1
|
Tripp A, Braun M, Wieser F, Oberdorfer G, Lechner H. Click, Compute, Create: A Review of Web-based Tools for Enzyme Engineering. Chembiochem 2024; 25:e202400092. [PMID: 38634409 DOI: 10.1002/cbic.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Enzyme engineering, though pivotal across various biotechnological domains, is often plagued by its time-consuming and labor-intensive nature. This review aims to offer an overview of supportive in silico methodologies for this demanding endeavor. Starting from methods to predict protein structures, to classification of their activity and even the discovery of new enzymes we continue with describing tools used to increase thermostability and production yields of selected targets. Subsequently, we discuss computational methods to modulate both, the activity as well as selectivity of enzymes. Last, we present recent approaches based on cutting-edge machine learning methods to redesign enzymes. With exception of the last chapter, there is a strong focus on methods easily accessible via web-interfaces or simple Python-scripts, therefore readily useable for a diverse and broad community.
Collapse
Affiliation(s)
- Adrian Tripp
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Markus Braun
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Florian Wieser
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Horst Lechner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
2
|
Jiang S, Zhang Z, Gu Q, Yu X. Semi-rational design for enhancing thermostability of Culex pipiens acetylcholinesterase and sensitivity analysis of acephate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173282. [PMID: 38759926 DOI: 10.1016/j.scitotenv.2024.173282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Acetylcholinesterase (AChE) has emerged as a significant biological recognition element in the biosensor field, particularly for the detection of insecticides. Nevertheless, the weak thermostability of AChE restricts its utilization due to the complexities associated with production, storage, and application environments. By evaluating the binding affinity between representative AChE and insecticides, an AChE from Culex pipiens was screened out, which displayed a broad-spectrum and high sensitivity to insecticides. The C. pipiens AChE (CpA) was subsequently expressed in Escherichia coli (E. coli) as a soluble active protein. Furthermore, a three-point mutant, M4 (A340P/D390E/S581P), was obtained using a semi-rational design strategy that combined molecular dynamics (MD) simulation and computer-aided design, which exhibited a four-fold increase in half-life at 40 °C compared to the wild-type (WT) enzyme. The mutant M4 also demonstrated an optimal temperature of 50 °C and a melting temperature (Tm) of 51.2 °C. Additionally, the sensitivity of WT and M4 to acephate was examined, revealing a 50-fold decrease in the IC50 value of M4. The mechanism underlying the improvement in thermal performance was elucidated through secondary structure analysis and MD simulations, indicating an increase in the proportion of protein helices and local structural rigidity. MD analysis of the protein-ligand complexes suggested that the enhanced sensitivity of M4 could be attributed to frequent specific contacts between the organophosphorus (OP) group of acephate and the key active site residue Ser327. These findings have expanded the possibilities for the development of more reliable and effective industrial enzyme preparations and biosensors.
Collapse
Affiliation(s)
- Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Han Y, Zhang H, Zeng Z, Liu Z, Lu D, Liu Z. Descriptor-augmented machine learning for enzyme-chemical interaction predictions. Synth Syst Biotechnol 2024; 9:259-268. [PMID: 38450325 PMCID: PMC10915406 DOI: 10.1016/j.synbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Descriptors play a pivotal role in enzyme design for the greener synthesis of biochemicals, as they could characterize enzymes and chemicals from the physicochemical and evolutionary perspective. This study examined the effects of various descriptors on the performance of Random Forest model used for enzyme-chemical relationships prediction. We curated activity data of seven specific enzyme families from the literature and developed the pipeline for evaluation the machine learning model performance using 10-fold cross-validation. The influence of protein and chemical descriptors was assessed in three scenarios, which were predicting the activity of unknown relations between known enzymes and known chemicals (new relationship evaluation), predicting the activity of novel enzymes on known chemicals (new enzyme evaluation), and predicting the activity of new chemicals on known enzymes (new chemical evaluation). The results showed that protein descriptors significantly enhanced the classification performance of model on new enzyme evaluation in three out of the seven datasets with the greatest number of enzymes, whereas chemical descriptors appear no effect. A variety of sequence-based and structure-based protein descriptors were constructed, among which the esm-2 descriptor achieved the best results. Using enzyme families as labels showed that descriptors could cluster proteins well, which could explain the contributions of descriptors to the machine learning model. As a counterpart, in the new chemical evaluation, chemical descriptors made significant improvement in four out of the seven datasets, while protein descriptors appear no effect. We attempted to evaluate the generalization ability of the model by correlating the statistics of the datasets with the performance of the models. The results showed that datasets with higher sequence similarity were more likely to get better results in the new enzyme evaluation and datasets with more enzymes were more likely beneficial from the protein descriptor strategy. This work provides guidance for the development of machine learning models for specific enzyme families.
Collapse
Affiliation(s)
- Yilei Han
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoye Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Zheni Zeng
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Liu
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
5
|
Atallah C, James K, Ou Z, Skelton J, Markham D, Burridge MS, Finnigan J, Charnock S, Wipat A. A method for the systematic selection of enzyme panel candidates by solving the maximum diversity problem. Biosystems 2024; 236:105105. [PMID: 38160995 DOI: 10.1016/j.biosystems.2023.105105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Enzymes are being increasingly exploited for their potential as industrial biocatalysts. Establishing a portfolio of useful biocatalysts from large and diverse protein family is challenging and a systematic method for candidate selection promises to aid in this task. Moreover, accurate enzyme functional annotation can only be confidently guaranteed through experimental characterisation in the laboratory. The selection of catalytically diverse enzyme panels for experimental characterisation is also an important step for shedding light on the currently unannotated proteins in enzyme families. Current selection methods often lack efficiency and scalability, and are usually non-systematic. We present a novel algorithm for the automatic selection of subsets from enzyme families. A tabu search algorithm solving the maximum diversity problem for sequence identity was designed and implemented, and applied to three diverse enzyme families. We show that this approach automatically selects panels of enzymes that contain high richness and relative abundance of the known catalytic functions, and outperforms other methods such as k-medoids.
Collapse
Affiliation(s)
| | - Katherine James
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Zhen Ou
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.
| | - James Skelton
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - David Markham
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Matt S Burridge
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Chmelova K, Gao T, Polak M, Schenkmayerova A, Croll TI, Shaikh TR, Skarupova J, Chaloupkova R, Diederichs K, Read RJ, Damborsky J, Novacek J, Marek M. Multimeric structure of a subfamily III haloalkane dehalogenase-like enzyme solved by combination of cryo-EM and x-ray crystallography. Protein Sci 2023; 32:e4751. [PMID: 37574754 PMCID: PMC10503415 DOI: 10.1002/pro.4751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Haloalkane dehalogenase (HLD) enzymes employ an SN 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography. We show that full-length wild-type DhmeA forms diverse quaternary structures, ranging from small oligomers to large supramolecular ring-like assemblies of various sizes and symmetries. We optimized sample preparation steps, enabling three-dimensional reconstructions of an oligomeric species by single-particle cryo-EM. Moreover, we engineered a crystallizable mutant (DhmeAΔGG ) that provided diffraction-quality crystals. The 3.3 Å crystal structure reveals that DhmeAΔGG forms a ring-like 20-mer structure with outer and inner diameter of ~200 and ~80 Å, respectively. An enzyme homodimer represents a basic repeating building unit of the crystallographic ring. Three assembly interfaces (dimerization, tetramerization, and multimerization) were identified to form the supramolecular ring that displays a negatively charged exterior, while its interior part harboring catalytic sites is positively charged. Localization and exposure of catalytic machineries suggest a possible processing of large negatively charged macromolecular substrates.
Collapse
Affiliation(s)
- Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tadeja Gao
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Martin Polak
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Andrea Schenkmayerova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tristan I. Croll
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Tanvir R. Shaikh
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Kay Diederichs
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Randy J. Read
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Jiri Novacek
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| |
Collapse
|
7
|
Yu Y, Rué Casamajo A, Finnigan W, Schnepel C, Barker R, Morrill C, Heath RS, De Maria L, Turner NJ, Scrutton NS. Structure-Based Design of Small Imine Reductase Panels for Target Substrates. ACS Catal 2023; 13:12310-12321. [PMID: 37736118 PMCID: PMC10510103 DOI: 10.1021/acscatal.3c02278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Biocatalysis is important in the discovery, development, and manufacture of pharmaceuticals. However, the identification of enzymes for target transformations of interest requires major screening efforts. Here, we report a structure-based computational workflow to prioritize protein sequences by a score based on predicted activities on substrates, thereby reducing a resource-intensive laboratory-based biocatalyst screening. We selected imine reductases (IREDs) as a class of biocatalysts to illustrate the application of the computational workflow termed IREDFisher. Validation by using published data showed that IREDFisher can retrieve the best enzymes and increase the hit rate by identifying the top 20 ranked sequences. The power of IREDFisher is confirmed by computationally screening 1400 sequences for chosen reductive amination reactions with different levels of complexity. Highly active IREDs were identified by only testing 20 samples in vitro. Our speed test shows that it only takes 90 min to rank 85 sequences from user input and 30 min for the established IREDFisher database containing 591 IRED sequences. IREDFisher is available as a user-friendly web interface (https://enzymeevolver.com/IREDFisher). IREDFisher enables the rapid discovery of IREDs for applications in synthesis and directed evolution studies, with minimal time and resource expenditure. Future use of the workflow with other enzyme families could be implemented following the modification of the workflow scoring function.
Collapse
Affiliation(s)
- Yuqi Yu
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
- Augmented
Biologics Discovery & Design, Department of Biologics Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Arnau Rué Casamajo
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - William Finnigan
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christian Schnepel
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rhys Barker
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Charlotte Morrill
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(RI), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Nicholas J. Turner
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
8
|
Vasina M, Kovar D, Damborsky J, Ding Y, Yang T, deMello A, Mazurenko S, Stavrakis S, Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol Adv 2023; 66:108171. [PMID: 37150331 DOI: 10.1016/j.biotechadv.2023.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications which provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - David Kovar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Yun Ding
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland; Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
9
|
Thrombolysis for acute ischaemic stroke: current status and future perspectives. Lancet Neurol 2023; 22:418-429. [PMID: 36907201 DOI: 10.1016/s1474-4422(22)00519-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 03/14/2023]
Abstract
Alteplase is currently the only approved thrombolytic agent for treatment of acute ischaemic stroke, but interest is burgeoning in the development of new thrombolytic agents for systemic reperfusion with an improved safety profile, increased efficacy, and convenient delivery. Tenecteplase has emerged as a potential alternative thrombolytic agent that might be preferred over alteplase because of its ease of administration and reported efficacy in patients with large vessel occlusion. Ongoing research efforts are also looking at potential improvements in recanalisation with the use of adjunct therapies to intravenous thrombolysis. New treatment strategies are also emerging that aim to reduce the risk of vessel reocclusion after intravenous thrombolysis administration. Other research endeavors are looking at the use of intra-arterial thrombolysis after mechanical thrombectomy to induce tissue reperfusion. The growing implementation of mobile stroke units and advanced neuroimaging could boost the number of patients who can receive intravenous thrombolysis by shortening onset-to-treatment times and identifying patients with salvageable penumbra. Continued improvements in this area will be essential to facilitate the ongoing research endeavors and to improve delivery of new interventions.
Collapse
|
10
|
Kari J, Schaller K, Molina GA, Borch K, Westh P. The Sabatier principle as a tool for discovery and engineering of industrial enzymes. Curr Opin Biotechnol 2022; 78:102843. [PMID: 36375405 DOI: 10.1016/j.copbio.2022.102843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
The recent breakthrough in all-atom, protein structure prediction opens new avenues for a range of computational approaches in enzyme design. These new approaches could become instrumental for the development of technical biocatalysts, and hence our transition toward more sustainable industries. Here, we discuss one approach, which is well-known within inorganic catalysis, but essentially unexploited in biotechnology. Specifically, we review examples of linear free-energy relationships (LFERs) for enzyme reactions and discuss how LFERs and the associated Sabatier Principle may be implemented in algorithms that estimate kinetic parameters and enzyme performance based on model structures.
Collapse
Affiliation(s)
- Jeppe Kari
- Roskilde University, Dept. Science and Environment, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Kay Schaller
- Technical University of Denmark, Dept. of Biotechnology and Biomedicine, Sølvtofts Plads 224, DK-2800, Kgs. Lyngby, Denmark; University of Copenhagen, Dept. of Drug Design and Pharmacology, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Gustavo A Molina
- Technical University of Denmark, Dept. of Biotechnology and Biomedicine, Sølvtofts Plads 224, DK-2800, Kgs. Lyngby, Denmark; Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, Build. 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Biologiens vej 2, DK-2800, Kgs. Lyngby, Denmark
| | - Peter Westh
- Technical University of Denmark, Dept. of Biotechnology and Biomedicine, Sølvtofts Plads 224, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Wang J, Zhang N, Huang Y, Li S, Zhang G. Simple and efficient enzymatic procedure for p-coumaric acid synthesis: Complete bioconversion and biocatalyst recycling under alkaline condition. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Minich A, Šarkanová J, Levarski Z, Stuchlík S. Enhancement of solubility of recombinant alcohol dehydrogenase from Rhodococcus ruber using predictive tool. World J Microbiol Biotechnol 2022; 38:214. [PMID: 36053335 DOI: 10.1007/s11274-022-03403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
Solubility is one of key factors influencing the heterologous production of recombinant proteins in biotechnology. Among many aggregation-prone proteins, alcohol dehydrogenase (ADH-A) from Rhodococcus ruber (in this work abbreviated RrADH) shows a great potential in processes involved in the biotransformation of natural compounds. As ADH-A is a potentially high value asset in industrial biotransformation processes, improvement of its solubility would be of major commercial benefit. Predictive tools and in silico analysis provide a fast means for improving protein properties, for selecting appropriate changes, and ultimately for saving costs. We have therefore focused on enhancement of the solubility of RrADH using an online accesible predictive tool Aggrescan 3D 2.0. Selected mutations were introduced into the protein amino acid sequence by using site-directed PCR. This led to a 17% increase in the protein solubility of RrADHmut1 and a 98% increase for RrADHmut2. Moreover, the basic kinetics of the enzyme reaction were positively affected, further optimizing the overall performance of the production process.
Collapse
Affiliation(s)
- Andrej Minich
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 811 04, Bratislava, Karlova Ves, Slovak Republic
| | - Júlia Šarkanová
- Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04, Karlova Ves, Slovak Republic
| | - Zdenko Levarski
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 811 04, Bratislava, Karlova Ves, Slovak Republic.,Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04, Karlova Ves, Slovak Republic
| | - Stanislav Stuchlík
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 811 04, Bratislava, Karlova Ves, Slovak Republic. .,Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04, Karlova Ves, Slovak Republic.
| |
Collapse
|
13
|
Marques S, Slanska M, Chmelova K, Chaloupkova R, Marek M, Clark S, Damborsky J, Kool ET, Bednar D, Prokop Z. Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling. JACS AU 2022; 2:1324-1337. [PMID: 35783171 PMCID: PMC9241015 DOI: 10.1021/jacsau.2c00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
HaloTag labeling technology has introduced unrivaled potential in protein chemistry and molecular and cellular biology. A wide variety of ligands have been developed to meet the specific needs of diverse applications, but only a single protein tag, DhaAHT, is routinely used for their incorporation. Following a systematic kinetic and computational analysis of different reporters, a tetramethylrhodamine- and three 4-stilbazolium-based fluorescent ligands, we showed that the mechanism of incorporating different ligands depends both on the binding step and the efficiency of the chemical reaction. By studying the different haloalkane dehalogenases DhaA, LinB, and DmmA, we found that the architecture of the access tunnels is critical for the kinetics of both steps and the ligand specificity. We showed that highly efficient labeling with specific ligands is achievable with natural dehalogenases. We propose a simple protocol for selecting the optimal protein tag for a specific ligand from the wide pool of available enzymes with diverse access tunnel architectures. The application of this protocol eliminates the need for expensive and laborious protein engineering.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Michaela Slanska
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Klaudia Chmelova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, 625 00 Brno, Czech Republic
| | - Martin Marek
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Spencer Clark
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Eric T. Kool
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| |
Collapse
|
14
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
15
|
Pardo I, Bednar D, Calero P, Volke DC, Damborský J, Nikel PI. A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catal 2022; 12:6570-6577. [PMID: 35692250 PMCID: PMC9173684 DOI: 10.1021/acscatal.2c01184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Indexed: 12/28/2022]
Abstract
![]()
Fluorinases, the
only enzymes known to catalyze the transfer of
fluorine to an organic molecule, are essential catalysts for the biological
synthesis of valuable organofluorines. However, the few fluorinases
identified so far have low turnover rates that hamper biotechnological
applications. Here, we isolated and characterized putative fluorinases
retrieved from systematic in silico mining and identified a nonconventional
archaeal enzyme from Methanosaeta sp. that mediates
the fastest SN2 fluorination rate reported to date. Furthermore,
we demonstrate enhanced production of fluoronucleotides in vivo in
a bacterial host engineered with this archaeal fluorinase, paving
the way toward synthetic metabolism for efficient biohalogenation.
Collapse
Affiliation(s)
- Isabel Pardo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Vasina M, Velecký J, Planas-Iglesias J, Marques SM, Skarupova J, Damborsky J, Bednar D, Mazurenko S, Prokop Z. Tools for computational design and high-throughput screening of therapeutic enzymes. Adv Drug Deliv Rev 2022; 183:114143. [PMID: 35167900 DOI: 10.1016/j.addr.2022.114143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treatment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes, which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight the benefits of coupling computational approaches with high-throughput experimental technologies, which significantly accelerate the identification and engineering of catalytic therapeutic agents. New enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-generation sequencing technologies exponentially. Computational design and machine learning methods are being developed to improve catalytically potent enzymes and predict their properties to guide the selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microfluidics, ensure functional screening and biochemical characterization of target enzymes to reach efficient therapeutic enzymes.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jan Velecký
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Sergio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic; Enantis, INBIT, Kamenice 34, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| |
Collapse
|
18
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
19
|
Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class. PLoS Comput Biol 2021; 17:e1009446. [PMID: 34555022 PMCID: PMC8491902 DOI: 10.1371/journal.pcbi.1009446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/05/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Only a small fraction of genes deposited to databases have been experimentally characterised. The majority of proteins have their function assigned automatically, which can result in erroneous annotations. The reliability of current annotations in public databases is largely unknown; experimental attempts to validate the accuracy within individual enzyme classes are lacking. In this study we performed an overview of functional annotations to the BRENDA enzyme database. We first applied a high-throughput experimental platform to verify functional annotations to an enzyme class of S-2-hydroxyacid oxidases (EC 1.1.3.15). We chose 122 representative sequences of the class and screened them for their predicted function. Based on the experimental results, predicted domain architecture and similarity to previously characterised S-2-hydroxyacid oxidases, we inferred that at least 78% of sequences in the enzyme class are misannotated. We experimentally confirmed four alternative activities among the misannotated sequences and showed that misannotation in the enzyme class increased over time. Finally, we performed a computational analysis of annotations to all enzyme classes in the BRENDA database, and showed that nearly 18% of all sequences are annotated to an enzyme class while sharing no similarity or domain architecture to experimentally characterised representatives. We showed that even well-studied enzyme classes of industrial relevance are affected by the problem of functional misannotation. Correct annotation of genomes is crucial for our understanding and utilization of functional gene diversity, yet the reliability of current protein annotations in public databases is largely unknown. In our work we validated annotations to an S-2-hydroxyacid oxidase enzyme class (EC 1.1.3.15) by assessing activity of 122 representative sequences in a high-throughput screening experiment. From this dataset we inferred that at least 78% of the sequences in the enzyme class are misannotated, and confirmed four alternative activities among the misannotated sequences. We showed that the misannotation is widespread throughout enzyme classes, affecting even well-studied classes of industrial relevance. Overall, our study highlights the value of experimental and computational validation of predicted functions within individual enzyme classes.
Collapse
|
20
|
Xavier Senra MV, Fonseca AL. New tyrosinases with putative action against contaminants of emerging concern. Proteins 2021; 89:1180-1192. [PMID: 33969540 DOI: 10.1002/prot.26139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 04/30/2021] [Indexed: 11/07/2022]
Abstract
Tyrosinases (EC 1.14.18.1) are type-3 copper metalloenzymes with strong oxidative capacities and low allosteric selectivity to phenolic and non-phenolic aromatic compounds, which have been used as biosensors and biocatalysts to mitigate the impacts of environmental contaminants over aquatic ecosystems. However, the widespread use of these polyphenol oxidases is limited by elevated production costs and restricted knowledge on their spectrum of action. Here, six tyrosinase homologs were identified and characterized from the genomes of four widespread freshwater ciliates using bioinformatics. Next, we performed a virtual screening to calculate binding energies between 3D models of these homologs and ~ 1000 contaminants of emerging concern (CECs), as an indirect approach to identify likely and unlikely targets for tyrosinases. Many fine chemicals, pharmaceuticals, personal care products, illicit drugs, natural toxins, and pesticides exhibited strong binding energies to these new tyrosinases, suggesting the spectrum of targets of these enzymes might be considerably broader than previously thought. Many ciliates, including those carrying tyrosinase genes, are fast-growing unicellular microeukaryotes that can be efficiently cultured, at large scales, under in vitro conditions, suggesting these organisms should be regarded as potential low-cost sources of new environmental biotechnological molecules.
Collapse
Affiliation(s)
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
21
|
Marques SM, Planas-Iglesias J, Damborsky J. Web-based tools for computational enzyme design. Curr Opin Struct Biol 2021; 69:19-34. [PMID: 33667757 DOI: 10.1016/j.sbi.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Enzymes are in high demand for very diverse biotechnological applications. However, natural biocatalysts often need to be engineered for fine-tuning their properties towards the end applications, such as the activity, selectivity, stability to temperature or co-solvents, and solubility. Computational methods are increasingly used in this task, providing predictions that narrow down the space of possible mutations significantly and can enormously reduce the experimental burden. Many computational tools are available as web-based platforms, making them accessible to non-expert users. These platforms are typically user-friendly, contain walk-throughs, and do not require deep expertise and installations. Here we describe some of the most recent outstanding web-tools for enzyme engineering and formulate future perspectives in this field.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
22
|
Mazur A, Prudnikova T, Grinkevich P, Mesters JR, Mrazova D, Chaloupkova R, Damborsky J, Kuty M, Kolenko P, Kuta Smatanova I. The tetrameric structure of the novel haloalkane dehalogenase DpaA from Paraglaciecola agarilytica NO2. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:347-356. [PMID: 33645538 DOI: 10.1107/s2059798321000486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022]
Abstract
Haloalkane dehalogenases (EC 3.8.1.5) are microbial enzymes that catalyse the hydrolytic conversion of halogenated compounds, resulting in a halide ion, a proton and an alcohol. These enzymes are used in industrial biocatalysis, bioremediation and biosensing of environmental pollutants or for molecular tagging in cell biology. The novel haloalkane dehalogenase DpaA described here was isolated from the psychrophilic and halophilic bacterium Paraglaciecola agarilytica NO2, which was found in marine sediment collected from the East Sea near Korea. Gel-filtration experiments and size-exclusion chromatography provided information about the dimeric composition of the enzyme in solution. The DpaA enzyme was crystallized using the sitting-drop vapour-diffusion method, yielding rod-like crystals that diffracted X-rays to 2.0 Å resolution. Diffraction data analysis revealed a case of merohedral twinning, and subsequent structure modelling and refinement resulted in a tetrameric model of DpaA, highlighting an uncommon multimeric nature for a protein belonging to haloalkane dehalogenase subfamily I.
Collapse
Affiliation(s)
- Andrii Mazur
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Daria Mrazova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Kuty
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
23
|
Marshall JR, Yao P, Montgomery SL, Finnigan JD, Thorpe TW, Palmer RB, Mangas-Sanchez J, Duncan RAM, Heath RS, Graham KM, Cook DJ, Charnock SJ, Turner NJ. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination. Nat Chem 2021; 13:140-148. [PMID: 33380742 PMCID: PMC7116802 DOI: 10.1038/s41557-020-00606-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/10/2020] [Indexed: 01/30/2023]
Abstract
Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted β-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.
Collapse
Affiliation(s)
- James R. Marshall
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Peiyuan Yao
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Centre of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Park, Tianjin, People’s Republic of China
| | - Sarah L. Montgomery
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Thomas W. Thorpe
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Ryan B. Palmer
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Juan Mangas-Sanchez
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Rachel S. Heath
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Darren J. Cook
- Prozomix, Building 4, West End Ind. Estate, Haltwhistle, UK
| | | | - Nicholas J. Turner
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| |
Collapse
|
24
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
25
|
Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, Damborsky J. SoluProt: Prediction of Soluble Protein Expression in Escherichia coli. Bioinformatics 2021; 37:23-28. [PMID: 33416864 PMCID: PMC8034534 DOI: 10.1093/bioinformatics/btaa1102] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Motivation Poor protein solubility hinders the production of many therapeutic and industrially useful proteins. Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity. Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins. Results A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of 0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could significantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone program and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/. Availability and implementation https://loschmidt.chemi.muni.cz/soluprot/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiri Hon
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Martin Marusiak
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Tomas Martinek
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jaroslav Zendulka
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| |
Collapse
|
26
|
Hon J, Borko S, Stourac J, Prokop Z, Zendulka J, Bednar D, Martinek T, Damborsky J. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res 2020; 48:W104-W109. [PMID: 32392342 PMCID: PMC7319543 DOI: 10.1093/nar/gkaa372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023] Open
Abstract
Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner—a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page. EnzymeMiner is a universal tool applicable to any enzyme family that provides an interactive and easy-to-use web interface freely available at https://loschmidt.chemi.muni.cz/enzymeminer/.
Collapse
Affiliation(s)
- Jiri Hon
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Zendulka
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomas Martinek
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
27
|
A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique ( S)-Enantiopreference, and High Thermostability. Appl Environ Microbiol 2020; 86:AEM.02820-19. [PMID: 32561584 DOI: 10.1128/aem.02820-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/08/2020] [Indexed: 11/20/2022] Open
Abstract
Haloalkane dehalogenases can cleave a carbon-halogen bond in a broad range of halogenated aliphatic compounds. However, a highly conserved catalytic pentad composed of a nucleophile, a catalytic base, a catalytic acid, and two halide-stabilizing residues is required for their catalytic activity. Only a few family members, e.g., DsaA, DmxA, or DmrB, remain catalytically active while employing a single halide-stabilizing residue. Here, we describe a novel haloalkane dehalogenase, DsvA, from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017, possessing one canonical halide-stabilizing tryptophan (W125). At the position of the second halide-stabilizing residue, DsvA contains the phenylalanine F165, which cannot stabilize the halogen anion released during the enzymatic reaction by a hydrogen bond. Based on the sequence and structural alignments, we identified a putative second halide-stabilizing tryptophan (W162) located on the same α-helix as F165, but on the opposite side of the active site. The potential involvement of this residue in DsvA catalysis was investigated by the construction and biochemical characterization of the three variants, DsvA01 (F165W), DsvA02 (W162F), and DsvA03 (W162F and F165W). Interestingly, DsvA exhibits a preference for the (S)- over the (R)-enantiomers of β-bromoalkanes, which has not been reported before for any characterized haloalkane dehalogenase. Moreover, DsvA shows remarkable operational stability at elevated temperatures. The present study illustrates that protein sequences possessing an unconventional composition of catalytic residues represent a valuable source of novel biocatalysts.IMPORTANCE The present study describes a novel haloalkane dehalogenase, DsvA, originating from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017. We report its high thermostability, remarkable operational stability at high temperatures, and an (S)-enantiopreference, which makes this enzyme an attractive biocatalyst for practical applications. Sequence analysis revealed that DsvA possesses an unusual composition of halide-stabilizing tryptophan residues in its active site. We constructed and biochemically characterized two single point mutants and one double point mutant and identified the noncanonical halide-stabilizing residue. Our study underlines the importance of searching for noncanonical catalytic residues in protein sequences.
Collapse
|
28
|
Li T, Cui X, Cui Y, Sun J, Chen Y, Zhu T, Li C, Li R, Wu B. Exploration of Transaminase Diversity for the Oxidative Conversion of Natural Amino Acids into 2-Ketoacids and High-Value Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xuexian Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chuijian Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
29
|
Vasina M, Vanacek P, Damborsky J, Prokop Z. Exploration of enzyme diversity: High-throughput techniques for protein production and microscale biochemical characterization. Methods Enzymol 2020; 643:51-85. [PMID: 32896287 DOI: 10.1016/bs.mie.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are being increasingly utilized for acceleration of industrially and pharmaceutically critical chemical reactions. The strong demand for finding robust and efficient biocatalysts for these applications can be satisfied via the exploration of enzyme diversity. The first strategy is to mine the natural diversity, represented by millions of sequences available in the public genomic databases, by using computational approaches. Alternatively, metagenomic libraries can be targeted experimentally or computationally to explore the natural diversity of a specific environment. The second strategy, known as directed evolution, is to generate man-made diversity in the laboratory using gene mutagenesis and screen the constructed library of mutants. The selected hits must be experimentally characterized in both strategies, which currently represent the rate-limiting step in the process of diversity exploration. The traditional techniques used for biochemical characterization are time-demanding, cost, and sample volume ineffective, and low-throughput. Therefore, the development and implementation of high-throughput experimental methods are essential for discovering novel enzymes. This chapter describes the experimental protocols employing the combination of robust production and high-throughput microscale biochemical characterization of enzyme variants. We validated its applicability against the model enzyme family of haloalkane dehalogenases. These protocols can be adapted to other enzyme families, paving the way towards the functional characterization and quick identification of novel biocatalysts.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
30
|
Zhang F, Dong W, Ma Y, Jiang T, Liu B, Li X, Shao Y, Wu J. Fluorescent pH probes for alkaline pH range based on perylene tetra-(alkoxycarbonyl) derivatives. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Aslan‐Üzel AS, Beier A, Kovář D, Cziegler C, Padhi SK, Schuiten ED, Dörr M, Böttcher D, Hollmann F, Rudroff F, Mihovilovic MD, Buryška T, Damborský J, Prokop Z, Badenhorst CPS, Bornscheuer UT. An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem 2020; 12:2032-2039. [PMID: 32362951 PMCID: PMC7188320 DOI: 10.1002/cctc.201901891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Indexed: 12/31/2022]
Abstract
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.
Collapse
Affiliation(s)
- Aşkın S. Aslan‐Üzel
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| | - Andy Beier
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk UniversityBrno625 00Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrno656 91Czech Republic
| | - David Kovář
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk UniversityBrno625 00Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrno656 91Czech Republic
| | - Clemens Cziegler
- Institute of Applied Synthetic ChemistryTU WienVienna1060Austria
| | - Santosh K. Padhi
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life SciencesUniversity of HyderabadGachibowli500046India
| | - Eva D. Schuiten
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| | - Mark Dörr
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| | - Dominique Böttcher
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyDelft2629 HZ (TheNetherlands
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienVienna1060Austria
| | | | - Tomáš Buryška
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk UniversityBrno625 00Czech Republic
| | - Jiří Damborský
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk UniversityBrno625 00Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrno656 91Czech Republic
| | - Zbyněk Prokop
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk UniversityBrno625 00Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrno656 91Czech Republic
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis Institute of BiochemistryGreifswald UniversityGreifswald17487Germany
| |
Collapse
|
32
|
Zhang Y, Aryee ANA, Simpson BK. Current role of in silico approaches for food enzymes. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Chrast L, Tratsiak K, Planas-Iglesias J, Daniel L, Prudnikova T, Brezovsky J, Bednar D, Kuta Smatanova I, Chaloupkova R, Damborsky J. Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17. Microorganisms 2019; 7:E498. [PMID: 31661858 PMCID: PMC6920932 DOI: 10.3390/microorganisms7110498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Haloalkane dehalogenases are enzymes with a broad application potential in biocatalysis, bioremediation, biosensing and cell imaging. The new haloalkane dehalogenase DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17 surprisingly possesses the highest thermal stability (apparent melting temperature Tm,app = 65.9 °C) of all biochemically characterized wild type haloalkane dehalogenases belonging to subfamily II. The enzyme was successfully expressed and its crystal structure was solved at 1.45 Å resolution. DmxA structure contains several features distinct from known members of haloalkane dehalogenase family: (i) a unique composition of catalytic residues; (ii) a dimeric state mediated by a disulfide bridge; and (iii) narrow tunnels connecting the enzyme active site with the surrounding solvent. The importance of narrow tunnels in such paradoxically high stability of DmxA enzyme was confirmed by computational protein design and mutagenesis experiments.
Collapse
Affiliation(s)
- Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Katsiaryna Tratsiak
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Lukas Daniel
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Tatyana Prudnikova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Ivana Kuta Smatanova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- Enantis Ltd., Biotechnology Incubator INBIT, Kamenice 771/34, 625 00 Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
34
|
Buryska T, Vasina M, Gielen F, Vanacek P, van Vliet L, Jezek J, Pilat Z, Zemanek P, Damborsky J, Hollfelder F, Prokop Z. Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Anal Chem 2019; 91:10008-10015. [PMID: 31240908 DOI: 10.1021/acs.analchem.9b01839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional annotation of novel proteins lags behind the number of sequences discovered by the next-generation sequencing. The throughput of conventional testing methods is far too low compared to sequencing; thus, experimental alternatives are needed. Microfluidics offer high throughput and reduced sample consumption as a tool to keep up with a sequence-based exploration of protein diversity. The most promising droplet-based systems have a significant limitation: leakage of hydrophobic compounds from water compartments to the carrier prevents their use with hydrophilic reagents. Here, we present a novel approach of substrate delivery into microfluidic droplets and apply it to high-throughput functional characterization of enzymes that convert hydrophobic substrates. Substrate delivery is based on the partitioning of hydrophobic chemicals between the oil and water phases. We applied a controlled distribution of 27 hydrophobic haloalkanes from oil to reaction water droplets to perform substrate specificity screening of eight model enzymes from the haloalkane dehalogenase family. This droplet-on-demand microfluidic system reduces the reaction volume 65 000-times and increases the analysis speed almost 100-fold compared to the classical test tube assay. Additionally, the microfluidic setup enables a convenient analysis of dependences of activity on the temperature in a range of 5 to 90 °C for a set of mesophilic and hyperstable enzyme variants. A high correlation between the microfluidic and test tube data supports the approach robustness. The precision is coupled to a considerable throughput of >20 000 reactions per day and will be especially useful for extending the scope of microfluidic applications for high-throughput analysis of reactions including compounds with limited water solubility.
Collapse
Affiliation(s)
- Tomas Buryska
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science , Masaryk University , Kamenice 5 , Brno 625 00 , Czech Republic.,International Clinical Research Center , St. Anne's University Hospital , Pekarska 53 , Brno 656 91 , Czech Republic
| | - Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science , Masaryk University , Kamenice 5 , Brno 625 00 , Czech Republic.,International Clinical Research Center , St. Anne's University Hospital , Pekarska 53 , Brno 656 91 , Czech Republic
| | - Fabrice Gielen
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom.,Living Systems Institute , University of Exeter , Exeter EX4 4QD , United Kingdom
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science , Masaryk University , Kamenice 5 , Brno 625 00 , Czech Republic.,International Clinical Research Center , St. Anne's University Hospital , Pekarska 53 , Brno 656 91 , Czech Republic
| | - Liisa van Vliet
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom
| | - Jan Jezek
- Institute of Scientific Instruments, Czech Academy of Sciences , Kralovopolska 147 , Brno 612 64 , Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments, Czech Academy of Sciences , Kralovopolska 147 , Brno 612 64 , Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments, Czech Academy of Sciences , Kralovopolska 147 , Brno 612 64 , Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science , Masaryk University , Kamenice 5 , Brno 625 00 , Czech Republic.,International Clinical Research Center , St. Anne's University Hospital , Pekarska 53 , Brno 656 91 , Czech Republic
| | - Florian Hollfelder
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science , Masaryk University , Kamenice 5 , Brno 625 00 , Czech Republic.,International Clinical Research Center , St. Anne's University Hospital , Pekarska 53 , Brno 656 91 , Czech Republic
| |
Collapse
|
35
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
36
|
Lin GM, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Niu C, Jiang M, Li N, Cao J, Hou M, Ni DA, Chu Z. Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. PeerJ 2019; 7:e6495. [PMID: 30918749 PMCID: PMC6428040 DOI: 10.7717/peerj.6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/19/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are a high risk to local environments and humans. Despite striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers are urgently needed. METHODS To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened were experimentally validated by quantitative PCR experiment. RESULTS We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that nine candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr). CONCLUSION In general, the identified biomarker genes could help us understand the potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and could be applied as marker genes to track heavy metal pollution in soil and water through detecting their expression in plants growing in those environments.
Collapse
Affiliation(s)
- Chao Niu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Di-an Ni
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| |
Collapse
|
38
|
Jaiswal S, Singh DK, Shukla P. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol 2019; 10:87. [PMID: 30853940 PMCID: PMC6396717 DOI: 10.3389/fmicb.2019.00087] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
39
|
Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational Design of Stable and Soluble Biocatalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03613] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Milos Musil
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Hannes Konegger
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Hon
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
40
|
Nevolova S, Manaskova E, Mazurenko S, Damborsky J, Prokop Z. Development of Fluorescent Assay for Monitoring of Dehalogenase Activity. Biotechnol J 2018; 14:e1800144. [DOI: 10.1002/biot.201800144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Sarka Nevolova
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Elisabet Manaskova
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Stanislav Mazurenko
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Jiri Damborsky
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 Brno 656 91 Czech Republic
- Enantis Ltd.; Kamenice 34 Brno 625 00 Czech Republic
| | - Zbynek Prokop
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 Brno 656 91 Czech Republic
- Enantis Ltd.; Kamenice 34 Brno 625 00 Czech Republic
| |
Collapse
|
41
|
Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018; 57:4651-4662. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.
Collapse
Affiliation(s)
- Janine N Copp
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
42
|
|