1
|
Lee S, Gadelrab K, Cheng L, Braaten JP, Wu H, Ross FM. Simultaneous 2D Projection and 3D Topographic Imaging of Gas-Dependent Dynamics of Catalytic Nanoparticles. ACS NANO 2024. [PMID: 39101356 DOI: 10.1021/acsnano.4c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Catalyst deactivation through pathways such as sintering of nanoparticles and degradation of the support is a critical factor when designing high-performance catalysts. Here, structural changes of supported nanoparticle catalysts are investigated in controlled gas environments (O2, H2O, and H2) at different temperatures by imaging simultaneously the nanoparticle structures in 2D projection and the 3D surface-sensitive topography. Platinum nanoparticles on carbon support as a model system are imaged in an environmental transmission electron microscope (ETEM), with concurrent acquisition of high-angle annular dark field scanning TEM (HAADF-STEM) and secondary electron (SE) images. Particle migration and coalescence occurs and shows gas-dependent kinetics, with nanoparticles moving across and through the support during and after coalescence. The temperature required for motion is lower in O2 than in H2O and H2, explained through the nature of the gas/nanoparticle interactions. In O2 and H2, the carbon support degrades by trench formation along migration pathways, and the particles move continuously, indicating a chemical reaction between gas and support. In H2O gas, motion is more discontinuous and oriented particle attachment occurs, as expected from theoretical predictions. These results suggest that multimodal imaging in ETEM that combines HAADF-STEM and SE data provides comprehensive information regarding catalyst dynamics and degradation mechanisms.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Karim Gadelrab
- Robert Bosch LLC, Watertown, Massachusetts 02472, United States
| | - Lei Cheng
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Jonathan P Braaten
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Hanglong Wu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Turner SJ, Visser NL, Dalebout R, Wezendonk DFL, de Jongh PE, de Jong KP. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401009. [PMID: 38552229 DOI: 10.1002/smll.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Indexed: 08/09/2024]
Abstract
Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H2/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.
Collapse
|
3
|
Chen Z, Cheng H, Cao Z, Zhu J, Blum T, Zhang Q, Chi M, Xia Y. Extraordinary Thermal Stability and Sinter Resistance of Sub-2 nm Platinum Nanoparticles Anchored to a Carbon Support by Selenium. NANO LETTERS 2024; 24:1392-1398. [PMID: 38227481 PMCID: PMC10835721 DOI: 10.1021/acs.nanolett.3c04601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an in situ electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.
Collapse
Affiliation(s)
- Zitao Chen
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Haoyan Cheng
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Zhenming Cao
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiawei Zhu
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Thomas Blum
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qinyuan Zhang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Miaofang Chi
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Visser N, Turner SJ, Stewart JA, Vandegehuchte BD, van der Hoeven JES, de Jongh PE. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere. ACS NANO 2023; 17:14963-14973. [PMID: 37504574 PMCID: PMC10416566 DOI: 10.1021/acsnano.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO2 hydrogenation at atmospheric pressure (H2:CO2 = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement (vmax = 0.7 nm s-1) and slow, gradual movement (vaverage = 0.05 nm s-1). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts.
Collapse
Affiliation(s)
- Nienke
L. Visser
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Savannah J. Turner
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | - Jessi E. S. van der Hoeven
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Wang J, Liu S, Tang M, Fu W, Wang Y, Yin K, Dai Y. Thermodynamically and Kinetically Stabilized Pt Clusters Against Sintering on CeO 2 Nanofibers Through Enclosing CeO 2 Nanocubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300547. [PMID: 37093186 DOI: 10.1002/smll.202300547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Sintering is a major concern for the deactivation of supported metals catalysts, which is driven by the force of decreasing the total surface energy of the entire catalytic system. In this work, a double-confinement strategy is demonstrated to stabilize 2.6 nm-Pt clusters against sintering on electrospun CeO2 nanofibers decorated by CeO2 nanocubes (m-CeO2 ). Thermodynamically, with the aid of CeO2 -nanocubes, the intrinsically irregular surface of polycrystalline CeO2 nanofibers becomes smooth, offering adjacent Pt clusters with decreased chemical potential differences on a relatively uniform surface. Kinetically, the Pt clusters are physically restricted on each facet of CeO2 nanocubes in a nanosized region. In situ high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation reveals that the Pt clusters can be stabilized up to 800 °C even in a high density, which is far beyond their Tammann temperature, without observable size growth or migration. Such a sinter-resistant catalytic system is endowed with boosted catalytic activity toward both the hydrogenation of p-nitrophenol after being aged at 500 °C and the sinter-promoting exothermic oxidation reactions (e.g., soot oxidation) at high temperatures over 700 °C. This work offers new opportunities for exploring sinter-resistant nanocatalysts, starting from the rational design of whole catalytic system in terms of thermodynamic and kinetic aspects.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Suting Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunpeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
6
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
8
|
Rikanati L, Dery S, Gross E. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. J Chem Phys 2021; 155:204704. [PMID: 34852499 DOI: 10.1063/5.0072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
10
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Cao Z, Xie M, Cheng H, Chen R, Lyu Z, Xie Z, Xia Y. A New Catalytic System with Balanced Activity and Durability toward Oxygen Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Minghao Xie
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Haoyan Cheng
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
12
|
Levin BDA, Haiber D, Liu Q, Crozier PA. An Open-Cell Environmental Transmission Electron Microscopy Technique for In Situ Characterization of Samples in Aqueous Liquid Solutions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:134-138. [PMID: 31948500 DOI: 10.1017/s1431927619015320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The desire to image specimens in liquids has led to the development of open-cell and closed-cell techniques in transmission electron microscopy (TEM). The closed-cell approach is currently more common in TEM and has yielded new insights into a number of biological and materials processes in liquid environments. The open-cell approach, which requires an environmental TEM (ETEM), is technically challenging but may be advantageous in certain circumstances due to fewer restrictions on specimen and detector geometry. Here, we demonstrate a novel approach to open-cell liquid TEM, in which we use salt particles to facilitate the in situ formation of droplets of aqueous solution that envelope specimen particles coloaded with the salt. This is achieved by controlling sample temperature between 1 and 10°C and introducing water vapor to the ETEM chamber above the critical pressure for the formation of liquid water on the salt particles. Our use of in situ hydration enables specimens to be loaded into a microscope in a dry state using standard 3 mm TEM grids, allowing specimens to be prepared using trivial sample preparation techniques. Our future aim will be to combine this technique with an in situ light source to study photocorrosion in aqueous environments.
Collapse
Affiliation(s)
- Barnaby D A Levin
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Diane Haiber
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Qianlang Liu
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Girod R, Nianias N, Tileli V. Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1304-1310. [PMID: 31647046 DOI: 10.1017/s1431927619015034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM.
Collapse
Affiliation(s)
- Robin Girod
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nikolaos Nianias
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Vasiliki Tileli
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
14
|
Couzon N, Roiban L, Chassagneux F, Bois L, Brioude A, Maillard M. Electroactive Area from Porous Oxide Films Loaded with Silver Nanoparticles: Electrochemical and Electron Tomography Observations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37270-37278. [PMID: 31523946 DOI: 10.1021/acsami.9b11581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical studies of nanomaterial-based electrodes have been widely developed for catalyst and energy-harvesting applications. The evolution of these electrodes over time and their efficiency have been extensively studied and analyzed in order to optimize their performance. However, the electrochemical responses of electrodes are rarely studied in terms of the position of the active species within these electrodes. In this paper, we highlight that the spatial location of silver nanoparticles (NPs) embedded inside semiconductive porous films, TiO2 or Fe2O3, is crucial for the electrochemical response. In fact, by using cycling voltammetry and electron tomography experiments, we show the existence of an "electroactive area", corresponding to a reduced thickness of the sample in close vicinity to a fluorine-doped tin oxide substrate where most of the electrochemical responses originate. Our results demonstrate that, for a film thickness of several hundred nanometers, only less than 30 nm close to the substrate responds electrochemically. However, cyclic voltammetry empties the electroactive area of silver NPs. Therefore, application of chronoamperometry coupled to irradiation allowed regeneration of this area thanks to an increased diffusion of silver species. In this paper, we also show the significant diffusion of silver species within the film during electrochemical experiments, a phenomenon even increased by irradiation. These results are therefore an important step that shows the importance of the localization of active species within a porous film and help in understanding and increasing the durability of nanomaterial-based electrodes.
Collapse
Affiliation(s)
- Nelly Couzon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Lucian Roiban
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon I, MATEIS, UMR5510 CNRS , 7 Avenue Jean Capelle , 69100 Villeurbanne , France
| | - Fernand Chassagneux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Laurence Bois
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Arnaud Brioude
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Mathieu Maillard
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| |
Collapse
|
15
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
16
|
Abstract
Low-noble metal electrocatalysts are attracting massive attention for anode and cathode reactions in fuel cells. Pt transition metal alloy nanostructures have demonstrated their advantages in high performance low-noble metal electrocatalysts due to synergy effects. The basic of designing this type of catalysts lies in understanding structure-performance correlation at the atom and electron level. Herein, design threads of highly active and durable Pt transition metal alloy nanocatalysts are summarized, with highlighting their synthetic realization. Microscopic and electron structure characterization methods and their prospects will be introduced. Recent progress will be discussed in high active and durable Pt transition metal alloy nanocatalysts towards oxygen reduction and methanol oxidation, with their structure-performance correlations illustrated. Lastly, an outlook will be given on promises and challenges in future developing of Pt transition metal alloy nanostructures towards fuel cells catalysis uses.
Collapse
|
17
|
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J Toxicol 2018; 2018:1367801. [PMID: 30364051 PMCID: PMC6188585 DOI: 10.1155/2018/1367801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.
Collapse
Affiliation(s)
| | - Rebecca T. Browning
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Laura K. Braydich-Stolle
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
18
|
Nanoparticle sintering in atomic layer deposition of supported catalysts: Kinetic modeling of the size distribution. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Dai Y, Lu P, Cao Z, Campbell CT, Xia Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem Soc Rev 2018; 47:4314-4331. [DOI: 10.1039/c7cs00650k] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This tutorial review highlights recent progress in understanding the physical chemistry and materials science for developing sinter-resistant catalytic systems.
Collapse
Affiliation(s)
- Yunqian Dai
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Ping Lu
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | | | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- School of Chemistry and Biochemistry
| |
Collapse
|