1
|
Pasyukov DV, Shevchenko MA, Minyaev ME, Chernyshev VM, Ananikov VP. 4-Halomethyl-Substituted Imidazolium Salts: A Versatile Platform for the Synthesis of Functionalized NHC Precursors. Chem Asian J 2024; 19:e202400866. [PMID: 39288314 DOI: 10.1002/asia.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
N,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and Me3SiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange. The 4-ICH2-functionalized products were found to be unstable, whereas a series of novel 4-bromomethyl functionalized N,N'-diarylimidazolium salts were obtained in good yields. These bromomethyl-functionalized imidazolium salts were found to be significantly more reactive towards various N, O and S nucleophiles than the chloromethyl counterparts and enabled the preparation of previously inaccessible heteroatom-functionalized imidazolium salts, some of which were successfully used as NHC proligands in the preparation of Pd/NHC and Au/NHC complexes.
Collapse
Affiliation(s)
- Dmitry V Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Maxim A Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Skolkovo Institute of Science and Technology, Center for Energy Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
2
|
Chen D, Zhang X, Vorobieva AA, Tachibana R, Stein A, Jakob RP, Zou Z, Graf DA, Li A, Maier T, Correia BE, Ward TR. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat Chem 2024; 16:1656-1664. [PMID: 39030420 DOI: 10.1038/s41557-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 07/21/2024]
Abstract
While natural terpenoid cyclases generate complex terpenoid structures via cationic mechanisms, alternative radical cyclization pathways are underexplored. The metal-catalysed H-atom transfer reaction (M-HAT) offers an attractive means for hydrofunctionalizing olefins, providing access to terpenoid-like structures. Artificial metalloenzymes offer a promising strategy for introducing M-HAT reactivity into a protein scaffold. Here we report our efforts towards engineering an artificial radical cyclase (ARCase), resulting from anchoring a biotinylated [Co(Schiff-base)] cofactor within an engineered chimeric streptavidin. After two rounds of directed evolution, a double mutant catalyses a radical cyclization to afford bicyclic products with a cis-5-6-fused ring structure and up to 97% enantiomeric excess. The involvement of a histidine ligation to the Co cofactor is confirmed by crystallography. A time course experiment reveals a cascade reaction catalysed by the ARCase, combining a radical cyclization with a conjugate reduction. The ARCase exhibits tolerance towards variations in the dienone substrate, highlighting its potential to access terpenoid scaffolds.
Collapse
Affiliation(s)
- Dongping Chen
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Anastassia Andreevna Vorobieva
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
| | - Alina Stein
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | | | - Zhi Zou
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Damian Alexander Graf
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland.
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland.
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland.
| |
Collapse
|
3
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
5
|
Wang D, Ingram AA, Okumura A, Spaniol TP, Schwaneberg U, Okuda J. Benzylic C(sp 3 )-H Bond Oxidation with Ketone Selectivity by a Cobalt(IV)-Oxo Embedded in a β-Barrel Protein. Chemistry 2024; 30:e202303066. [PMID: 37818668 DOI: 10.1002/chem.202303066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Artificial metalloenzymes have emerged as biohybrid catalysts that allow to combine the reactivity of a metal catalyst with the flexibility of protein scaffolds. This work reports the artificial metalloenzymes based on the β-barrel protein nitrobindin NB4, in which a cofactor [CoII X(Me3 TACD-Mal)]+ X- (X=Cl, Br; Me3 TACD=N,N' ,N''-trimethyl-1,4,7,10-tetraazacyclododecane, Mal=CH2 CH2 CH2 NC4 H2 O2 ) was covalently anchored via a Michael addition reaction. These biohybrid catalysts showed higher efficiency than the free cobalt complexes for the oxidation of benzylic C(sp3 )-H bonds in aqueous media. Using commercially available oxone (2KHSO5 ⋅ KHSO4 ⋅ K2 SO4 ) as oxidant, a total turnover number of up to 220 and 97 % ketone selectivity were achieved for tetralin. As catalytically active intermediate, a mononuclear terminal cobalt(IV)-oxo species [Co(IV)=O]2+ was generated by reacting the cobalt(II) cofactor with oxone in aqueous solution and characterized by ESI-TOF MS.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Akira Okumura
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
6
|
Nasibullin I, Yoshioka H, Mukaimine A, Nakamura A, Kusakari Y, Chang TC, Tanaka K. Catalytic olefin metathesis in blood. Chem Sci 2023; 14:11033-11039. [PMID: 37860663 PMCID: PMC10583672 DOI: 10.1039/d3sc03785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
The direct synthesis of drugs in vivo enables drugs to treat diseases without causing side effects in healthy tissues. Transition-metal reactions have been widely explored for uncaging and synthesizing bioactive drugs in biological environments because of their remarkable reactivity. Nonetheless, it is difficult to develop a promising method to achieve in vivo drug synthesis because blood cells and metabolites deactivate transition-metal catalysts. We report that a robust albumin-based artificial metalloenzyme (ArM) with a low loading (1-5 mol%) can promote Ru-based olefin metathesis to synthesize molecular scaffolds and an antitumor drug in blood. The ArM retained its activity after soaking in blood for 24 h and provided the first example of catalytic olefin cross metathesis in blood. Furthermore, the cyclic-Arg-Gly-Asp (cRGD) peptide-functionalized ArM at lower dosages could still efficiently perform in vivo drug synthesis to inhibit the growth of implanted tumors in mice. Such a system can potentially construct therapeutic drugs in vivo for therapies without side effects.
Collapse
Affiliation(s)
- Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Hiromasa Yoshioka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
7
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
8
|
Kato S, Onoda A, Schwaneberg U, Hayashi T. Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. J Am Chem Soc 2023; 145. [PMID: 36892401 PMCID: PMC10119979 DOI: 10.1021/jacs.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 03/10/2023]
Abstract
Evolutionary engineering of our previously reported Cp*Rh(III)-linked artificial metalloenzyme was performed based on a DNA recombination strategy to improve its catalytic activity toward C(sp2)-H bond functionalization. Improved scaffold design was achieved with α-helical cap domains of fatty acid binding protein (FABP) embedded within the β-barrel structure of nitrobindin (NB) as a chimeric protein scaffold for the artificial metalloenzyme. After optimization of the amino acid sequence by directed evolution methodology, an engineered variant, designated NBHLH1(Y119A/G149P) with enhanced performance and enhanced stability was obtained. Additional rounds of metalloenzyme evolution provided a Cp*Rh(III)-linked NBHLH1(Y119A/G149P) variant with a >35-fold increase in catalytic efficiency (kcat/KM) for cycloaddition of oxime and alkyne. Kinetic studies and MD simulations revealed that aromatic amino acid residues in the confined active-site form a hydrophobic core which binds to aromatic substrates adjacent to the Cp*Rh(III) complex. The metalloenzyme engineering process based on this DNA recombination strategy will serve as a powerful method for extensive optimization of the active-sites of artificial metalloenzymes.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
9
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
10
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
11
|
Tunalı Z, Sagdic K, Inci F, Öztürk BÖ. Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00058j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A magnetically separable catalyst is developed through encapsulation of mesoporous carbon, HG2 and γ-Fe2O3 within alginate gels. The catalytic showed superior performance in metathesis reactions of hydrophobic olefins in water under air atmosphere.
Collapse
Affiliation(s)
- Zeynep Tunalı
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | - Kutay Sagdic
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Bengi Özgün Öztürk
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| |
Collapse
|
12
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
13
|
|
14
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
15
|
Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Malte Wittwer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Konstantin W. Kröckert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
16
|
Thiel A, Sauer DF, Markel U, Mertens MAS, Polen T, Schwaneberg U, Okuda J. An artificial ruthenium-containing β-barrel protein for alkene-alkyne coupling reaction. Org Biomol Chem 2021; 19:2912-2916. [PMID: 33735355 DOI: 10.1039/d1ob00279a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A modified Cp*Ru complex, equipped with a maleimide group, was covalently attached to a cysteine of an engineered variant of Ferric hydroxamate uptake protein component: A (FhuA). This synthetic metalloprotein catalyzed the intermolecular alkene-alkyne coupling of 3-butenol with 5-hexynenitrile. When compared with the protein-free Cp*Ru catalyst, the biohybrid catalyst produced the linear product with higher regioselectivity.
Collapse
Affiliation(s)
- Andreas Thiel
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
18
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
19
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Oohora K, Hayashi T. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Dalton Trans 2021; 50:1940-1949. [PMID: 33433532 DOI: 10.1039/d0dt03597a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metalloenzymes naturally achieve various reactivities by assembling limited types of cofactors with endogenous amino acid residues. Enzymes containing metal porphyrinoid cofactors such as heme, cobalamin and F430 exert precise control over the reactivities of the cofactors with protein matrices. This perspective article focuses on our recent efforts to assemble metal complexes of non-natural porphyrinoids within the protein matrix of myoglobin, an oxygen storage hemoprotein. Engineered myoglobins with suitable metal complexes as artificial cofactors demonstrate unique reactivities toward C-H bond hydroxylation, olefin cyclopropanation, methyl group transfer and methane generation. In these cases, the protein matrix enhances the catalytic activities of the cofactors and allows us to monitor the active intermediates. The present findings indicate that placing artificial cofactors in protein matrices provides a useful strategy for creating artificial metalloenzymes that catalyse otherwise unfavourable reactions and providing enzyme models for elucidating the complicated reaction mechanisms of natural enzymes.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | | |
Collapse
|
21
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
22
|
Nöth M, Hussmann L, Belthle T, El-Awaad I, Davari MD, Jakob F, Pich A, Schwaneberg U. MicroGelzymes: pH-Independent Immobilization of Cytochrome P450 BM3 in Microgels. Biomacromolecules 2020; 21:5128-5138. [PMID: 33206503 DOI: 10.1021/acs.biomac.0c01262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microgels are an emerging class of "ideal" enzyme carriers because of their chemical and process stability, biocompatibility, and high enzyme loading capability. In this work, we synthesized a new type of permanently positively charged poly(N-vinylcaprolactam) (PVCL) microgel with 1-vinyl-3-methylimidazolium (quaternization of nitrogen by methylation of N-vinylimidazole moieties) as a comonomer (PVCL/VimQ) through precipitation polymerization. The PVCL/VimQ microgels were characterized with respect to their size, charge, swelling degree, and temperature responsiveness in aqueous solutions. P450 monooxygenases are usually challenging to immobilize, and often, high activity losses occur after the immobilization (in the case of P450 BM3 from Bacillus megaterium up to 100% loss of activity). The electrostatic immobilization of P450 BM3 in permanently positively charged PVCL/VimQ microgels was achieved without the loss of catalytic activity at the pH optimum of P450 BM3 (pH 8; ∼9.4 nmol 7-hydroxy-3-carboxy coumarin ethyl ester/min for free and immobilized P450 BM3); the resulting P450-microgel systems were termed P450 MicroGelzymes (P450 μ-Gelzymes). In addition, P450 μ-Gelzymes offer the possibility of reversible ionic strength-triggered release and re-entrapment of the biocatalyst in processes (e.g., for catalyst reuse). Finally, a characterization of the potential of P450 μ-Gelzymes to provide resistance against cosolvents (acetonitrile, dimethyl sulfoxide, and 2-propanol) was performed to evaluate the biocatalytic application potential.
Collapse
Affiliation(s)
- Maximilian Nöth
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Larissa Hussmann
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomke Belthle
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Islam El-Awaad
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| |
Collapse
|
23
|
Kato S, Onoda A, Grimm AR, Tachikawa K, Schwaneberg U, Hayashi T. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp 2)-H Bond Functionalization. Inorg Chem 2020; 59:14457-14463. [PMID: 32914980 DOI: 10.1021/acs.inorgchem.0c02245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Cp*Rh(III)-dithiophosphate cofactor with "latent" catalytic activity was developed to construct an artificial metalloenzyme representing a new type of biohybrid catalyst which is capable of promoting C(sp2)-H bond functionalization within the β-barrel structure of nitrobindin (NB). To covalently conjugate the Cp*Rh(III) cofactor into a specific position of the hydrophobic cavity of NB via a maleimide-Cys linkage, strong chelation of the dithiophosphate ligand is employed to protect the rhodium metal center against attack by nucleophilic amino acid residues in the protein. It is found that subsequent addition of the Ag+ ion induces dissociation of the dithiophosphate ligands, thereby activating the catalytic activity of the Cp*Rh(III) cofactor. The resulting "active" biohybrid catalyst promotes cycloaddition of acetophenone oxime with diphenylacetylene via C(sp2)-H bond activation. This catalytic activity is enhanced 2.3-fold with the introduction of two glutamate residues (A100E/L125E) adjacent to the Cp*Rh(III) cofactor. The Cp*Rh(III) cofactor with switchable activity from a "latent" form to an "active" form provides a new strategy for generating biohybrid catalysts incorporating a variety of highly reactive transition metal complexes specifically within its protein scaffolds.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Alexander R Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Kengo Tachikawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
24
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
25
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
26
|
Olszewski TK, Bieniek M, Skowerski K. Ruthenium-Based Complexes Bearing Quaternary Ammonium Tags as Versatile Catalysts for Olefin Metathesis: From the Discovery to Practical Applications. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tomasz K. Olszewski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 29, 50-370 Wroclaw, Poland
| | | | | |
Collapse
|
27
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
28
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Matsuo T, Miyake T, Hirota S. Recent developments on creation of artificial metalloenzymes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Sabatino V, Ward TR. Aqueous olefin metathesis: recent developments and applications. Beilstein J Org Chem 2019; 15:445-468. [PMID: 30873229 PMCID: PMC6404410 DOI: 10.3762/bjoc.15.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Olefin metathesis is one of the most powerful C-C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Collapse
Affiliation(s)
- Valerio Sabatino
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| |
Collapse
|
31
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angew Chem Int Ed Engl 2019; 58:4454-4464. [DOI: 10.1002/anie.201811042] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Johannes Schiffels
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52056 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
32
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Protein‐Engineering‐Blickwinkel. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ulrich Markel
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Daniel F. Sauer
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Johannes Schiffels
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Jun Okuda
- Institut für Anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Ulrich Schwaneberg
- DWI Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52074 Aachen Deutschland
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| |
Collapse
|
33
|
Grimm AR, Sauer DF, Mirzaei Garakani T, Rübsam K, Polen T, Davari MD, Jakob F, Schiffels J, Okuda J, Schwaneberg U. Anchor Peptide-Mediated Surface Immobilization of a Grubbs-Hoveyda-Type Catalyst for Ring-Opening Metathesis Polymerization. Bioconjug Chem 2019; 30:714-720. [DOI: 10.1021/acs.bioconjchem.8b00874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander R. Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | | | - Kristin Rübsam
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
34
|
Sauer DF, Schiffels J, Hayashi T, Schwaneberg U, Okuda J. Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein J Org Chem 2018; 14:2861-2871. [PMID: 30546470 PMCID: PMC6278764 DOI: 10.3762/bjoc.14.265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
This review summarizes the recent progress of Grubbs-Hoveyda (GH) type olefin metathesis catalysts incorporated into the robust fold of β-barrel proteins. Anchoring strategies are discussed and challenges and opportunities in this emerging field are shown from simple small-molecule transformations over ring-opening metathesis polymerizations to in vivo olefin metathesis.
Collapse
Affiliation(s)
- Daniel F Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
35
|
Thiel A, Sauer DF, Mertens MAS, Polen T, Chen HH, Schwaneberg U, Okuda J. Cyclotrimerization of phenylacetylene catalyzed by a cobalt half-sandwich complex embedded in an engineered variant of transmembrane protein FhuA. Org Biomol Chem 2018; 16:5452-5456. [DOI: 10.1039/c8ob01369a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An (η5-cyclopentadienyl)cobalt(i) complex was covalently incorporated in an engineered variant of the β-barrel protein FhuA. The new biohydrid catalyst cyclotrimerized phenylacetylene to give regioisomeric triphenylbenzenes.
Collapse
Affiliation(s)
- A. Thiel
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - D. F. Sauer
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - M. A. S. Mertens
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - T. Polen
- Institute of Bio- and Geoscience
- IGB-1: Biotechnology
- 52425 Jülich
- Germany
| | - H.-H. Chen
- National Kaohsiung Normal University
- Kaohsiung
- Taiwan
| | - U. Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - J. Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|