1
|
Mondal H. Halogen and Chalcogen Activation by Nucleophilic Catalysis. Chemistry 2024; 30:e202402261. [PMID: 39039960 DOI: 10.1002/chem.202402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Thianthrene/TfOH-catalyzed electrophilic halogenations using N-halosuccinimides as the halogen source. Chem Sci 2024; 15:13058-13067. [PMID: 39148788 PMCID: PMC11323329 DOI: 10.1039/d4sc04461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Organohalides are vital organic building blocks with applications spanning various fields. However, direct halogenation of certain neutral or unreactive substrates by using solely the regular halogenating reagents has proven challenging. Although various halogenation approaches via activating halogenating reagents or substrates have emerged, a catalytic system enabling broad substrate applicability and diverse halogenation types remains relatively underexplored. Inspired by the halogenation of arenes via thianthrenation of arenes, here we report that thianthrene, in combined use with trifluoromethanesulfonic acid (TfOH), could work as an effective catalytic system to activate regular halogenating reagents (NXS). This new protocol could accomplish multiple types of halogenation of organic compounds including aromatics, olefins, alkynes and ketones. The mechanism study indicated that a highly reactive electrophilic halogen thianthrenium species, formed in situ from the reaction of NXS with thianthrene in the presence of TfOH, was crucial for the efficient halogenation process.
Collapse
Affiliation(s)
- Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| |
Collapse
|
3
|
Sudarshan K, Yarlagadda S, Sengupta S. Recent Advances in the Synthesis of Diarylheptanoids. Chem Asian J 2024; 19:e202400380. [PMID: 38744677 DOI: 10.1002/asia.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
In the quest for synthesizing biologically important natural products, medicinal chemists embark on an endless journey. This review focuses on the reports published towards the syntheses of diarylheptanoids, classifying them into linear, tetrahydropyran, diarylether, and biphenyl categories. The synthesis methods for each class from 2013 to 2023 are discussed, providing a comprehensive overview of the advancements in the field. Representative natural product examples are highlighted for each category. The review emphasizes the importance of diarylheptanoids in the realms of chemistry and medicine, showcasing their potential as valuable compounds for medicinal and synthetic chemists.
Collapse
Affiliation(s)
- Kasireddy Sudarshan
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Suresh Yarlagadda
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Sagnik Sengupta
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
4
|
Cen FT, Sun Y, Qu JP, Kang YB. Photocatalytic Redox-Neutral Alkoxyacylation of Alkenes. Org Lett 2023; 25:8997-9001. [PMID: 38060991 DOI: 10.1021/acs.orglett.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
β-Alkoxyketones are important building blocks in organic synthesis. By utilizing CBZ6, with an oxidative potential of -2.16 V (vs the saturated calomel electrode), as a redox-neutral photocatalyst, alkoxyacylation of olefins was accomplished under the irradiation of visible light via a cationic intermediate. It involves the addition of an acyl radical to olefin to form a radical intermediate and the following oxidation of the radical intermediate to the benzyl cationic intermediate that is captured by alkoxy anions. This process provides concise and practical access to the β-functionalized ketones.
Collapse
Affiliation(s)
- Fu-Tong Cen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Jiang Y, Lewis JC. Asymmetric catalysis by flavin-dependent halogenases. Chirality 2023; 35:452-460. [PMID: 36916449 PMCID: PMC11301518 DOI: 10.1002/chir.23550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
In nature, flavin-dependent halogenases (FDHs) catalyze site-selective chlorination and bromination of aromatic natural products. This ability has led to extensive efforts to engineer FDHs for selective chlorination, bromination, and iodination of electron rich aromatic compounds. On the other hand, FDHs are unique among halogenases and haloperoxidases that exhibit catalyst-controlled site selectivity in that no examples of enantioselective FDH catalysis in natural product biosynthesis have been characterized. Over the past several years, our group has established that FDHs can catalyze enantioselective reactions involving desymmetrization, atroposelective halogenation, and halocyclization. Achieving high activity and selectivity for these reactions has required extensive mutagenesis and mitigation of problems resulting from hypohalous acid generated during FDH catalysis. The single-component flavin reductase/FDH AetF is unique among the wild type enzyme we have studied in that it provides high activity and selectivity toward several asymmetric transformations. These results highlight the ability of FDH active sites to tolerate different substrate topologies and suggest that they could be useful for a broad range of oxidative halogenations.
Collapse
Affiliation(s)
- Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Zeng L, Liu S, Lan Y, Gao L. Catalytic asymmetric oxa-Diels-Alder reaction of acroleins with simple alkenes. Nat Commun 2023; 14:3511. [PMID: 37316484 DOI: 10.1038/s41467-023-39184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
The catalytic asymmetric inverse-electron-demand oxa-Diels-Alder (IODA) reaction is a highly effective synthetic method for creating enantioenriched six-membered oxygen-containing heterocycles. Despite significant effort in this area, simple α,β-unsaturated aldehydes/ketones and nonpolarized alkenes are seldom utilized as substrates due to their low reactivity and difficulties in achieving enantiocontrol. This report describes an intermolecular asymmetric IODA reaction between α-bromoacroleins and neutral alkenes that is catalyzed by oxazaborolidinium cation 1f. The resulting dihydropyrans are produced in high yields and excellent enantioselectivities over a broad range of substrates. The use of acrolein in the IODA reaction produces 3,4-dihydropyran with an unoccupied C6 position in the ring structure. This unique feature is utilized in the efficient synthesis of (+)-Centrolobine, demonstrating the practical synthetic utility of this reaction. Additionally, the study found that 2,6-trans-tetrahydropyran can undergo efficient epimerization into 2,6-cis-tetrahydropyran under Lewis acidic conditions. This structural core is widespread in natural products.
Collapse
Affiliation(s)
- Lei Zeng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China.
- ZhengZhou JiShu Institute of AI Science, Zhengzhou, 450000, P. R. China.
| | - Lizhu Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China.
| |
Collapse
|
7
|
Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu YD, Feng X. Enantioselective anti-Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. J Am Chem Soc 2023; 145:4808-4818. [PMID: 36795915 DOI: 10.1021/jacs.2c13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhendong Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Jiang Y, Mondal D, Lewis JC. Expanding the Reactivity of Flavin-Dependent Halogenases toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
De S, Dan AK, Sahu R, Das D. Asymmetric Synthesis of Halocyclized Products by Using Various Catalysts: A State‐of‐the‐Art Review. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soumik De
- NIT Silchar: National Institute of Technology Silchar Department of Chemistry QQ5R+3WM, NIT Road, Fakiratilla 788010 Silchar INDIA
| | - Aritra Kumar Dan
- KIIT School of Biotechnology Department of Biotechnology School Of Biotechnology, KIIT ,Campus 11, Patia 751024 Bhubaneswar INDIA
| | - Raghaba Sahu
- Seoul National University College of Pharmacy College of Pharmacy 1 Gwanak-ro, Gwanak-gu 08826 KOREA, REPUBLIC OF
| | - Debadutta Das
- RITE: Radhakrishna Institute of Technology and Engineering Chemistry Barunai Temple Rd, IDCO-01, IDCO Industrial Estate, Barunei 752057 Khordha INDIA
| |
Collapse
|
10
|
Wang W, Yang X, Dai R, Yan Z, Wei J, Dou X, Qiu X, Zhang H, Wang C, Liu Y, Song S, Jiao N. Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. J Am Chem Soc 2022; 144:13415-13425. [PMID: 35839515 DOI: 10.1021/jacs.2c06440] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The electrophilic halogenation of arenes is perhaps the simplest method to prepare aryl halides, which are important structural motifs in agrochemicals, materials, and pharmaceuticals. However, the nucleophilicity of arenes is weakened by the electron-withdrawing substituents, whose electrophilic halogenation reactions usually require harsh conditions and lead to limited substrate scopes and applications. Therefore, the halogenation of arenes containing electron-withdrawing groups (EWGs) and complex bioactive compounds under mild conditions has been a long-standing challenge. Herein, we describe Brønsted acid-catalyzed halogenation of arenes with electron-withdrawing substituents under mild conditions, providing an efficient protocol for aryl halides. The hydrogen bonding of Brønsted acid with the protic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) enables this transformation and thus solves this long-standing problem.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Zixi Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Hongliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Xiong H, Yoshida K, Okada K, Ueda H, Tokuyama H. Catalytic enantioselective 5-endo-bromocycloetherification of unactivated cyclic alkenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Suzuki TK, Yamanaka M, Arai T. Intermolecular Catalytic Asymmetric Iodoetherification of Unfunctionalized Alkenes. Org Lett 2022; 24:3872-3877. [PMID: 35604948 DOI: 10.1021/acs.orglett.2c01490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A newly prepared trinuclear Zn3-(R,S,S)-aminoiminobinaphthoxide complex (triZn-II) catalyzed the first general intermolecular asymmetric iodoetherification of unfunctionalized alkenes. Using triZn-II, the iodoetherification reaction of unfunctionalized alkenes with o-nitrophenols proceeded smoothly to give the products with up to 92.5:7.5 er, and diene substrates were converted to the products with up to 99:1 er with the formation of a meso-isomer (dl/meso = 78/22). The chiral iodoethers gave a new platform for the synthesis of chiral morpholines.
Collapse
Affiliation(s)
- Takumi K Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Yan J, Zhou Z, He Q, Chen G, Wei H, Xie W. The applications of catalytic asymmetric halocyclization in natural product synthesis. Org Chem Front 2022. [DOI: 10.1039/d1qo01395e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalytic asymmetric halocyclization of olefinic substrate has evolved rapidly and been well utilized as a practical strategy for constructing enantioenriched cyclic skeletons in natural product synthesis.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Tadiparthi K. Total Syntheses of Centrolobines: A Two‐Decade Journey. ChemistrySelect 2021. [DOI: 10.1002/slct.202102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Fu Z, Gao Y, Yin H, Chen FX. Electrophilic Thiocyanato Reagent Assisted Oxa-Michael/Thiocyanation of α,β-Unsaturated Ketones. J Org Chem 2021; 86:17418-17427. [PMID: 34783557 DOI: 10.1021/acs.joc.1c01993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A route for thiocyanation-functionalization of the electron-deficient C═C double bond was developed. Regioselective thiocyanation-etherification of α,β-unsaturated ketones was achieved. The desired products were obtained in moderate to high yields under mild conditions. It was suggested that the nucleophile was activated by the electrophilic thiocyanato reagent, and difunctionalization was achieved through a 1,4-addition/thiocyanation pathway.
Collapse
Affiliation(s)
- Zhenda Fu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
16
|
Wu XB, Gao Q, Fan JJ, Zhao ZY, Tu XQ, Cao HQ, Yu J. Anionic Chiral Co(III) Complexes Mediated Asymmetric Halocyclization─Synthesis of 5-Halomethyl Pyrazolines and Isoxazolines. Org Lett 2021; 23:9134-9139. [PMID: 34812643 DOI: 10.1021/acs.orglett.1c03456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric synthesis of 5-halomethyl pyrazolines and isoxazolines which bear a tertiary stereocenter by catalytic halocyclization of β,γ-unsaturated hydrazones and ketoximes is described. By using Brønsted acids of anionic chiral Co(III) complexes as catalysts, a variety of chiral 5-halomethyl pyrazolines and isoxazolines were obtained in good yields with high enantioselectivities (up to 99% yield, 97:3 er). Preliminary bioassay results indicated that several isoxazoline derivatives exhibited significant antifungal activities.
Collapse
Affiliation(s)
- Xiao-Bao Wu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jun-Jie Fan
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Zhao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
17
|
Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chem Sci 2021; 12:15061-15066. [PMID: 34909146 PMCID: PMC8612400 DOI: 10.1039/d1sc04288b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds. 2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.![]()
Collapse
Affiliation(s)
- Mingxu Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengfan Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China .,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
18
|
Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat Commun 2021; 12:3873. [PMID: 34162859 PMCID: PMC8222362 DOI: 10.1038/s41467-021-24174-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Electrophilic halogenation reactions have been a reliable approach to accessing organohalides. During the past decades, various catalytic systems have been developed for the activation of haleniums. However, there is still a short of effective catalysts, which could cover various halogenation reactions and broad scope of unsaturated compounds. Herein, TEMPO (2,2,6,6-tetramethylpiperidine nitroxide) and its derivatives are disclosed as active catalysts for electrophilic halogenation of olefins, alkynes, and aromatics. These catalysts are stable, readily available, and reactive enough to activate haleniums including Br+, I+ and even Cl+ reagents. This catalytic system is applicable to various halogenations including haloarylation of olefins or dibromination of alkynes, which were rarely realized in previous Lewis base catalysis or Lewis acid catalysis. The high catalytic ability is attributed to a synergistic activation model of electrophilic halogenating reagents, where the carbonyl group and the halogen atom are both activated by present TEMPO catalysis. Organohalides are widely used as synthetic precursors and target products, but for various halogenation reactions there is a need for effective catalysts to activate commercially available haleniums. Here, the authors report that TEMPO and its derivatives are active catalysts for electrophilic halogenation of olefins, alkynes and aromatics, under mild reaction conditions and with good functional group tolerance.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Lingsheng Ai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiwen Gong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
19
|
Li C, Long P, Fu Z, Wu D, Chen F, Yin H. Thiocyanation/Cyclization of γ‐hydroxy Olefins to Access Thiocyanato‐Containing Oxygen Heterocyclic Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengcheng Li
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Pingliang Long
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| |
Collapse
|
20
|
|
21
|
Steigerwald DC, Soltanzadeh B, Sarkar A, Morgenstern CC, Staples RJ, Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem Sci 2020; 12:1834-1842. [PMID: 34163947 PMCID: PMC8179065 DOI: 10.1039/d0sc05224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines. Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.![]()
Collapse
Affiliation(s)
| | - Bardia Soltanzadeh
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Aritra Sarkar
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | | | - Richard J Staples
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Babak Borhan
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| |
Collapse
|
22
|
Wang H, Zhong H, Xu X, Xu W, Jiang X. Catalytic Enantioselective Bromoaminocyclization and Bromocycloetherification. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Haijing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xi Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
23
|
Li W, Zhou P, Li G, Lin L, Feng X. Catalytic Asymmetric Halohydroxylation of α,β‐Unsaturated Ketones with Water as the Nucleophile. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weiwei Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Gonglin Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
24
|
Wang F, Feng L, Dong S, Liu X, Feng X. Chiral N,N'-dioxide-iron(iii)-catalyzed asymmetric sulfoxidation with hydrogen peroxide. Chem Commun (Camb) 2020; 56:3233-3236. [PMID: 32073076 DOI: 10.1039/d0cc00434k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly enantioselective sulfoxidation of various sulfides has been achieved by a N,N'-dioxide-iron(iii) complex with 35% aq. H2O2 as the oxidant. The utility of the current method was demonstrated by asymmetric gram-scale synthesis of drug molecule (R)-modafinil. Moreover, a possible working mode was provided to elucidate the chiral induction.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Lili Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
25
|
Aubineau T, Cossy J. Metal-Catalyzed Cyclization: Synthesis of (Benzo)morpholines and (Benzo)[1,4]dihydrooxazines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS; PSL University; 10 rue Vauquelin 75005 Paris France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS; PSL University; 10 rue Vauquelin 75005 Paris France
| |
Collapse
|
26
|
|
27
|
Jiang Y, Yu SW, Yang Y, Liu YL, Xu XY, Zhang XM, Yuan WC. Synthesis of polycyclic spirooxindoles via an asymmetric catalytic one-pot stepwise Aldol/chloroetherification/aromatization procedure. Org Biomol Chem 2019; 16:6647-6651. [PMID: 30179248 DOI: 10.1039/c8ob01713a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general method for the synthesis of chiral pentacyclic spirooxindoles containing a tetrahydropyrano[2,3-b]indole scaffold through a one-pot stepwise sequence from 3-(3-indolomethyl)oxindole, paraformaldehyde and NCS is reported. Furthermore, the pentacyclic spirooxindoles could be transformed to bispirooxindole and other structurally diverse spirocyclic oxindoles.
Collapse
Affiliation(s)
- Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Catalytic enantioselective oxidative coupling of saturated ethers with carboxylic acid derivatives. Nat Commun 2019; 10:559. [PMID: 30718486 PMCID: PMC6362111 DOI: 10.1038/s41467-019-08473-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2019] [Indexed: 11/23/2022] Open
Abstract
Catalytic enantioselective C–C bond forming process through cross-dehydrogenative coupling represents a promising synthetic strategy, but it remains a long-standing challenge in chemistry. Here, we report a formal catalytic enantioselective cross-dehydrogenative coupling of saturated ethers with diverse carboxylic acid derivatives involving an initial oxidative acetal formation, followed by nickel(II)-catalyzed asymmetric alkylation. The one-pot, general, and modular method exhibits wide compatibility of a broad range of saturated ethers not only including prevalent tetrahydrofuran and tetrahydropyran, but also including medium- and large-sized cyclic moieties and acyclic ones with excellent enantioselectivity and functional group tolerance. The application in the rapid preparation of biologically active molecules that are difficult to access with existing methods is also demonstrated. Cross-dehydrogenative coupling (CDC) is a powerful method for C-C bond formation however the enantioselective variant is underdeveloped. Here, the authors show a formal enantioselective CDC method involving unactivated ethers and carboxylic acid derivatives allowing for the rapid preparation of biologically active molecules.
Collapse
|
29
|
Zhou P, Liu X, Wu W, Xu C, Feng X. Catalytic Asymmetric Construction of β-Azido Amides and Esters via Haloazidation. Org Lett 2019; 21:1170-1175. [PMID: 30693781 DOI: 10.1021/acs.orglett.9b00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A catalytic regio- and enantioselective haloazidation reaction with a chiral iron(II) complex catalyst under mild reaction conditions was reported. By this approach, the stereoselective α-halo-β-azido difunctionalization of both α,β-unsaturated amides and α,β-unsaturated esters was achieved. This method enabled the construction of a broad spectrum of valuable functionalized amides and esters, including enantiomerically enriched β-azido amides, aziridine amides, α-amino amide derivatives, β-triazole amides, functionalized peptide derivatives, and α-halo-β-azido-substituted esters.
Collapse
Affiliation(s)
- Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Wangbin Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
30
|
|
31
|
Cai Y, Liu X, Zhou P, Feng X. Asymmetric Catalytic Halofunctionalization of α,β-Unsaturated Carbonyl Compounds. J Org Chem 2018; 84:1-13. [PMID: 30339377 DOI: 10.1021/acs.joc.8b01951] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Halofunctionalization methods enable the vicinal difunctionalization of alkenes with heteroatom nucleophiles and halogen moieties. As a fundamental transformation in organic synthesis, the catalytic asymmetric variants have only recently been reported. In sharp contrast to the asymmetric halocyclization of simple alkenes which involves a nucleophile-assisted alkene activation process, the asymmetric halofunctionalization of enones developed by our laboratory features an electrophile-assisted 1,4-addition pathway. Our work in this area has resulted in the development of several different types of regio-, diastereo-, and enantioselective processes, including inter- and intramolecular haloaminations, haloetherifications, and haloazidations. The scope, updated mechanism, limitations, and future perspective of these reactions are discussed.
Collapse
Affiliation(s)
- Yunfei Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing 400030 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
32
|
Enantioselective intermolecular iodoacetalization of enol ethers catalyzed by chiral Co(III)-complex-templated Brønsted acids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Jadhav AP, Oh JA, Hwang IS, Yan H, Song CE. Organocatalytic Enantioselective Cycloetherifications Using a Cooperative Cation-Binding Catalyst. Org Lett 2018; 20:5319-5322. [PMID: 30106303 DOI: 10.1021/acs.orglett.8b02240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective cycloetherification strategy for the straightforward synthesis of enantioenriched tetrahydrofurans, tetrahydropyrans, and oxepanes using Song's cation-binding oligoEG catalyst and KF as the base is demonstrated. A wide range of ε-, ζ-, and η-hydroxy-α,β-unsaturated ketones were cyclized to the corresponding five-, six-, and seven-membered chiral oxacycles with high enantiopurity. This remarkably successful catalysis can be ascribed to systematic cooperative cation-binding catalysis in a densely confined supramolecular chiral cage generated in situ from the chiral catalyst, substrate, and KF.
Collapse
Affiliation(s)
- Amol P Jadhav
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Jeong-A Oh
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - In-Soo Hwang
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Hailong Yan
- Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , China
| | - Choong Eui Song
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|
34
|
Cao YM, Lentz D, Christmann M. Synthesis of Enantioenriched Bromohydrins via Divergent Reactions of Racemic Intermediates from Anchimeric Oxygen Borrowing. J Am Chem Soc 2018; 140:10677-10681. [PMID: 30099869 DOI: 10.1021/jacs.8b06432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a chiral phosphoric acid catalyzed bromocyclization/regiodivergent reaction of racemic intermediates sequence, which is enabled by anchimeric oxygen borrowing. Different types of alkenes are applicable, and both enantiomers of the bromohydrin products were obtained in generally excellent yields and enantioselectivities. In addition, an example of enantioconvergent synthesis from the two isomeric products is presented.
Collapse
Affiliation(s)
- Yi-Ming Cao
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Dieter Lentz
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
35
|
Oishi T, Yamamoto H, Torikai K, Ebine M. Synthesis of 6/6/6-Tricyclic Ether System via Achmatowicz and Intramolecular Oxa-Michael Reactions. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zhou P, Lin L, Chen L, Zhong X, Liu X, Feng X. Iron-Catalyzed Asymmetric Haloazidation of α,β-Unsaturated Ketones: Construction of Organic Azides with Two Vicinal Stereocenters. J Am Chem Soc 2017; 139:13414-13419. [PMID: 28862434 DOI: 10.1021/jacs.7b06029] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organic azides play important roles in synthetic chemistry, chemical biology, drug discovery, and material science. Azido-functionalization of alkenes is one of the most efficient procedures for rapid introduction of azide group into organic compounds. But only a few examples have been documented in the catalytic asymmetric version of the azidation of alkenes. Herein, we report an unprecedented highly diastereo- and enantioselective bromoazidation of α,β-unsaturated ketones catalyzed by chiral N,N'-dioxide/Fe(OTf)2 complexes. An array of aryl, heteroaryl, and alkyl substituted α,β-unsaturated ketones were transformed to the corresponding α-bromo-β-azido ketones in high yields with excellent diastereo- and enantioselectivities. The catalytic system was also applicable for chloroazidation and iodoazidation of chalcone. Kinetic studies and some control experiments suggested that the reaction might proceed via a 1,4-addition/halogenation pathway.
Collapse
Affiliation(s)
- Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
37
|
Yu SN, Li YL, Deng J. Enantioselective Synthesis of 2-Bromomethyl Indolines via BINAP(S)-Catalyzed Bromoaminocyclization of Allyl Aniline. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sheng-Nan Yu
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yin-Long Li
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Jun Deng
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- School of Pharmaceutical Sciences and Innovative Drug Research Centre; Chongqing University; 55 Daxuecheng South Road, Shapingba Chongqing 401331 People's Republic of China
| |
Collapse
|
38
|
Abstract
The first and asymmetric total synthesis of (-)-hedycoropyrans A (1) was accomplished in 18 steps with 5.4% overall yield. The key features of our strategy include (1) construction of the unusual trans-2-aryl-6-alkyl tetrahydropyran core via Achmatowicz rearrangement, Zn-mediated reductive deoxygenation, and Heck-Matsuda coupling reaction, and (2) installation of 3,4-anti-dihydroxy from the corresponding 3,4-syn-dihydroxy THP through chemo- and regioselective IBX oxidation and Evans-Saksena reduction. In addition, C2 epimerization of (-)-hedycoropyan A (1) under the acidic condition furnished (-)-hedycoropyan B (2) with 71% yield. This finding might suggest the biogenetic origin of hedycoropyran B.
Collapse
Affiliation(s)
- Zhilong Li
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China.,HKUST Shenzhen Research Institute , Shenzhen 518057, China
| |
Collapse
|
39
|
Wang Z, Lin L, Zhou P, Liu X, Feng X. Chiral N,N′-dioxide-Sc(NTf2)3 complex-catalyzed asymmetric bromoamination of chalones with N-bromosuccinimide as both bromine and amide source. Chem Commun (Camb) 2017; 53:3462-3465. [DOI: 10.1039/c7cc00470b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chiral N,N′-dioxide-Sc(NTf2)3 complex catalytic system has been developed to catalyze the asymmetric bromoamination reaction of chalones with N-bromosuccinimide.
Collapse
Affiliation(s)
- Zhengmeng Wang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|