1
|
Wang C, Long J, Li X, Zhou X, Chen L, Qiu C, Jin Z. Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review. Int J Biol Macromol 2025; 295:139552. [PMID: 39778825 DOI: 10.1016/j.ijbiomac.2025.139552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods. It highlights the bioactivities of agar-derived oligosaccharides and monosaccharides, including their antioxidant, anti-inflammatory, antibacterial, immunomodulatory, hypolipidemic effects, as well as their ability to suppress melanin production. Additionally, this review discusses their role in regulating intestinal flora and explores the relationship between the structure of agar-derived saccharides and their applications, emphasizing the impact of the presence of 3,6-anhydro-α-l-galactose at the nonreducing end of the chain on their functionality.
Collapse
Affiliation(s)
- Chen Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
3
|
Hao Z, Guo Q, Peng W, Da LT. A kinetic model reveals the critical gating motifs for donor-substrate loading into Actinobacillus pleuropneumoniae N-glycosyltransferase. Phys Chem Chem Phys 2024; 26:13441-13451. [PMID: 38647259 DOI: 10.1039/d3cp06034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.
Collapse
Affiliation(s)
- Zhiqiang Hao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenjie Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Jian X, Li C, Feng X. Strategies for modulating transglycosylation activity, substrate specificity, and product polymerization degree of engineered transglycosylases. Crit Rev Biotechnol 2023; 43:1284-1298. [PMID: 36154438 DOI: 10.1080/07388551.2022.2105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Glycosides are widely used in many fields due to their favorable biological activity. The traditional plant extractions and chemical methods for glycosides production are limited by environmentally unfriendly, laborious protecting group strategies and low yields. Alternatively, enzymatic glycosylation has drawn special attention due to its mild reaction conditions, high catalytic efficiency, and specific stereo-/regioselectivity. Glycosyltransferases (GTs) and retaining glycoside hydrolases (rGHs) are two major enzymes for the formation of glycosidic linkages. Therein GTs generally use nucleotide phosphate activated donors. In contrast, GHs can use broader simple and affordable glycosyl donors, showing great potential in industrial applications. However, most rGHs mainly show hydrolysis activity and only a few rGHs, namely non-Leloir transglycosylases (TGs), innately present strong transglycosylation activities. To address this problem, various strategies have recently been developed to successfully tailor rGHs to alleviate their hydrolysis activity and obtain the engineered TGs. This review summarizes the current modification strategies in TGs engineering, with a special focus on transglycosylation activity enhancement, substrate specificity modulation, and product polymerization degree distribution, which provides a reference for exploiting the transglycosylation potentials of rGHs.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Guo Z, Wang L, Rao D, Liu W, Xue M, Fu Q, Lu M, Su L, Chen S, Wang B, Wu J. Conformational Switch of the 250s Loop Enables the Efficient Transglycosylation in GH Family 77. J Chem Inf Model 2023; 63:6118-6128. [PMID: 37768640 DOI: 10.1021/acs.jcim.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Amylomaltases (AMs) play important roles in glycogen and maltose metabolism. However, the molecular mechanism is elusive. Here, we investigated the conformational dynamics of the 250s loop and catalytic mechanism of Thermus aquaticus TaAM using path-metadynamics and QM/MM MD simulations. The results demonstrate that the transition of the 250s loop from an open to closed conformation promotes polysaccharide sliding, leading to the ideal positioning of the acid/base. Furthermore, the conformational dynamics can also modulate the selectivity of hydrolysis and transglycosylation. The closed conformation of the 250s loop enables the tight packing of the active site for transglycosylation, reducing the energy penalty and efficiently preventing the penetration of water into the active site. Conversely, the partially closed conformation for hydrolysis results in a loosely packed active site, destabilizing the transition state. These computational findings guide mutation experiments and enable the identification of mutants with an improved disproportionation/hydrolysis ratio. The present mechanism is in line with experimental data, highlighting the critical role of conformational dynamics in regulating the catalytic reactivity of GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Miaomiao Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qisheng Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
7
|
Guo Z, Wang L, Su L, Chen S, Xia W, André I, Rovira C, Wang B, Wu J. A Single Hydrogen Bond Controls the Selectivity of Transglycosylation vs Hydrolysis in Family 13 Glycoside Hydrolases. J Phys Chem Lett 2022; 13:5626-5632. [PMID: 35704841 DOI: 10.1021/acs.jpclett.2c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting glycoside hydrolases (GHs) from hydrolytic to synthetic enzymes via transglycosylation is a long-standing goal for the biosynthesis of complex carbohydrates. However, the molecular determinants for the selectivity of transglycosylation (T) vs hydrolysis (H) are still not fully unraveled. Herein, we show experimentally that mutation of one active site residue can switch the enzyme activity between hydrolysis and transglycosylation in two highly homologous GHs. Further QM/MM simulations reveal that the mutation modulates the T vs H reaction barriers via the presence/absence of a single H-bond with the nucleophile Asp. Such a H-bond controls the product selectivity via a dual effect: on one hand, it facilitates the breaking of the glycosyl-enzyme intermediate. On the other, it displaces the sugar acceptor, resulting in a reduced affinity and significant steric repulsion for transglycosylation. These findings expand our understanding of the molecular mechanisms that modulate the T/H balance in GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31400, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| |
Collapse
|
8
|
Li W, Bilal M, Singh AK, Sher F, Ashraf SS, Franco M, Américo-Pinheiro JHP, Iqbal HMN. Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review. Catal Letters 2022. [DOI: 10.1007/s10562-022-04065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Gautieri A, Rigoldi F, Torretta A, Redaelli A, Parisini E. In Silico Engineering of Enzyme Access Tunnels. Methods Mol Biol 2022; 2397:203-225. [PMID: 34813066 DOI: 10.1007/978-1-0716-1826-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme engineering is a tailoring process that allows the modification of naturally occurring enzymes to provide them with improved catalytic efficiency, stability, or specificity. By introducing partial modifications to their sequence and to their structural features, enzyme engineering can transform natural enzymes into more efficient, specific and resistant biocatalysts and render them suitable for virtually countless industrial processes. Current enzyme engineering methods mostly target the active site of the enzyme, where the catalytic reaction takes place. Nonetheless, the tunnel that often connects the surface of an enzyme with its buried active site plays a key role in the activity of the enzyme as it acts as a gatekeeper and regulates the access of the substrate to the catalytic pocket. Hence, there is an increasing interest in targeting the sequence and the structure of substrate entrance tunnels in order to fine-tune enzymatic activity, regulate substrate specificity, or control reaction promiscuity.In this chapter, we describe the use of a rational in silico design and screening method to engineer the access tunnel of a fructosyl peptide oxidase with the aim to facilitate access to its catalytic site and to expand its substrate range. Our goal is to engineer this class of enzymes in order to utilize them for the direct detection of glycated proteins in diabetes monitoring devices. The design strategy involves remodeling of the backbone structure of the enzyme , a feature that is not possible with conventional enzyme engineering techniques such as single-point mutagenesis and that is highly unlikely to occur using a directed evolution approach.The proposed strategy, which results in a significant reduction in cost and time for the experimental production and characterization of candidate enzyme variants, represents a promising approach to the expedited identification of novel and improved enzymes. Rational enzyme design aims to provide in silico strategies for the fast, accurate, and inexpensive development of biocatalysts that can meet the needs of multiple industrial sectors, thus ultimately promoting the use of green chemistry and improving the efficiency of chemical processes.
Collapse
Affiliation(s)
- Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
| | - Federica Rigoldi
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Archimede Torretta
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Alberto Redaelli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Milan, Italy.
- Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
10
|
Mendoza F, Masgrau L. Computational modeling of carbohydrate processing enzymes reactions. Curr Opin Chem Biol 2021; 61:203-213. [PMID: 33812143 DOI: 10.1016/j.cbpa.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.
Collapse
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Laura Masgrau
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018, Barcelona, Spain.
| |
Collapse
|
11
|
Zhao J, Tandrup T, Bissaro B, Barbe S, Poulsen JCN, André I, Dumon C, Lo Leggio L, O'Donohue MJ, Fauré R. Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase. N Biotechnol 2021; 62:68-78. [PMID: 33524585 DOI: 10.1016/j.nbt.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.
Collapse
Affiliation(s)
- Jiao Zhao
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Bastien Bissaro
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Sophie Barbe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Isabelle André
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
12
|
Dussouy C, Téletchéa S, Lambert A, Charlier C, Botez I, De Ceuninck F, Grandjean C. Access to Galectin-3 Inhibitors from Chemoenzymatic Synthons. J Org Chem 2020; 85:16099-16114. [PMID: 33200927 DOI: 10.1021/acs.joc.0c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemoenzymatic strategies are useful for providing both regio- and stereoselective access to bioactive oligosaccharides. We show herein that a glycosynthase mutant of a Thermus thermophilus α-glycosidase can react with unnatural glycosides such as 6-azido-6-deoxy-d-glucose/glucosamine to lead to β-d-galactopyranosyl-(1→3)-d-glucopyranoside or β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucopyranoside derivatives bearing a unique azide function. Taking advantage of the orthogonality between the azide and the hydroxyl functional groups, the former was next selectively reacted to give rise to a library of galectin-3 inhibitors. Combining enzyme substrate promiscuity and bioorthogonality thus appears as a powerful strategy to rapidly access to sugar-based ligands.
Collapse
Affiliation(s)
- Christophe Dussouy
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Stéphane Téletchéa
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Annie Lambert
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Cathy Charlier
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France.,Université de Nantes, CNRS, Plateforme IMPACT, UMR 6286, F-44000 Nantes, France
| | - Iuliana Botez
- Institut de Recherches Servier, Croissy-sur-Seine, 78290 Croissy, France
| | | | - Cyrille Grandjean
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| |
Collapse
|
13
|
Qu W, Wang D, Wu J, Chan Z, Di W, Wang J, Zeng R. Production of Neoagaro-Oligosaccharides With Various Degrees of Polymerization by Using a Truncated Marine Agarase. Front Microbiol 2020; 11:574771. [PMID: 33072038 PMCID: PMC7541962 DOI: 10.3389/fmicb.2020.574771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
Bioactivities, such as freshness maintenance, whitening, and prebiotics, of marine neoagaro-oligosaccharides (NAOS) with 4-12 degrees of polymerization (DPs) have been proven. However, NAOS produced by most marine β-agarases always possess low DPs (≤6) and limited categories; thus, a strategy that can efficiently produce NAOS especially with various DPs ≥8 must be developed. In this study, 60 amino acid residues with no functional annotation result were removed from the C-terminal of agarase AgaM1, and truncated recombinant AgaM1 (trAgaM1) was found to have the ability to produce NAOS with various DPs (4-12) under certain conditions. The catalytic efficiency and stability of trAgaM1 were obviously lower than the wild type (rAgaM1), which probably endowed trAgaM1 with the ability to produce NAOS with various DPs. The optimum conditions for various NAOS production included mixing 1% agarose (w/v) with 10.26 U/ml trAgaM1 and incubating the mixture at 50°C in deionized water for 100 min. This strategy produced neoagarotetraose (NA4), neoagarohexaose (NA6), neoagarooctaose (NA8), neoagarodecaose (NA10), and neoagarododecaose (NA12) at final concentrations of 0.15, 1.53, 1.53, 3.02, and 3.02 g/L, respectively. The NAOS served as end-products of the reaction. The conditions for trAgaM1 expression in a shake flask and 5 L fermentation tank were optimized, and the yields of trAgaM1 increased by 56- and 842-fold compared with those before optimization, respectively. This study provides numerous substrate sources for production and activity tests of NAOS with high DPs and offers a foundation for large-scale production of NAOS with various DPs at a low cost.
Collapse
Affiliation(s)
- Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jie Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhuhua Chan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wenjie Di
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
14
|
David B, Arnaud P, Tellier C, Sanejouand YH. Toward the design of efficient transglycosidases: the case of the GH1 of Thermus thermophilus. Protein Eng Des Sel 2020; 32:309-316. [PMID: 31603224 DOI: 10.1093/protein/gzz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Using the information available in the sequences of well-characterized transglycosidases found in plants, mutations were introduced in the glycoside hydrolase of the bacterium Thermus thermophilus, with the aim of turning it into an efficient transglycosidase. All mutants happen to have fair catalytic efficiencies, being at worst 25 times less efficient than the wild type. Noteworthy, W120F, one of our high transglycosylation yield (≈ 50%) mutants, is only two times less efficient than the wild type. Interestingly, while in the wild type the sidechain of the acid-base is only found able to sample a pair of equivalent conformations during 0.5-μs-long molecular dynamics simulations, its flexibility is much higher in the case of the high transglycosylation yield mutants. Our results thus suggest that engineering the flexibility of the acid-base of a retaining glycoside hydrolase could be a general way to turn it into an efficient transglycosidase.
Collapse
Affiliation(s)
- Benoit David
- UFIP, UMR 6286 of CNRS, University of Nantes, 44035 Nantes, France.,CPC, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Philippe Arnaud
- UFIP, UMR 6286 of CNRS, University of Nantes, 44035 Nantes, France
| | - Charles Tellier
- UFIP, UMR 6286 of CNRS, University of Nantes, 44035 Nantes, France
| | | |
Collapse
|
15
|
Qin Z, Li S, Huang X, Kong W, Yang X, Zhang S, Cao L, Liu Y. Improving Galactooligosaccharide Synthesis Efficiency of β-Galactosidase Bgal1-3 by Reshaping the Active Site with an Intelligent Hydrophobic Amino Acid Scanning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11158-11166. [PMID: 31537069 DOI: 10.1021/acs.jafc.9b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There are ongoing interests in improving the galactooligosaccharide (GOS) synthesis efficiency of β-galactosidase by protein engineering. In this study, an intelligent double-hydrophobic amino acid scanning strategy was proposed and employed to target nine residues forming the glycon-binding site (-1 subsite) of β-galactosidase Bgal1-3. Two mutants C510V and H512I with significantly improved GOS synthesis efficiency were obtained. When 40% (w/v) lactose was used as a substrate, Bgal1-3 reached a maximum GOS yield of 45.3% at 16 h, while the mutants reached higher yields in a much shorter time (59.1% at 10 h for C510V, 51.5% at 2 h for H512I). When skim milk was treated with these enzymes, more GOS was produced (19.9 g/L for C510V, 12.7 g/L for H512I) than that for Bgal1-3 (10.3 g/L) at a lactose conversion of 90%. These results validated hydrophobicity scanning as an efficient method to engineer β-galactosidases into promising catalysts for the preparation of GOS and GOS-enriched milk.
Collapse
Affiliation(s)
- Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xiangpeng Yang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Sufang Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
16
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
17
|
Romero-Téllez S, Lluch JM, González-Lafont À, Masgrau L. Comparing Hydrolysis and Transglycosylation Reactions Catalyzed by Thermus thermophilus β-Glycosidase. A Combined MD and QM/MM Study. Front Chem 2019; 7:200. [PMID: 31024890 PMCID: PMC6467970 DOI: 10.3389/fchem.2019.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 01/26/2023] Open
Abstract
The synthesis of oligosaccharides and other carbohydrate derivatives is of relevance for the advancement of glycosciences both at the fundamental and applied level. For many years, glycosyl hydrolases (GHs) have been explored to catalyze the synthesis of glycosidic bonds. In particular, retaining GHs can catalyze a transglycosylation (T) reaction that competes with hydrolysis (H). This has been done either employing controlled conditions in wild type GHs or by engineering new mutants. The goal, which is to increase the T/H ratio, has been achieved with moderate success in several cases despite the fact that the molecular basis for T/H modulation are unclear. Here we have used QM(DFT)/MM calculations to compare the glycosylation, hydrolysis and transglycosylation steps catalyzed by wild type Thermus thermophilus β-glycosidase (family GH1), a retaining glycosyl hydrolase for which a transglycosylation yield of 36% has been determined experimentally. The three transition states have a strong oxocarbenium character and ring conformations between 4H3 and 4E. The atomic charges at the transition states for hydrolysis and transglycosylation are very similar, except for the more negative charge of the oxygen atom of water when compared to that of the acceptor Glc. The glycosylation transition state has a stronger SN2 character than the deglycosylation ones and the proton transfer is less advanced. At the QM(PBE0/TZVP)/MM level, the TS for transglycosylation has shorter O4GLC-C1FUC (forming bond) distance and longer OE2GLU338-C1FUC (breaking) distance than the hydrolysis one, although the HACC proton is closer to the Glu164 base in the hydrolysis TS. The QM(SCC-DFTB)/MM free energy maxima show the inverted situation, although the hydrolysis TS presents significant structural fluctuations. The 3-OHGLC group of the acceptor Glc (transglycosylation) and WAT432 (neighbor water in hydrolysis) are identified to stabilize the oxocarbenium transition states through interaction with O5FUC and O4FUC. The analysis of interaction suggests that perturbing the Glu392-Fuc interaction could increase the T/H ratio, either by direct mutation of this residue or indirectly as reported experimentally in the Asn390I and Phe401S cases. The molecular understanding of similarities and differences between hydrolysis and transglycosylation steps may be of help in the design of new biocatalysts for glycan synthesis.
Collapse
Affiliation(s)
- Sonia Romero-Téllez
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Masgrau
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Oligosaccharides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules 2018; 23:molecules23102451. [PMID: 30257445 PMCID: PMC6222765 DOI: 10.3390/molecules23102451] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
Because of their potential use as functional ingredients in human nutrition, oligosaccharides derived from natural sources are receiving paramount consideration. Red seaweed, a proven rich source of agar and carrageenan, is one of the most abundantly present sources of such oligosaccharides. Agaro-oligosaccharides (AOS) and carrageenan-oligosaccharides (COS) are produced from agar and carrageenan, respectively, through chemical and enzymatic hydrolyses. Enzymatic hydrolysis of agar and carrageenan into oligosaccharides is preferred in industrial production because of certain problems associated with chemical hydrolysis, including the release of high amounts of monosaccharides and undesirable toxic products, such as furfural. AOS and COS possess many biological activities, including prebiotic, immuno-modulatory, anti-oxidant, and anti-tumor activities. These activities are related to their chemical structure, molecular weight, degree of polymerization, and the flexibility of the glycosidic linkages. Therefore, the structure–function relationship and the mechanisms occurring during the specific biological applications of AOS and COS are discussed herein. Moreover, the chromatographic separation, purification, and characterization of AOS and COS are also part of this review. This piece of writing strives to create a new perspective on the potential applications of AOS and COS in the functional food and pharmaceutical industry.
Collapse
|
19
|
Esque J, Sansom MSP, Baaden M, Oguey C. Analyzing protein topology based on Laguerre tessellation of a pore-traversing water network. Sci Rep 2018; 8:13540. [PMID: 30202114 PMCID: PMC6131185 DOI: 10.1038/s41598-018-31422-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/17/2018] [Indexed: 11/15/2022] Open
Abstract
Given the tight relation between protein structure and function, we present a set of methods to analyze protein topology, implemented in the VLDP program, relying on Laguerre space partitions built from series of molecular dynamics snapshots. The Laguerre partition specifies inter-atomic contacts, formalized in graphs. The deduced properties are the existence and count of water aggregates, possible passage ways and constrictions, the structure, connectivity, stability and depth of the water network. As a test-case, the membrane protein FepA is investigated in its full environment, yielding a more precise description of the protein surface. Inside FepA, the solvent splits into isolated clusters and an intricate network connecting both sides of the lipid bilayer. The network is dynamic, connections set on and off, occasionally substantially relocating traversing paths. Subtle differences are detected between two forms of FepA, ligand-free and complexed with its natural iron carrier, the enterobactin. The complexed form has more constricted and more centered openings in the upper part whereas, in the lower part, constriction is released: two main channels between the plug and barrel lead directly to the periplasm. Reliability, precision and the variety of topological features are the main interest of the method.
Collapse
Affiliation(s)
- Jérémy Esque
- LPTM, CNRS UMR 8089, Université de Cergy-Pontoise, 95302, Cergy-Pontoise, France. .,LISBP, Université de Toulouse, CNRS, INSA, INRA, 135 Avenue de Rangueil, 31400, Toulouse, France.
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Univ Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe Oguey
- LPTM, CNRS UMR 8089, Université de Cergy-Pontoise, 95302, Cergy-Pontoise, France.
| |
Collapse
|
20
|
Gustafsson C, Vassiliev S, Kürten C, Syrén PO, Brinck T. MD Simulations Reveal Complex Water Paths in Squalene-Hopene Cyclase: Tunnel-Obstructing Mutations Increase the Flow of Water in the Active Site. ACS OMEGA 2017; 2:8495-8506. [PMID: 31457386 PMCID: PMC6645472 DOI: 10.1021/acsomega.7b01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 06/10/2023]
Abstract
Squalene-hopene cyclase catalyzes the cyclization of squalene to hopanoids. A previous study has identified a network of tunnels in the protein, where water molecules have been indicated to move. Blocking these tunnels by site-directed mutagenesis was found to change the activation entropy of the catalytic reaction from positive to negative with a concomitant lowering of the activation enthalpy. As a consequence, some variants are faster and others are slower than the wild type (wt) in vitro under optimal reaction conditions for the wt. In this study, molecular dynamics (MD) simulations have been performed for the wt and the variants to investigate how the mutations affect the protein structure and the water flow in the enzyme, hypothetically influencing the activation parameters. Interestingly, the tunnel-obstructing variants are associated with an increased flow of water in the active site, particularly close to the catalytic residue Asp376. MD simulations with the substrate present in the active site indicate that the distance for the rate-determining proton transfer between Asp376 and the substrate is longer in the tunnel-obstructing protein variants than in the wt. On the basis of the previous experimental results and the current MD results, we propose that the tunnel-obstructing variants, at least partly, could operate by a different catalytic mechanism, where the proton transfer may have contributions from a Grotthuss-like mechanism.
Collapse
Affiliation(s)
- Camilla Gustafsson
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
| | - Serguei Vassiliev
- Department
of Biological Sciences, Brock University, Mackenzie Chown F 234, 1812 Sir
Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Charlotte Kürten
- Science
for Life Laboratory, Stockholm—School of Biotechnology, Division
of Proteomics and Nanobiotechnology, KTH
Royal Institute of Technology, Tomtebodavägen 23a, 171 65 Solna, Sweden
| | - Per-Olof Syrén
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
- Science
for Life Laboratory, Stockholm—School of Biotechnology, Division
of Proteomics and Nanobiotechnology, KTH
Royal Institute of Technology, Tomtebodavägen 23a, 171 65 Solna, Sweden
| | - Tore Brinck
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
| |
Collapse
|
21
|
Ati J, Lafite P, Daniellou R. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Beilstein J Org Chem 2017; 13:1857-1865. [PMID: 29062404 PMCID: PMC5629408 DOI: 10.3762/bjoc.13.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.
Collapse
Affiliation(s)
- Jihen Ati
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Pierre Lafite
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Richard Daniellou
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
22
|
Ortiz-Soto ME, Possiel C, Görl J, Vogel A, Schmiedel R, Seibel J. Impaired coordination of nucleophile and increased hydrophobicity in the +1 subsite shift levansucrase activity towards transfructosylation. Glycobiology 2017; 27:755-765. [PMID: 28575294 PMCID: PMC5881714 DOI: 10.1093/glycob/cwx050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Bacterial levansucrases produce β(2,6)-linked levan-type polysaccharides using sucrose or sucrose analogs as donor/acceptor substrates. However, the dominant reaction of Bacillus megaterium levansucrase (Bm-LS) is hydrolysis. Single domain levansucrases from Gram-positive bacteria display a wide substrate-binding pocket with open access to water, challenging engineering for transfructosylation-efficient enzymes. We pursued a shift in reaction specificity by either modifying the water distribution in the active site or the coordination of the catalytic acid/base (E352) and the nucleophile (D95), thus affecting the fructosyl-transfer rate and allowing acceptors other than water to occupy the active site. Two serine (173/422) and two water-binding tyrosine (421/439) residues located in the first shell of the catalytic pocket were modified. Library variants of S173, Y421 and S422, which coordinate the position of D95 and E352, show increased transfructosylation (30–200%) and modified product spectra. Substitutions at position 422 have a higher impact on sucrose affinity, while changes at position 173 and 421 have a strong effect on the overall catalytic rate. As most retaining glycoside hydrolases (GHs) Bm-LS catalyzes hydrolysis and transglycosylation via a double displacement reaction involving two-transition states (TS1 and TS2). Hydrogen bonds of D95 with the side chains of S173 and S422 contribute a total of 2.4 kcal mol−1 to TS1 stabilization, while hydrogen bonds between invariant Y421, E352 and the glucosyl C-2 hydroxyl-group of sucrose contribute 2.15 kcal mol−1 stabilization. Changes at Y439 render predominantly hydrolytic variants synthesizing shorter oligosaccharides.
Collapse
Affiliation(s)
- Maria Elena Ortiz-Soto
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Am Hubland 97074, Germany
| | - Christian Possiel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Am Hubland 97074, Germany
| | - Julian Görl
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Am Hubland 97074, Germany
| | - Andreas Vogel
- c-LEcta GmbH, Leipzig, Perlickstr. 5, 04103, Germany
| | | | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Am Hubland 97074, Germany
| |
Collapse
|