of Chemistry Clark Atlanta University Atlanta GA 30314 USA
| | - Jingwen Chen
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Tianqing Liu
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Andrew Cruz
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Minda Chen
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Xun Wu
- Department of Chemistry Iowa State University Ames IA 50011 USA
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames IA 50011 USA
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| |
Collapse
|
31
|
Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang H. Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dandan Li
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chenfan Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Hai‐Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
32
|
Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang HL. Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2021; 60:16372-16376. [PMID: 33988897 DOI: 10.1002/anie.202104219] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Indexed: 01/04/2023]
Abstract
Interfacial electron transfer between cocatalyst and photosensitizer is key in heterogeneous photocatalysis, yet the underlying mechanism remains subtle and unclear. Surfactant coated on the metal cocatalysts, greatly modulating the microenvironment of catalytic sites, is largely ignored. Herein, a series of Pt co-catalysts with modulated microenvironments, including polyvinylpyrrolidone (PVP) capped Pt nanoparticles (denoted as PtPVP ), Pt with partially removed PVP (PtrPVP ), and clean Pt without PVP (Pt), were encapsulated into a metal-organic framework (MOF), UiO-66-NH2 , to afford PtPVP @UiO-66-NH2 , PtrPVP @UiO-66-NH2 , and Pt@UiO-66-NH2 , respectively, for photocatalytic hydrogen production. The PVP appears to have a negative influence on the interfacial electron transfer between Pt and the MOF. Compared with PtPVP @UiO-66-NH2 , the removal of interfacial PVP improves the sluggish kinetics of electron transfer, boosting photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Mingliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chenfan Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
33
|
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. NANOSCALE HORIZONS 2021; 6:409-448. [PMID: 33903861 DOI: 10.1039/d1nh00046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kataoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Momoko Hirata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuki Iwamatsu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
34
|
Cui WG, Hu TL. Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003971. [PMID: 33155762 DOI: 10.1002/smll.202003971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The design and development of efficient catalytic materials with synergistic catalytic sites always has long been known to be a thrilling and very dynamic research field. Crystalline porous materials (CPMs) mainly including metal-organic frameworks and zeolites with high scientific and industrial impact have recently been the subject of extensive research due to their essential role in modern chemical industrial processes. The rational incorporation of guest species in CPMs can synergize the respective strengths of these components and allow them to collaborate with each other for synergistic catalysis, leading to enhanced catalytic activity, selectivity, and stability in a broad range of catalytic processes. In this review, the recent advances in the development of CPMs-confined active metal species, including metal nanoparticles, metal/metal oxides heteroparticles, metal oxide, subnanometric metal clusters, and polyoxometalates, for heterogeneous catalysis, with a particular focus on synergistic effects between active components that result in an enhanced performance are highlighted. Insights into catalysts design strategies, host-guest interactions, and structure-property relationships have been illustrated in detail. Finally, the existing challenges and possible development directions in CPMs-based encapsulation-structured synergistic catalysts are discussed.
Collapse
Affiliation(s)
- Wen-Gang Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Yoshimaru S, Sadakiyo M, Maeda N, Yamauchi M, Kato K, Pirillo J, Hijikata Y. Support Effect of Metal-Organic Frameworks on Ethanol Production through Acetic Acid Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19992-20001. [PMID: 33877813 PMCID: PMC8288914 DOI: 10.1021/acsami.1c01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
We present a systematic study on the support effect of metal-organic frameworks (MOFs), regarding substrate adsorption. A remarkable enhancement of both catalytic activity and selectivity for the ethanol (EtOH) production reaction through acetic acid (AcOH) hydrogenation (AH) was observed on Pt nanoparticles supported on MOFs. The systematic study on catalysis using homogeneously loaded Pt catalysts, in direct contact with seven different MOF supports (MIL-125-NH2, UiO-66-NH2, HKUST-1, MIL-101, Zn-MOF-74, Mg-MOF-74, and MIL-121) (abbreviated as Pt/MOFs), found that MOFs having a high affinity for the AcOH substrate (UiO-66-NH2 and MIL-125-NH2) showed high catalytic activity for AH. This is the first demonstration indicating that the adsorption ability of MOFs directly accelerates catalytic performance using the direct contact between the metal and the MOF. In addition, Pt/MIL-125-NH2 showed a remarkably high EtOH yield (31% at 200 °C) in a fixed-bed flow reactor, which was higher by a factor of more than 8 over that observed for Pt/TiO2, which was the best Pt-based catalyst for this reaction. Infrared spectroscopy and a theoretical study suggested that the MIL-125-NH2 support plays an important role in high EtOH selectivity by suppressing the formation of the byproduct, ethyl acetate (AcOEt), due to its relatively weak adsorption behavior for EtOH rather than AcOH.
Collapse
Affiliation(s)
- Shotaro Yoshimaru
- Department
of Chemistry, Faculty of Science, Kyushu
University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Sadakiyo
- Department
of Chemistry, Faculty of Science, Kyushu
University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department
of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobutaka Maeda
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miho Yamauchi
- Department
of Chemistry, Faculty of Science, Kyushu
University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenichi Kato
- RIKEN
SPring-8 Center,1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jenny Pirillo
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yuh Hijikata
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
36
|
Modak A, Ghosh A, Bhaumik A, Chowdhury B. CO 2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci 2021; 290:102349. [PMID: 33780826 DOI: 10.1016/j.cis.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
CO2 is one of the major environmental pollutants and its mitigation is attracting huge attention over the years due to continuous increase in this greenhouse gas emission in the atmosphere. Being environmentally hazardous and plentiful presence in nature, CO2 utilization as C1 resource into fuels and feedstock is very demanding from the green chemistry perspectives. To accomplish this CO2 utilization issue, functional organic materials like porous organic polymers (POPs), covalent organic frameworks (COFs) as well as organic-inorganic hybrid materials like metal-organic frameworks (MOFs), having characteristics of large surface area, high thermal stability and tunability in the porous nanostructures play significant role in designing the suitable catalyst for the CO2 hydrogenation reactions. Although CO2 hydrogenation is a widely studied and emerging area of research, till date review exclusively focused on designing POPs, COFs and MOFs bearing reactive functional groups is very limited. A thorough literature review on this matter will enrich our knowledge over the CO2 hydrogenation processes and the catalytic sites responsible for carrying out these chemical transformations. We emphasize recent state-of-the art developments in POPs/COFs/MOFs having unique functionalities and topologies in stabilizing metallic NPs and molecular complexes for the CO2 reduction reactions. The major differences between MOFs and porous organics are critically summarized in the outlook section with the aim of the future benefit in mitigating CO2 emission from ambient air.
Collapse
|
37
|
Zhao W, Shi Y, Jiang Y, Zhang X, Long C, An P, Zhu Y, Shao S, Yan Z, Li G, Tang Z. Fe‐O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
38
|
Zhao W, Shi Y, Jiang Y, Zhang X, Long C, An P, Zhu Y, Shao S, Yan Z, Li G, Tang Z. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation. Angew Chem Int Ed Engl 2021; 60:5811-5815. [PMID: 33169485 DOI: 10.1002/anie.202013807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Direct methane oxidation into value-added organic oxygenates with high productivity under mild condition remains a great challenge. We show Fe-O clusters on nodes of metal-organic frameworks (MOFs) with tunable electronic state for direct methane oxidation into C1 organic oxygenates at 50 °C. The Fe-O clusters are grafted onto inorganic Zr6 nodes of UiO-66, while the organic terephthalic acid (H2 BDC) ligands of UiO-66 are partially substituted with monocarboxylic modulators of acetic acid (AA) or trifluoroacetic acid (TFA). Experiments and theoretical calculation disclose that the TFA group coordinated with Zr6 node of UiO-66 enhances the oxidation state of adjacent Fe-O cluster due to its electron-withdrawing ability, promotes the activation of C-H bond of methane, and increases its selective conversion, thus leading to the extraordinarily high C1 oxygenate yield of 4799 μmol gcat -1 h-1 with 97.9 % selectivity, circa 8 times higher than those modulated with AA.
Collapse
Affiliation(s)
- Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Li L, Li Z, Yang W, Huang Y, Huang G, Guan Q, Dong Y, Lu J, Yu SH, Jiang HL. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Gumus I, Ruzgar A, Karatas Y, Gülcan M. Highly efficient and selective one-pot tandem imine synthesis via amine-alcohol cross-coupling reaction catalysed by chromium-based MIL-101 supported Au nanoparticles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J Colloid Interface Sci 2021; 581:1-10. [DOI: 10.1016/j.jcis.2020.07.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
|
42
|
Kumar S, Mohan B, Tao Z, You H, Ren P. Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00663k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogenization of homogeneous organometallic catalysts by incorporation into MOFs using different strategies, MOF selection, OMC selection, and the use of hybrid heterogeneous catalysts OMC@MOFs in catalytic applications are summarized and discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
43
|
Cheng S, Ou C, Lin H, Jia J, Tang H, Pan Y, Huang G, Meng X. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Chen J, Qi L, Zhang B, Chen M, Kobayashi T, Bao Z, Yang Q, Ren Q, Huang W, Zhang Z. Tandem synthesis of tetrahydroquinolines and identification of the reaction network by operando NMR. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctional MOF supported Pd nanoparticles for the one-pot tandem synthesis of substituted tetrahydroquinolines were developed, and operando high-pressure MAS-NMR were performed to understand the complex reaction network.
Collapse
Affiliation(s)
- Jingwen Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Long Qi
- U.S. DOE Ames Laboratory
- Iowa State University
- Iowa 50011
- USA
| | - Biying Zhang
- Department of Chemistry
- Iowa State University
- Iowa 50011
- USA
| | - Minda Chen
- Department of Chemistry
- Iowa State University
- Iowa 50011
- USA
| | | | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenyu Huang
- Department of Chemistry
- Iowa State University
- Iowa 50011
- USA
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
45
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
46
|
Zhang W, Ji W, Li L, Qin P, Khalil IE, Gu Z, Wang P, Li H, Fan Y, Ren Z, Shen Y, Zhang W, Fu Y, Huo F. Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal-Organic Framework Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52660-52667. [PMID: 33169972 DOI: 10.1021/acsami.0c15340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal nodes, functionalized ligands, and uniform channels of metal-organic frameworks (MOFs) are typically utilized to regulate the catalytic properties of metal nanoparticles (MNPs). However, though the ligand functionalization could impact the properties of the metal nodes and channels, which might further regulate the catalytic activity and selectivity of MNPs, related research in the design of MNP/MOF catalysts was usually neglected. Herein, we synthesized a series of Pt@UiO-66 composites (Pt@UiO-66-NH2, Pt@UiO-66-SO3H, and Pt@UiO-66) with slightly different organic ligands, which enhanced steric hindrance and contributed to multipathway electron transfer in selective hydrogenation of linear citronellal. The selectivity toward citronellol was gradually improved along with the increased size of functional groups (hydrogen, amino groups, and sulfo groups) on organic ligands, which enhanced steric hindrance provided by channels. In addition, the X-ray photoelectron spectroscopy measurements also revealed that the electronic state of Pt NPs was regulated through multipathway electron transfer from Pt NPs to metal nodes, between organic ligands and Pt NPs/metal nodes. Our research proved that the ligand functionalization altered physiochemical properties of the channels and metal nodes, further together managing the catalytic performance of Pt NPs through enhanced steric hindrance and multi-pathway electron transfer.
Collapse
Affiliation(s)
- Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Wenlan Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Linjie Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Islam E Khalil
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peng Wang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
47
|
Song I, Lee H, Jeon SW, Kim DH. Controlling Catalytic Selectivity Mediated by Stabilization of Reactive Intermediates in Small-Pore Environments: A Study of Mn/TiO2 in the NH3-SCR Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03154] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Inhak Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwangho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Won Jeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Xin Y, Li S, Qian Y, Zhu W, Yuan H, Jiang P, Guo R, Wang L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03617] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | | | | | | | | |
Collapse
|
49
|
Hou J, Wang Z, Chen P, Chen V, Cheetham AK, Wang L. Intermarriage of Halide Perovskites and Metal‐Organic Framework Crystals. Angew Chem Int Ed Engl 2020; 59:19434-19449. [DOI: 10.1002/anie.202006956] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jingwei Hou
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Zhiliang Wang
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Peng Chen
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Vicki Chen
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Anthony K. Cheetham
- Materials Research Laboratory University of California Santa Barbara CA 93106 USA
- Department of Materials Science and Engineering National University of Singapore Singapore 117576 Singapore
| | - Lianzhou Wang
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
50
|
Hou J, Wang Z, Chen P, Chen V, Cheetham AK, Wang L. Intermarriage of Halide Perovskites and Metal‐Organic Framework Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingwei Hou
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Zhiliang Wang
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Peng Chen
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Vicki Chen
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| | - Anthony K. Cheetham
- Materials Research Laboratory University of California Santa Barbara CA 93106 USA
- Department of Materials Science and Engineering National University of Singapore Singapore 117576 Singapore
| | - Lianzhou Wang
- School of Chemical Engineering University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|