1
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
2
|
Chen D, Li J, Liu G, Zhang X, Wang X, Liu Y, Liu X, Liu X, Li Y, Shan Y. Accessing indole-isoindole derivatives via palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. Chem Commun (Camb) 2023; 59:10540-10543. [PMID: 37566103 DOI: 10.1039/d3cc02654j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.
Collapse
Affiliation(s)
- Dianpeng Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xinghai Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongqin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
3
|
Bayat M, Gheidari D, Mehrdad M. Recent advances in synthesis of ketenimines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
[4 + 3] Cycloaddition of ketenimines with furocarbenoids: Divergent and efficient synthesis of fused cycloheptatriene and tropone scaffolds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Chen D, Li J, Wang X, Shan Y, Huang K, Yan X, Qiu G. Catalytic Metal-Enabled Romance of Isocyanides for Use as “C1N1” Synthons in Cyclization: Beyond Radical Chemistry. Org Chem Front 2022. [DOI: 10.1039/d2qo00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclizative reactions have attracted considerable attentions in organic synthesis with regard to the high atom economy and synthetic efficiency towards cyclic architectures. Especially, isocyanide-based cyclizations have proven to be a...
Collapse
|
6
|
Timmermann C, Thiem P, Wanitschke D, Hüttenschmidt M, Romischke J, Villinger A, Seidel WW. Migratory insertion of isocyanide into a ketenyl-tungsten bond as key step in cyclization reactions. Chem Sci 2021; 13:123-132. [PMID: 35059160 PMCID: PMC8694283 DOI: 10.1039/d1sc06149f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
Treatment of the side-on tungsten alkyne complex of ethinylethyl ether [Tp*W(CO)2(η2-C,C'-HCCOCH2CH3)]+ {Tp* = hydridotris(3,4,5-trimethylpyrazolyl)borate} (2a) with n-Bu4NI afforded the end-on ketenyl complex [Tp*W(CO)2(κ1-HCCO)] (4a). This formal 16 ve complex bearing the prototype of a ketenyl ligand is surprisingly stable and converts only under activation by UV light or heat to form a dinuclear complex [Tp*2W2(CO)4(μ-CCH2)] (6). The ketenyl ligand in complex 4a underwent a metal template controlled cyclization reaction upon addition of isocyanides. The oxametallacycles [Tp*W(CO)2{κ2-C,O-C(NHXy)C(H)C(Nu)O}] {Nu = OMe (7), OEt (8), N(i-Pr)2 (9), OH (10), O1/2 (11)} were formed by coordination of Xy-NC (Xy = 2,6-dimethylphenyl) at 4a and subsequent migratory insertion (MI) into the W-ketenyl bond. The resulting intermediate is susceptible to addition reactions with protic nucleophiles. Compounds 2a-PF6, 4a/b, and 7-11 were fully characterized including XRD analysis. The cyclization mechanism has been confirmed both experimentally and by DFT calculations. In cyclic voltammetry, complexes 7-9 are characterized by a reversible W(ii)/W(iii) redox process. The dinuclear complex 11 however shows two separated redox events. Based on cyclic voltammetry measurements with different conducting electrolytes and IR spectroelectrochemical (SEC) measurements the W(ii)/W(iii) mixed valent complex 11+ is assigned to class II in terms of the Robin-Day classification.
Collapse
Affiliation(s)
- Christopher Timmermann
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Paula Thiem
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Dominik Wanitschke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Johanna Romischke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| |
Collapse
|
7
|
Shen J, Wu Z, Liu Y, Bai Y, Qiu J, Zhang Z, Yuan Z, Zhu G. Radical Chain Isomerization of N-Sulfonyl Ynamides to Ketenimines and Its Application to Furan Dearomatization. Org Lett 2021; 23:9321-9326. [PMID: 34806892 DOI: 10.1021/acs.orglett.1c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A radical chain isomerization of N-sulfonyl ynamides to isolable ketenimines is developed, featuring mild reaction conditions, a high efficiency, ∼100% atom economy, a broad substrate scope, and column chromatography-free workup in most cases. Meanwhile, an unprecedented dearomatization of furans is achieved by the radical chain isomerization-triggered aza-Claisen rearrangement, providing highly chemo-, regio-, stereo-, and diastereoselective access to functionalized quaternary nitriles.
Collapse
Affiliation(s)
- Jiahuan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
8
|
Jia X, Zhang Z, Gevorgyan V. Three-Component Visible-Light-Induced Palladium-Catalyzed 1,2-Alkyl Carbamoylation/Cyanation of Alkenes. ACS Catal 2021; 11:13217-13222. [PMID: 35450399 PMCID: PMC9017990 DOI: 10.1021/acscatal.1c04183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mild visible-light-induced Pd-catalyzed one-pot three-component alkyl-carbamoylation and cyanation of alkenes was developed. This general transformation, which proceeds via the in situ formation of a reactive ketenimine intermediate, allows for a rapid construction of a broad range of valuable amides and nitriles from readily available alkenes, alkyl iodides, and isocyanides. An efficient synthesis of tetrazole and amidine via this approach was also demonstrated.
Collapse
Affiliation(s)
- Xiangqing Jia
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
9
|
Wei X, Bai C, Zhao L, Zhang P, Li Z, Wang Y, Su Q. Lewis Acid Enables Ketone Phosphorylation: Synthesis of Alkenyl Phosphonates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao‐Hong Wei
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Chun‐Yuan Bai
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Lian‐Biao Zhao
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Ping Zhang
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Zhen‐Hua Li
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Yan‐Bin Wang
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| | - Qiong Su
- Key Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou Gansu 730030 China
| |
Collapse
|
10
|
Liu H, Wei L, Chen Z. One-pot multi-step cascade protocols toward β-indolyl sulfoximidoyl amides via intermolecular trapping of an α-indolylpalladium complex by CO. Org Biomol Chem 2021; 19:3359-3369. [PMID: 33899876 DOI: 10.1039/d1ob00128k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various β-indolyl sulfoximidoyl amides were efficiently prepared from ortho-iodoanilines, propargyl bromides, 1 atm of CO, and substituted NH-sulfoximines, through a palladium-catalyzed indole annulation/carbonyl insertion/C-N bond formation cascade. Mostly good to high yields of the products were obtained through this multi-step, one-pot reaction protocol under very gentle reaction conditions. The obtained β-indolyl sulfoximidoyl amides could be converted into biologically interesting sulfoximine analogues that contain a tryptamine moiety.
Collapse
Affiliation(s)
- Huahua Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
| | - Li Wei
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
| |
Collapse
|
11
|
Zhou Z, Ji H, Li Q, Zhang Q, Li D. Direct C-H aminocarbonylation of N-heteroarenes with isocyanides under transition metal-free conditions. Org Biomol Chem 2021; 19:2917-2922. [PMID: 33885551 DOI: 10.1039/d1ob00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-C bond forming amide synthesis through direct C-H aminocarbonylation of N-heteroarenes with isocyanides was developed. The reaction was mediated by an inorganic persulfate salt under transition metal-free conditions. Mechanistic studies suggested a radical pathway for this reaction without the participation of H2O and O2. This method also showed merits of substrate availability, easy operation and atom economy. It provided an efficient route for straightforward synthesis of N-heteroaryl amides.
Collapse
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | |
Collapse
|
12
|
Shiri M, Farajinia-Lehi N, Salehi P, Tanbakouchian Z. Transition Metal and Inner Transition Metal Catalyzed Amide Derivatives Formation through Isocyanide Chemistry. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of amides is a substantial research area in organic chemistry because of their ubiquitous presence in natural products and bioactive molecules. The use of easily accessible isocyanides as amidoyl (carbamoyl) synthons in cross-coupling reactions using transition metal and inner transition metöal catalysts is a current trend in this area. Isocyanides, owing to their coordination ability as a ligand and inherent electronic properties for reactions with various partners, have expanded the potential application of these transformations for the preparation of novel synthetic molecules and pharmaceutical candidates. This review gives an overview of the achievements in isocyanide-based transition metal and inner transition metal catalyzed amide formation and discusses highlights of the proposed distinct mechanisms.1 Introduction2 Synthesis of Arenecarboxamides3 Synthesis of Alkanamides4 Synthesis of Cyclic Amides5 Formation of Alkynamides6 Formation of Acrylamide-like Molecules7 Formation of Ureas and Carbamates8 Conclusion
Collapse
Affiliation(s)
- Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
- Department of R&D, Pakshoo Industrial Group, Second Alley
| | | | - Parvin Salehi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| | - Zahra Tanbakouchian
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| |
Collapse
|
13
|
Liu Z, Cao S, Wu J, Zanoni G, Sivaguru P, Bi X. Palladium(II)-Catalyzed Cross-Coupling of Diazo Compounds and Isocyanides to Access Ketenimines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Wang C, Wu L, Xu W, He F, Qu J, Chen Y. Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Org Lett 2020; 22:6954-6959. [PMID: 32808530 DOI: 10.1021/acs.orglett.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a palladium-catalyzed secondary benzylic imidoylative Negishi reaction leveraging the sterically bulky aromatic isocyanides as the imine source. This method allows the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to afford various α-substituted phenylacetone products under mild acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted phenethylamine derivatives with high atom economy.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
15
|
Huang K, Liu JB, Chen ZF, Wang YC, Yadav S, Qiu G. Palladium-Catalyzed Imidoylation-Triggered [2 + 2 + 1] Cyclization of Internal Alkyne with Isocyanides. Org Lett 2020; 22:5931-5935. [PMID: 32662274 DOI: 10.1021/acs.orglett.0c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a palladium-catalyzed [2 + 2 + 1] cyclization of internal alkynes with double isocyanides is described. This facile procedure is efficient for synthesizing various pyrrolo[3,2-c]quinolin-2-amines. The reaction worked well with a broad reaction scope. In the process, it is believed that sequential double isocyanide insertion, 6-exo-dig cyclization of alkyne, and addition of an imino group are involved.
Collapse
Affiliation(s)
- Keke Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Feng Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yu-Chao Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Sarita Yadav
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
16
|
Liu Y, Zhou B, Li Q, Jin H. Nickel-Catalyzed Multicomponent Coupling Reaction of Alkyl Halides, Isocyanides and H2O: An Expedient Way to Access Alkyl Amides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.
Collapse
Affiliation(s)
- Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology
| | | | | |
Collapse
|
17
|
Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L. C(sp2)–H Functionalization of Imidazole at the C2- and C4-Position via Palladium-Catalyzed Isocyanide Insertion Leading to Indeno[1,2-d]imidazole and Imidazo[1,2-a]indole Derivatives. J Org Chem 2020; 85:11014-11024. [DOI: 10.1021/acs.joc.0c01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ying-Ying Liu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Yin-Qing Xie
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ding Yuan
- School of Biology and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan Province, 617000, P. R. of China
| | - Min Lei
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei Province, 443002, P. R. of China
| |
Collapse
|
18
|
Wang Y, Huang W, Wang C, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Secondary Benzyl Chlorides with Isocyanides. Org Lett 2020; 22:4245-4249. [PMID: 32383891 DOI: 10.1021/acs.orglett.0c01284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylacetamides represent versatile feedstocks in synthetic chemistry, widely existing in drug molecules and natural products. Herein, we disclose a nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides yielding α-substituted phenylacetamide with steric hindrance, which is synthetically challenging via palladium-catalyzed aminocarbonylation. The reaction features wide functional group tolerance under mild conditions, highlighted by the tolerance of various aromatic halide (-Cl, -Br, -I) and heteroaromatic rings (pyridine and pyrazine).
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Niu Y, Bai P, Lou Q, Yang S. Generation of a Key Synthon of Indole Alkaloid Synthesis by Palladium(II)‐Catalyzed Indole 2‐Methylenephosphorylation. ChemCatChem 2020. [DOI: 10.1002/cctc.202000415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Niu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Peng‐Bo Bai
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Qin‐Xin Lou
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Shang‐Dong Yang
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
20
|
Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Org Lett 2020; 22:3245-3250. [PMID: 32242414 DOI: 10.1021/acs.orglett.0c01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, we disclose a Ni-catalyzed formal aminocarbonylation of primary and secondary unactivated aliphatic iodides with isocyanides to afford alkyl amide, which proceeds via the selective monomigratory insertion of isocyanides with alkyl iodides, subsequent β-hydride elimination, and hydrolysis process. The reaction features wide functional group tolerance under mild conditions. Additionally, the selective, one-pot hydrolysis of reaction mixture under acid conditions allows for expedient synthesis of the corresponding alkyl carboxylic acid.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Weng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
21
|
Ren W, Jin M, Zuo QM, Yang SD. Allylation of β-amino phosphonic acid precursor via palladium-NHC catalyzed allylic C–H activation. Org Chem Front 2020. [DOI: 10.1039/c9qo01089k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Pd(ii)/N-heterocyclic carbene (NHC) catalyzed allylic C–H alkylation of allylbenzene with α-cyano-phosphate ester has been achieved under mild reaction conditions with the highest regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ming Jin
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
22
|
Chen X, Qiu G, Liu R, Chen D, Chen Z. Divergent oriented synthesis (DOS) of aza-heterocyclic amides through palladium-catalyzed ketenimination of 2-iodo-N-(propa-1,2-dien-1-yl)anilines. Org Chem Front 2020. [DOI: 10.1039/c9qo01451a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium-catalyzed tandem reaction of N-(2-iodophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide with isocyanide is described to divergently produce aza-heterocyclic amides.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Renzhi Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Dianpeng Chen
- Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| |
Collapse
|
23
|
Biswas S, Khatun R, Dolai M, Haque Biswas I, Haque N, Sengupta M, Islam MS, Islam SM. Catalytic formation of N3-substituted quinazoline-2,4(1H,3H)-diones by Pd(ii)EN@GO composite and its mechanistic investigations through DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/c9nj04288a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Modified GO based palladium composite was synthesized for catalytic synthesis of N3-substituted ouinazoline-2,4(1H,3H)-diones and the mechanistic route was theoretically investigated.
Collapse
Affiliation(s)
- Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Resmin Khatun
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Malay Dolai
- Department of Chemistry
- Prabhat Kumar College
- Purba Medinipur 721401
- India
| | | | - Najirul Haque
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Manideepa Sengupta
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
- Refinery Technology Division
| | | | | |
Collapse
|
24
|
Tran CC, Kawaguchi SI, Kobiki Y, Matsubara H, Tran DP, Kodama S, Nomoto A, Ogawa A. Palladium-Catalyzed Diarylation of Isocyanides with Tetraarylleads for the Selective Synthesis of Imines and α-Diimines. J Org Chem 2019; 84:11741-11751. [PMID: 31432680 DOI: 10.1021/acs.joc.9b01639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Using tetraaryllead compounds (PbAr4) as arylating reagents, isocyanides undergo selective diarylation in the presence of palladium catalysts such as Pd(OAc)2 or Pd(PPh3)4 to afford imines and/or α-diimines based on the isocyanide employed. With aliphatic isocyanides, imines are obtained preferentially, whereas α-diimines are formed in the case of electron-rich aromatic isocyanides. The differences in imine/α-diimine selectivity can be attributed to the stability of imidoylpalladium intermediates formed in this catalytic reaction. Compared with other arylating reagents, tetraaryllead compounds are excellent candidates for use in the selective transformations to imines and/or α-diimines, especially in terms of inhibiting the oligomerization of isocyanides, which results in a lower product selectivity in many transition-metal-catalyzed reactions of isocyanides.
Collapse
Affiliation(s)
- Cong Chi Tran
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture , Saga University , 152-1 Shonan-cho Karatsu , Saga 847-0021 , Japan
| | - Yohsuke Kobiki
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Hitomi Matsubara
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Dat Phuc Tran
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering , Osaka Prefecture University , 1-1 Gakuen-cho , Nakaku, Sakai , Osaka 599-8531 , Japan
| |
Collapse
|
25
|
Affiliation(s)
- Zita Rádai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Hungary
| |
Collapse
|
26
|
Wang F, Wei TQ, Xu P, Wang SY, Ji SJ. Mn(III)-mediated radical cascade reaction of boronic acids with isocyanides: Synthesis of diimide derivatives. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
From isonitrile to nitrile via ketenimine intermediate: Palladium-catalyzed 1,1-carbocyanation of allyl carbonate by α-isocyanoacetate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Yuan WK, Liu YF, Lan Z, Wen LR, Li M. Nickle Catalysis Enables Access to Thiazolidines from Thioureas via Oxidative Double Isocyanide Insertion Reactions. Org Lett 2018; 20:7158-7162. [PMID: 30398058 DOI: 10.1021/acs.orglett.8b03098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient synthesis of thiazolidine-2,4,5-triimine derivatives was developed via Ni-catalyzed oxidative double isocyanide insertion to thioureas under air conditions, in which thioureas play three roles as a substrate, a ligand, and overcoming isocyanide polymerization. The reaction is featured by employing a low-cost and low loading Ni(acac)2 catalyst, without any additives, and high atom economy. This is the first example to directly apply a Ni(II) catalyst in oxidative double isocyanide insertion reactions.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Fang Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Zhenggang Lan
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
29
|
Hu Z, Dong J, Li Z, Yuan B, Wei R, Xu X. Metal-Free Triple Annulation of Ene–Yne–Ketones with Isocyanides: Domino Access to Furan-Fused Heterocycles via Furoketenimine. Org Lett 2018; 20:6750-6754. [DOI: 10.1021/acs.orglett.8b02870] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Zhaoyang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
30
|
Li C, Qi ZC, Yang Q, Qiang XY, Yang SD. Visible-Light-Catalyzed Phosphonation-Annulation: an Efficient Strategy to Synthesize β-Phosphonopyrrolidines and β-Phosphonolactones. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Qiang Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiao-Yue Qiang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou Gansu 730000 China
| |
Collapse
|
31
|
Yang Q, Li C, Qi ZC, Qiang XY, Yang SD. Photocatalyzed Intermolecular Aminodifluoromethylphosphonation of Alkenes: Facile Synthesis of α,α-Difluoro-γ-aminophosphonates. Chemistry 2018; 24:14363-14367. [PMID: 29979472 DOI: 10.1002/chem.201803409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 01/01/2023]
Abstract
An efficient and practical method for the synthesis of α,α-difluoro-γ-aminophosphonates through photocatalyzed intermolecular aminodifluoromethylphosphonation of alkenes has been developed. In this reaction, difluoromethylphosphonate is used as an important fluorinated reagent. Furthermore, the mild reaction conditions, simple operation, and broad substrate scope make this protocol very practical and attractive. The derivatization reaction in the synthesis of difluoromethylphosphonated chiral binaphthylamine ligands and α,α-difluoro-γ-aminophosphoric acid highlight the applicability of this method.
Collapse
Affiliation(s)
- Qiang Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao-Yue Qiang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese, Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
32
|
Chen S, Wei W, Wang J, Xia Y, Shen Y, Wu X, Jing H, Liang Y. Palladium‐Catalyzed Isocyanide Insertion with Allylic Esters: Synthesis of
N
‐(But‐2‐enoyl)‐
N
‐(
tert
‐butyl)benzamide Derivatives
via
Intramolecular Acyl Transfer Termination. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Si Chen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wan‐Xu Wei
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jia Wang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yu Xia
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yi Shen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xin‐Xing Wu
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 People's Republic of China
| | - Huanwang Jing
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
33
|
Mamboury M, Wang Q, Zhu J. α-Oxo-Ketenimines from Isocyanides and α-Haloketones: Synthesis and Divergent Reactivity. Chemistry 2017; 23:12744-12748. [PMID: 28755439 DOI: 10.1002/chem.201703458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/30/2022]
Abstract
The palladium-catalyzed reaction of α-haloketones with isocyanides afforded α-oxo-ketenimines through β-hydride elimination of the β-oxo-imidoyl palladium intermediates. Reaction of these relatively stable α-oxo-ketenimines with nucleophiles such as hydrazines, hydrazoic acid, amines, and Grignard reagent afforded pyrazoles, tetrazole, β-keto amidines, and enaminone, respectively, with high chemoselectivity. Whereas amines attack exclusively on the ketenimine functions, the formal [3+2] cycloaddition between N-monosubstituted hydrazines and α-oxo-ketenimines was initiated by nucleophilic addition to the carbonyl group.
Collapse
Affiliation(s)
- Mathias Mamboury
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Xu P, Wang F, Wei TQ, Yin L, Wang SY, Ji SJ. Palladium-Catalyzed Incorporation of Two C1 Building Blocks: The Reaction of Atmospheric CO 2 and Isocyanides with 2-Iodoanilines Leading to the Synthesis of Quinazoline-2,4(1H,3H)-diones. Org Lett 2017; 19:4484-4487. [PMID: 28763234 DOI: 10.1021/acs.orglett.7b01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Pd-catalyzed insertion and cycloaddition of CO2 and isocyanide into 2-iodoanilines under atmospheric pressure has been developed and affords quinazoline-2,4(1H,3H)-diones through the formation of new C-C, C-O, and C-N bonds under mild conditions. This reaction provides a new and practical method not only for the construction of quinazoline-2,4(1H,3H)-diones but also for the efficient utilization of carbon dioxide.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Tian-Qi Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| |
Collapse
|
35
|
Yang Q, Yang SD. Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated C(sp3)–H Bonds. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01779] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Yang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shang-Dong Yang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
36
|
Qiu G, Wang Q, Zhu J. Palladium-Catalyzed Three-Component Reaction of Propargyl Carbonates, Isocyanides, and Alcohols or Water: Switchable Synthesis of Pyrroles and Its Bicyclic Analogues. Org Lett 2016; 19:270-273. [DOI: 10.1021/acs.orglett.6b03592] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guanyinsheng Qiu
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Huang H, Palmas J, Kang JY. A Reagent-Controlled Phospha-Michael Addition Reaction of Nitroalkenes with Bifunctional N-Heterocyclic Phosphine (NHP)-Thioureas. J Org Chem 2016; 81:11932-11939. [PMID: 27934454 DOI: 10.1021/acs.joc.6b02490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bifunctional N-heterocyclic phosphine (NHP)-thioureas have been successfully applied for phospha-Michael addition reaction of nitroalkenes to afford diversely substituted β-nitrodiazaphosphonates. This transformation takes place at room temperature under catalyst-free conditions and exhibits broad functional group tolerance. The key to success in catalyst, additive-free reaction conditions is the suitable hydrogen-bond activation of the nitro group by a Brønsted acid (thiourea), which artfully combined with the highly nucleophilic NHP motif for a synergetic effect. Importantly, this transformation enables a two-step synthesis of pharmaceutically, biologically significant β-amino phosphonic acids.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas , 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States.,Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University , No. 30 Puzhu Road (S), Nanjing 211816, People's Republic of China
| | - Jake Palmas
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas , 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas , 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
38
|
Qiu G, Mamboury M, Wang Q, Zhu J. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles. Angew Chem Int Ed Engl 2016; 55:15377-15381. [PMID: 27862731 DOI: 10.1002/anie.201609034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 01/10/2023]
Abstract
The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc)2 provided ketenimines through β-hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π-allyl Pd complex proceeded via an unusual η1 -allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ-unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5-disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide.
Collapse
Affiliation(s)
- Guanyinsheng Qiu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Mathias Mamboury
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
39
|
Qiu G, Mamboury M, Wang Q, Zhu J. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guanyinsheng Qiu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Mathias Mamboury
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|