1
|
Mekhemer GA, Rabee AI, Gaid CB, Zaki MI. Cobalt oxide-catalyzed CO oxidation under steady-state conditions: Influence of the metal oxidation state. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Cai J, Ling Y, Zhang H, Yang B, Yang F, Liu Z. Formation of Different Rh–O Species on Rh(110) and Their Reaction with CO. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunjian Ling
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Shi X, Lin X, Luo R, Wu S, Li L, Zhao ZJ, Gong J. Dynamics of Heterogeneous Catalytic Processes at Operando Conditions. JACS AU 2021; 1:2100-2120. [PMID: 34977883 PMCID: PMC8715484 DOI: 10.1021/jacsau.1c00355] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 05/02/2023]
Abstract
The rational design of high-performance catalysts is hindered by the lack of knowledge of the structures of active sites and the reaction pathways under reaction conditions, which can be ideally addressed by an in situ/operando characterization. Besides the experimental insights, a theoretical investigation that simulates reaction conditions-so-called operando modeling-is necessary for a plausible understanding of a working catalyst system at the atomic scale. However, there is still a huge gap between the current widely used computational model and the concept of operando modeling, which should be achieved through multiscale computational modeling. This Perspective describes various modeling approaches and machine learning techniques that step toward operando modeling, followed by selected experimental examples that present an operando understanding in the thermo- and electrocatalytic processes. At last, the remaining challenges in this area are outlined.
Collapse
Affiliation(s)
- Xiangcheng Shi
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Fuzhou 350207, China
| | - Xiaoyun Lin
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ran Luo
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shican Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Lulu Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
4
|
Abstract
This is a Review of recent studies on surface structures of crystalline materials in the presence of gases in the mTorr to atmospheric pressure range, which brings surface science into a brand new direction. Surface structure is not only a property of the material but also depends on the environment surrounding it. This Review emphasizes that high/ambient pressure goes hand-in-hand with ambient temperature, because weakly interacting species can be densely covering surfaces at room temperature only when in equilibrium with a sufficiently high gas pressure. At the same time, ambient temperatures help overcome activation barriers that impede diffusion and reactions. Even species with weak binding energy can have residence lifetimes on the surface that allow them to trigger reconstructions of the atomic structure. The consequences of this are far from trivial because under ambient conditions the structure of the surface dynamically adapts to its environment and as a result completely new structures are often formed. This new era of surface science emerged and spread rapidly after the retooling of characterization techniques that happened in the last two decades. This Review is focused on the new surface structures enabled particularly by one of the new tools: high-pressure scanning tunneling microscopy. We will cover several important surfaces that have been intensely scrutinized, including transition metals, oxides, and alloys.
Collapse
Affiliation(s)
- Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Baran Eren
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| |
Collapse
|
5
|
Nguyen L, Tao FF, Tang Y, Dou J, Bao XJ. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chem Rev 2019; 119:6822-6905. [DOI: 10.1021/acs.chemrev.8b00114] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luan Nguyen
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yu Tang
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jian Dou
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Xiao-Jun Bao
- School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
6
|
Nguyen L, Tang Y, Li Y, Zhang X, Wang D, Tao FF. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:054103. [PMID: 29864830 DOI: 10.1063/1.5022738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transition metal elements are the most important elements of heterogeneous catalysts used for chemical and energy transformations. Many of these catalysts are active at a temperature higher than 400 °C. For a catalyst containing a 3d or 5d metal element with a low concentration, typically their released fluorescence upon the K-edge or L-edge adsorption of X-rays is collected for the analysis of chemical and coordination environments of these elements. However, it is challenging to perform in situ/operando X-ray absorption spectroscopy (XAS) studies of elements of low-energy absorption edges at a low concentration in a catalyst during catalysis at a temperature higher than about 450 °C. Here a unique reaction system consisting two reactors, called a dual reactor system, was designed for performing in situ or operando XAS studies of these elements of low-energy absorption edges in a catalyst at a low concentration during catalysis at a temperature higher than 450 °C in a fluorescent mode. This dual-reactor system contains a quartz reactor for preforming high-temperature catalysis up to 950 °C and a Kapton reactor remaining at a temperature up to 450 °C for collecting data in the same gas of catalysis. With this dual reactor, chemical and coordination environments of low-concentration metal elements with low-energy absorption edges such as the K-edge of 3d metals including Ti, V, Cr, Mn, Fe, Co, Ni, and Cu and L edge of 5d metals including W, Re, Os, Ir, Pt, and Au can be examined through first performing catalysis at a temperature higher than 450 °C in the quartz reactor and then immediately flipping the catalyst in the same gas flow to the Kapton reactor remained up to 450 °C to collect data. The capability of this dual reactor was demonstrated by tracking the Mn K-edge of the MnOx/Na2WO4 catalyst during activation in the temperature range of 300-900 °C and catalysis at 850 °C.
Collapse
Affiliation(s)
- Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Xiaoyan Zhang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Ding Wang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
7
|
Nguyen L, Tao FF. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:024102. [PMID: 29495804 DOI: 10.1063/1.5003184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.
Collapse
Affiliation(s)
- Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
8
|
Tang Y, Ma L, Dou J, Andolina CM, Li Y, Ma H, House SD, Zhang X, Yang J, Tao F(F. Transition of surface phase of cobalt oxide during CO oxidation. Phys Chem Chem Phys 2018; 20:6440-6449. [DOI: 10.1039/c7cp07407g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition of surface phase of cobalt oxide nanoparticle catalyst during CO oxidation in 60–200 °C tracked through AP-XPS.
Collapse
Affiliation(s)
- Yu Tang
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
| | - Lingjuan Ma
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
- Department of Chemistry, Qufu Normal University
- Qufu
| | - Jian Dou
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
| | - Christopher M. Andolina
- Department of Chemical and Petroleum Engineering and Department of Physics and Astronomy, University of Pittsburgh
- USA
| | - Yuting Li
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
| | - Hongbin Ma
- Department of Chemistry, Qufu Normal University
- Qufu
- China
| | - Stephen D. House
- Department of Chemical and Petroleum Engineering and Department of Physics and Astronomy, University of Pittsburgh
- USA
| | - Xiaoyan Zhang
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
| | - Judith Yang
- Department of Chemical and Petroleum Engineering and Department of Physics and Astronomy, University of Pittsburgh
- USA
| | - Franklin (Feng) Tao
- Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas
- Lawrence
- USA
| |
Collapse
|
9
|
An H, Ha H, Yoo M, Kim HY. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd) 147 bimetallic nanoparticles. NANOSCALE 2017; 9:12077-12086. [PMID: 28799609 DOI: 10.1039/c7nr04435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When the elements that compose bimetallic catalysts interact asymmetrically with reaction feedstock, the surface concentration of the bimetallic catalysts and the morphology of the reaction center evolve dynamically as a function of environmental factors such as the partial pressure of the triggering molecule. Relevant experimental and theoretical findings of the dynamic structural evolution of bimetallic catalysts under the reaction conditions are emerging, thus enabling the design of more consistent, reliable, and efficient bimetallic catalysts. In an initial attempt to provide an atomic-level understanding of the adsorption-induced structural evolution of bimetallic nanoparticles (NPs) under CO oxidation conditions, we used density functional theory to study the details of CO-adsorption-driven Pd surface segregation in (AuPd)147 bimetallic NPs. The strong CO affinity of Pd provides a driving force for Pd surface segregation. We found that the vertex site of the NP becomes a gateway for the initial Pd-Au swapping and the subsequent formation of an internal vacancy. This self-generated internal vacancy easily diffuses inside the NP and activates Pd-Au swapping pathways in the (100) NP facet. Our results reveal how the surface and internal concentrations of bimetallic NPs respond immediately to changes in the reaction conditions. Our findings should aid in the rational design of highly active and versatile bimetallic catalysts by considering the environmental factors that systematically affect the structure of bimetallic catalysts under the reaction conditions.
Collapse
Affiliation(s)
- Hyesung An
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | | | | | | |
Collapse
|