1
|
Chen H, Qin B, Zhang Q, Hu X, Ma L, Zhang X, Tang Z, Chen L. Enhancement of Selective Catalytic Oxidation of Lignin β-O-4 Bond via Orbital Modulation and Surface Lattice Reconstruction. CHEMSUSCHEM 2024:e202402194. [PMID: 39555777 DOI: 10.1002/cssc.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
The orbital modulation and surface lattice reconstruction represent an effective strategy to regulate the interaction between catalyst interface sites and intermediates, thereby enhancing catalytic activity and selectivity. In this study, the crystal surface of Au-K/CeO2 catalyst can undergo reversible transformation by tuning the coordination environment of Ce, which enables the activation of the Cβ-H bond and the oxidative cleavage of the Cβ-O and Cα-Cβ bonds, leading to the cleavage of 2-phenoxy-1-phenylethanol. The t2g orbitals of Au 5d hybridize with the 2p orbitals of lattice oxygen in CeO2 via π-coordination, modulating the coordination environment of Ce 4 f and reconstructing the lattice oxygen in the CeO2 framework, as well as increasing the oxygen vacancies. The interface sites formed by the synergy between Au clusters in the reconstructed Ce-OL1-Au structure and doped K play dual roles. On the one hand, it activates the Cβ-H bond, facilitating the enolization of the pre-oxidized 2-phenoxy-1-phenylethanone. On the other hand, through single-electron transfer involving Ce3+ 4f1 and the adsorption by oxygen vacancies, it enhances the oxidative cleavage of the Cβ-O and Cα-Cβ bonds. This study elucidates the complex mechanistic roles of the structure and properties of Au-K/CeO2 catalyst in the selective catalytic oxidation of lignin β-O-4 bond.
Collapse
Affiliation(s)
- Haonan Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Baolong Qin
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiaohong Hu
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyuan Tang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Yu Y, Wang T, Yan N, Liu J. High-area alumina supported Cu-Ce atomic species for water-gas shift reaction. Chem Commun (Camb) 2024; 60:9093-9096. [PMID: 39108100 DOI: 10.1039/d4cc01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Atomically dispersed cerium species, anchored to high-area alumina by unsaturated penta-coordinated aluminum, strongly interact with atomically dispersed Cu species to provide active centers for water-gas shift reaction (WGSR). The alumina-anchored Ce3+ species stabilize atomically dispersed Cu+ to form Cu+-Ce3+ active complexes and they work synergistically to enhance low-temperature WGSR activity. This work offers alternative approaches to developing low-cost catalysts for the WGSR process.
Collapse
Affiliation(s)
- Yiwei Yu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA
| | - Tie Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.
| |
Collapse
|
3
|
Beck A, Kazazis D, Ekinci Y, Li X, Müller Gubler EA, Kleibert A, Willinger MG, Artiglia L, van Bokhoven JA. The Extent of Platinum-Induced Hydrogen Spillover on Cerium Dioxide. ACS NANO 2022; 17:1091-1099. [PMID: 36469418 DOI: 10.1021/acsnano.2c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen spillover from metal nanoparticles to oxides is an essential process in hydrogenation catalysis and other applications such as hydrogen storage. It is important to understand how far this process is reaching over the surface of the oxide. Here, we present a combination of advanced sample fabrication of a model system and in situ X-ray photoelectron spectroscopy to disentangle local and far-reaching effects of hydrogen spillover in a platinum-ceria catalyst. At low temperatures (25-100 °C and 1 mbar H2) surface O-H formed by hydrogen spillover on the whole ceria surface extending microns away from the platinum, leading to a reduction of Ce4+ to Ce3+. This process and structures were strongly temperature dependent. At temperatures above 150 °C (at 1 mbar H2), O-H partially disappeared from the surface due to its decreasing thermodynamic stability. This resulted in a ceria reoxidation. Higher hydrogen pressures are likely to shift these transition temperatures upward due to the increasing chemical potential. The findings reveal that on a catalyst containing a structure capable to promote spillover, hydrogen can affect the whole catalyst surface and be involved in catalysis and restructuring.
Collapse
Affiliation(s)
- Arik Beck
- ETH Zurich, Vladimir-Prelog Weg 1, Zürich8093, Switzerland
| | - Dimitrios Kazazis
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| | - Yasin Ekinci
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| | - Xiansheng Li
- ETH Zurich, Vladimir-Prelog Weg 1, Zürich8093, Switzerland
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| | | | - Armin Kleibert
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| | | | - Luca Artiglia
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| | - Jeroen A van Bokhoven
- ETH Zurich, Vladimir-Prelog Weg 1, Zürich8093, Switzerland
- Paul Scherrer Institute, Forschungsstrasse 111, 5232Villigen, Switzerland
| |
Collapse
|
4
|
Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Sun Y, Shi H, Yuan H, Li Z, Zhang J, Zhou D, Li Z, Shao X. Unveiling the Atomic Structure and Growth Dynamics of One-Dimensional Water on ZnO(10-10). J Phys Chem Lett 2022; 13:1554-1562. [PMID: 35137584 DOI: 10.1021/acs.jpclett.1c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorption and organization state of water on the metal oxide surface is of critical importance for wide fields where interface chemistry dominates. On the technically important ZnO(10-10) surface, we found water assembles into an one-dimensional (1D) chain structure at submonolayer coverage instead of the well-known half-dissociated two-dimensional (2D) island. With a combination of high resolution scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we clearly distinguished the single and double water chains, which are composed of dissociated monomers and half-dissociated dimers, respectively. Moreover, we unambiguously determined that single water molecules dissociate spontaneously before agglomerating into ordered phase, which is contrary to the proposition of previous studies. These results have deepened our understandings of the adsorbed water species on the ZnO surface, which may bring new insights into the mechanisms of water-stimulated surface reactions.
Collapse
Affiliation(s)
- Yuniu Sun
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Hao Yuan
- HFNL, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Li
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Jiefu Zhang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Dandan Zhou
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyu Li
- HFNL, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Li Z, Li N, Wang N, Zhou B, Yu J, Song B, Yin P, Yang Y. Metal–support interaction induced ZnO overlayer in Cu@ZnO/Al2O3 catalysts toward low-temperature water–gas shift reaction. RSC Adv 2022; 12:5509-5516. [PMID: 35425535 PMCID: PMC8981623 DOI: 10.1039/d1ra07896h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
The water–gas shift reaction (WGSR) plays a pivotal role in many important industrial processes as well as in the elimination of residual CO in feed gas for fuel cells. The development of a high-efficiency low-temperature WGSR (LT-WGSR) catalyst has attracted considerable attention. Herein, we report a ZnO-modified Cu-based nanocatalyst (denoted as Cu@ZnO/Al2O3) obtained via an in situ topological transformation from a Cu2Zn1Al-layered double hydroxide (Cu2Zn1Al-LDH) precursor at different reduction temperatures. The optimal Cu@ZnO/Al2O3-300R catalyst with appropriately abundant Cu@ZnO interface structure shows superior catalytic performance toward the LT-WGSR with a reaction rate of up to 19.47 μmolCO gcat−1 s−1 at 175 °C, which is ∼5 times larger than the commercial Cu/ZnO/Al2O3 catalyst. High-resolution transmission electron microscopy (HRTEM) proves that the reduction treatment results in the coverage of Cu nanoparticles by ZnO overlayers induced by a strong metal–support interaction (SMSI). Furthermore, the generation of the coating layers of ZnO structure is conducive to stabilize Cu nanoparticles, accounting for long-term stability under the reaction conditions and excellent start/stop cycle of the Cu@ZnO/Al2O3-300R catalyst. This study provides a high-efficiency and low-cost Cu-based catalyst for the LT-WGSR and gives a concrete example to help understand the role of Cu@ZnO interface structure in dominating the catalytic activity and stability toward WGSR. The water–gas shift reaction (WGSR) plays a pivotal role in many important industrial processes as well as in the elimination of residual CO in feed gas for fuel cells.![]()
Collapse
Affiliation(s)
- Zhiyuan Li
- Stated Grid Integrated Energy Service Group Co., Ltd, Beijing 100052, P. R. China
| | - Na Li
- Stated Grid Integrated Energy Service Group Co., Ltd, Beijing 100052, P. R. China
| | - Nan Wang
- Stated Grid Integrated Energy Service Group Co., Ltd, Beijing 100052, P. R. China
| | - Bing Zhou
- Stated Grid Integrated Energy Service Group Co., Ltd, Beijing 100052, P. R. China
| | - Jun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Boyu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO 2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides can catalyze the CO2 transformation reactions. On metal oxide-based catalysts, CO2 transformations are promoted significantly in the presence of surface oxygen vacancies or surface defect sites. Electrons transferable to the neutral CO2 molecule can be enriched on oxygen vacancies, which can also act as CO2 adsorption sites. CO2 activation is also possible without necessarily transferring electrons by tailoring catalytic sites that promote interactions at an appropriate energy level alignment of the catalyst and CO2 molecule. This review discusses CO2 activation on various catalysts, particularly the impacts of various structural factors, such as oxygen vacancies, on CO2 activation.
Collapse
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| |
Collapse
|
8
|
Zhang Z, Chen X, Kang J, Yu Z, Tian J, Gong Z, Jia A, You R, Qian K, He S, Teng B, Cui Y, Wang Y, Zhang W, Huang W. The active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat Commun 2021; 12:4331. [PMID: 34267215 PMCID: PMC8282834 DOI: 10.1038/s41467-021-24621-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Cu–ZnO–Al2O3 catalysts are used as the industrial catalysts for water gas shift (WGS) and CO hydrogenation to methanol reactions. Herein, via a comprehensive experimental and theoretical calculation study of a series of ZnO/Cu nanocrystals inverse catalysts with well-defined Cu structures, we report that the ZnO–Cu catalysts undergo Cu structure-dependent and reaction-sensitive in situ restructuring during WGS and CO hydrogenation reactions under typical reaction conditions, forming the active sites of CuCu(100)-hydroxylated ZnO ensemble and CuCu(611)Zn alloy, respectively. These results provide insights into the active sites of Cu–ZnO catalysts for the WGS and CO hydrogenation reactions and reveal the Cu structural effects, and offer the feasible guideline for optimizing the structures of Cu–ZnO–Al2O3 catalysts. Identification of active sites of a catalyst is the Holy Grail in heterogeneous catalysis. Here, the authors successfully identify the CuCu(100)- hydroxylated ZnO ensemble and CuCu(611)Zn alloy as the active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions, respectively.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
| | - Xuanye Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zongyou Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Jie Tian
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Aiping Jia
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
| | - Rui You
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Shun He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Botao Teng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China. .,Dalian National Laboratory for Clean Energy, Dalian, China.
| |
Collapse
|
9
|
Xiong Y, Wang S, Chen W, Zhang J, Li Q, Hu HS, Zheng L, Yan W, Gu L, Wang D, Li Y. Construction of Dual-Active-Site Copper Catalyst Containing both CuN 3 and CuN 4 Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006834. [PMID: 33522142 DOI: 10.1002/smll.202006834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Clear recognition and rational construction of suitable active center for specific reaction is always of great significance in designing highly efficient catalysts. Herein, a dual-active-site copper catalyst (DAS-Cu) containing both CuN3 and CuN4 sites is reported. Such catalysts show extremely high catalytic performance (yield: up to 97%) toward oxyphosphorylation of alkenes, while catalysts with single active site (CuN3 or CuN4 ) are chemically inert in this reaction. Combined with theoretical and experimental results, the different roles of two different Cu active sites in this reaction are further identified. CuN3 site captures the oxygen and trigger further oxidizing process, while CuN4 site provides moderate adsorption sites for the protection of phosphonyl radicals. This work deeply discloses the significant cooperated role with two single-atomic sites in one catalytic active center and brings up a valuable clue for the rational design of better-performing heterogeneous catalyst.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shibin Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiheng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Pérez-González M, Tomás S. Surface chemistry of TiO2-ZnO thin films doped with Ag. Its role on the photocatalytic degradation of methylene blue. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Volokh M, Mokari T. Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. NANOSCALE ADVANCES 2020; 2:930-961. [PMID: 36133041 PMCID: PMC9418511 DOI: 10.1039/c9na00729f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/04/2020] [Indexed: 05/11/2023]
Abstract
Hybrid nanostructures, composed of multi-component crystals of various shapes, sizes and compositions are much sought-after functional materials. Pairing the ability to tune each material separately and controllably combine two (or more) domains with defined spatial orientation results in new properties. In this review, we discuss the various synthetic mechanisms for the formation of hybrid nanostructures of various complexities containing at least one metal/semiconductor interface, with a focus on colloidal chemistry. Different synthetic approaches, alongside the underlying kinetic and thermodynamic principles are discussed, and future advancement prospects are evaluated. Furthermore, the proved unique properties are reviewed with emphasis on the connection between the synthetic method and the resulting physical, chemical and optical properties with applications in fields such as photocatalysis.
Collapse
Affiliation(s)
- Michael Volokh
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Taleb Mokari
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
12
|
Liu F, Song L, Ouyang S, Xu H. Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00359b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–ZnO catalyst with a well-designed nanojunction structure was fabricated for the photothermal catalysis of the water-gas shift (WGS) reaction.
Collapse
Affiliation(s)
- Fuli Liu
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Lizhu Song
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Shuxin Ouyang
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
- College of Chemistry
| | - Hua Xu
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
- School of Chemistry and Environmental Engineering
| |
Collapse
|
13
|
Chen H, Lin L, Li Y, Wang R, Gong Z, Cui Y, Li Y, Liu Y, Zhao X, Huang W, Fu Q, Yang F, Bao X. CO and H2 Activation over g-ZnO Layers and w-ZnO(0001). ACS Catal 2018. [DOI: 10.1021/acscatal.8b03687] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hao Chen
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Le Lin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Yifan Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Rui Wang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, People’s Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People’s Republic of China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, People’s Republic of China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, People’s Republic of China
| | - Yangsheng Li
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yun Liu
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Xinfei Zhao
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wugen Huang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Fu
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|
14
|
Holdren S, Tsyshevsky R, Fears K, Owrutsky J, Wu T, Wang X, Eichhorn BW, Kuklja MM, Zachariah MR. Adsorption and Destruction of the G-Series Nerve Agent Simulant Dimethyl Methylphosphonate on Zinc Oxide. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02999] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Scott Holdren
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Roman Tsyshevsky
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
| | - Kenan Fears
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Jeffrey Owrutsky
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Tao Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xizheng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bryan W. Eichhorn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Maija M. Kuklja
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
| | - Michael R. Zachariah
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
De Vrieze JE, Thybaut JW, Saeys M. Role of Surface Hydroxyl Species in Copper-Catalyzed Hydrogenation of Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jenoff E. De Vrieze
- Laboratory for Chemical Technology, Technologiepark 914, B-9052 Gent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology, Technologiepark 914, B-9052 Gent, Belgium
| | - Mark Saeys
- Laboratory for Chemical Technology, Technologiepark 914, B-9052 Gent, Belgium
| |
Collapse
|
16
|
Zhang T, Zhou J, Chen Y, Li Y. Ce(III) immobilized on aminated poly(vinyl chloride): high-performance synergistic bifunctional acid–base catalyst for one-pot synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3425-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bu Y, Er S, Niemantsverdriet J(H, Fredriksson HO. Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV–Vis and mass spectrometry and DFT. J Catal 2018. [DOI: 10.1016/j.jcat.2017.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
The most active Cu facet for low-temperature water gas shift reaction. Nat Commun 2017; 8:488. [PMID: 28887563 PMCID: PMC5591213 DOI: 10.1038/s41467-017-00620-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022] Open
Abstract
Identification of the active site is important in developing rational design strategies for solid catalysts but is seriously blocked by their structural complexity. Here, we use uniform Cu nanocrystals synthesized by a morphology-preserved reduction of corresponding uniform Cu2O nanocrystals in order to identify the most active Cu facet for low-temperature water gas shift (WGS) reaction. Cu cubes enclosed with {100} facets are very active in catalyzing the WGS reaction up to 548 K while Cu octahedra enclosed with {111} facets are inactive. The Cu–Cu suboxide (CuxO, x ≥ 10) interface of Cu(100) surface is the active site on which all elementary surface reactions within the catalytic cycle proceed smoothly. However, the formate intermediate was found stable at the Cu–CuxO interface of Cu(111) surface with consequent accumulation and poisoning of the surface at low temperatures. Thereafter, Cu cubes-supported ZnO catalysts are successfully developed with extremely high activity in low-temperature WGS reaction. Nanocrystals display a variety of facets with different catalytic activity. Here the authors identify the most active facet of copper nanocrystals relevant to the low-temperature water gas shift reaction and further design zinc oxide-copper nanocubes with exceptionally high catalytic activity.
Collapse
|
19
|
Zhang Y, Han B, Xu Y, Zhao D, Jia Y, Nie R, Zhu Z, Chen F, Wang J, Jing H. Artificial Photosynthesis of Alcohols by Multi-Functionalized Semiconductor Photocathodes. CHEMSUSCHEM 2017; 10:1742-1748. [PMID: 28294566 DOI: 10.1002/cssc.201601828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Novel artificial photosynthesis systems are devised as cells of dye/Pd/NR-MOx (M=Ti, Zn)∥CoPi/W:BiVO4 that convert efficiently CO2 to alcohols. The photocathodes are aminofunctionalized, palladium-deposited, and in situ sensitized nano-TiO2 or ZnO/FTO (FTO: fluorine-doped tin oxide) electrodes that are characterized by X-ray photoelectron spectroscopy (XPS), TEM, XRD, UV/Vis spectra, and evaluated by electrochemical techniques. The cell of dye/Pd/S-TiO2 ∥CoPi/W:BiVO4 uniquely generates ethanol under irradiation of 200 mW cm-2 , reaching 0.56 % quantum efficiency (QE) at -0.56 V and 0.13 % QE without external electron supply. The cell of dye/Pd/ N-ZnO∥CoPi/W:BiVO4 produces solely methanol at a rate of 42.8 μm h-1 cm-2 at -0.56 V of a Si solar cell, which is far less than the electrochemical voltage of water splitting (1.23 V). Its QE reaches to 0.38 %, which is equal to plants. The isotopic labeling experiments confirm the carbon source and oxygen releasing. The selectivity for alcohols of multi-functionalized semiconductors is discussed.
Collapse
Affiliation(s)
- Yuqian Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Bo Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yanjie Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Dongning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yongjian Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Rong Nie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Zhouhe Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi, 030001, P. R. China
| | - Huanwang Jing
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
20
|
Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X. Enhancing CO 2 Electroreduction with the Metal-Oxide Interface. J Am Chem Soc 2017; 139:5652-5655. [PMID: 28391686 DOI: 10.1021/jacs.7b00102] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO2. We report here a strategy to enhance CO2RR by constructing the metal-oxide interface. We demonstrate that Au-CeOx shows much higher activity and Faradaic efficiency than Au or CeOx alone for CO2RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au-CeOx interface is dominant in enhancing CO2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au-CeOx interface is the active site for CO2 activation and the reduction to CO, where the synergy between Au and CeOx promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO2RR. Similar interface-enhanced CO2RR is further observed on Ag-CeOx, demonstrating the generality of the strategy for enhancing CO2RR.
Collapse
Affiliation(s)
- Dunfeng Gao
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yi Zhang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Zhiwen Zhou
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Fan Cai
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Xinfei Zhao
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Wugen Huang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Yangsheng Li
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China , Hefei 230029, China
| | - Ping Liu
- Chemistry Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Fan Yang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
21
|
Lin B, Liu X, Zhang Z, Chen Y, Liao X, Li Y. Pd(0)-CMC@Ce(OH)(4) organic/inorganic hybrid as highly active catalyst for the Suzuki-Miyaura reaction. J Colloid Interface Sci 2017; 497:134-143. [PMID: 28284067 DOI: 10.1016/j.jcis.2017.02.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
A very easy sequential metathesis for the synthesis of Pd(II)-CMC@Ce(OH)4 organic/inorganic hybrid and its application as effective pre-catalyst for the Suzuki-Miyaura reaction have been reported. It was found that the Pd nanoparticles (Pd NPs) were formed in situ in the course of the Suzuki-Miyaura couplings when Pd(II)-CMC@Ce(OH)4 was used as a pre-catalyst. The activity of the Pd NPs in the reaction was enhanced synergistically by the unique redox properties (Ce3+/Ce4+) of Ce(OH)4 and coordination with carboxyl groups as well as free hydroxyl groups of the hybrid of CMC@Ce(OH)4. The results exhibit the Pd(0)-CMC@Ce(OH)4 is super over Pd(II)@CMC, Pd(II)@CeO2, and Pd(II)@Ce(OH)4 catalysts in the Suzuki-Miyaura reaction. Moreover, the catalyst could be easily separated by simple filtration and reused at least seven runs without losing its activity.
Collapse
Affiliation(s)
- Bijin Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Xiaoping Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Zhuan Zhang
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Yang Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Xiaojian Liao
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Yiqun Li
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|