1
|
Fan Q, Li Q, Sun H, Li X. Dinitrogen silylation catalyzed by silylene cobalt(I) and silylene iron(I) chlorides. Dalton Trans 2024; 53:16261-16270. [PMID: 39308194 DOI: 10.1039/d4dt02057j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this contribution, Co(PMe3)3Cl (1), bis(silylene) cobalt chlorides Co(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (2); {p-CH3C6H4C(NtBu)2}SiCl (3); and {p-tBuC6H4C(NtBu)2}SiCl (4)) and bis(silylene) iron chlorides Fe(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (5); {p-CH3C6H4C(NtBu)2}SiCl (6); {p-tBuC6H4C(NtBu)2}SiCl (7) and Fe(PMe3)2Cl2 (8)) were synthesized to study the effects of different metals and silylene ligands on the catalytic activity of complexes 1-8 in dinitrogen silylation reaction. The experimental results indicate that there is no substantial difference in catalytic activity between the phosphine cobalt complex 1 and the silylene cobalt chlorides 2-4 although the cobalt silylene complex 2 has slightly better catalytic activity than complexes 1, 3 and 4 in the dinitrogen silylation. Silylene iron complexes 5-7 are more active than the phosphine iron complex 8. Among the three silylene iron(I) chlorides 5-7, complex 5 is the most effective catalyst for dinitrogen silylation and 402 equiv. of N(SiMe3)3 could be obtained per Fe atom. In the dinitrogen silylation reaction catalyzed by iron complexes, the introduction of the silylene ligand made the silylene iron complexes 5-7 more active than the phosphine iron complex 8. In addition, iron chlorides 5-8 are more effective catalysts than cobalt(I) chlorides 1-4 for the dinitrogen silylation reaction. Complexes 3, 4, 6 and 7 were new complexes, and their molecular structures were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Wang J, Peng X, Zhang W. Theoretical Investigations of Hydrolysis Mechanisms of N(SiMe 3) 3. Chemphyschem 2024; 25:e202400242. [PMID: 38818637 DOI: 10.1002/cphc.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Tris(trimethylsilyl)amine (N(SiMe3)3) is one of the most important intermediate products in the indirect synthesis of ammonia (NH3) from nitrogen (N2), which could be hydrolyzed to NH3 under mild conditions. Herein, the hydrolysis mechanism of N(SiMe3)3 has been systematically investigated using density functional theory (DFT) with explicit combined implicit water models. Under neutral conditions, the active barrier of the hydrolysis of N(SiMe3)3 is 17.6 kcal mol-1 in water solvent. The attacking of proton to N center and OH group to the Si atom from water is decoupled for the stabilization of OH group by solvent water molecules, which lower the hydrolysis energy barriers. Furthermore, under acid conditions, N(SiMe3)3 is easily coordinated with proton to form [NH(SiMe3)3]+, and the energy barrier of the hydrolysis reaction could be reduced to 11.5 kcal mol-1 of the first stage, making it being promoted according to the chemical equilibrium. Thus, the results provide an explanation for the possible mechanism of the quantitative conversion of N(SiMe3)3 to NH3 under mild conditions. The decoupled hydrolysis mechanism may play important role in other hydrolysis processes.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Materials Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China
| | - Xiaomeng Peng
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China
| | - Wenhua Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Materials Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| |
Collapse
|
3
|
Tanabe Y, Nishibayashi Y. Catalytic Nitrogen Fixation Using Well-Defined Molecular Catalysts under Ambient or Mild Reaction Conditions. Angew Chem Int Ed Engl 2024; 63:e202406404. [PMID: 38781115 DOI: 10.1002/anie.202406404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Ammonia (NH3) is industrially produced from dinitrogen (N2) and dihydrogen (H2) by the Haber-Bosch process, although H2 is prepared from fossil fuels, and the reaction requires harsh conditions. On the other hand, microorganisms have fixed nitrogen under ambient reaction conditions. Recently, well-defined molecular transition metal complexes have been found to work as catalyst to convert N2 into NH3 by reactions with chemical reductants and proton sources under ambient reaction conditions. Among them, involvement of both N2-splitting pathway and proton-coupled electron transfer is found to be very effective for high catalytic activity. Furthermore, direct electrocatalytic and photocatalytic conversions of N2 into NH3 have been recently achieved. In addition to catalytic formation of NH3, selective catalytic conversion of N2 into hydrazine (NH2NH2) and catalytic silylation of N2 into silylamines have been reported. Catalytic C-N bond formation has been more recently established to afford cyanate anion (NCO-) under ambient reaction conditions. Further development of direct conversion of N2 into nitrogen-containing compounds as well as green ammonia synthesis leading to the use of ammonia as an energy carrier is expected.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
4
|
He X, Pan X, Xiong C, Zhang Y, Hong D, Fang H, Cui P. Rare-Earth Metalloligands for Low -Valent Cobalt Complexes: Fine Electronic Tuning via Co→RE Dative Interactions. Inorg Chem 2024; 63:8155-8162. [PMID: 38651290 DOI: 10.1021/acs.inorgchem.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Rare-earth metalloligand supported low-valent cobalt complexes were synthesized by utilizing a small-sized heptadentate phosphinomethylamine LsNH3 and a large-sized arene-anchored hexadentate phosphinomethylamine LlArH3 ligand precursors. The RE(III)-Co(-I)-N2 (RE = Sc, Lu, Y, Gd, La) complexes containing rare-earth metals including the smallest Sc and largest La were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The Co(-I)→RE(III) dative interactions were all polarized with major contributions from the 3dz2 orbital of the cobalt center, which was slightly affected by the identity of rare-earth metalloligands. The IR spectroscopic data and redox potentials obtained from cyclic voltammetry revealed that the electronic property of the Co(-I) center was finely tuned by the rare-earth metalloligand, which was revealed by variation of the ligand systems containing LsN, LmN, and LlAr. Unlike the direct alteration of the electronic property of metal center via an ancillary ligand, such a series of rare-earth metalloligand represents a smooth strategy to tune the electronic property of transition metals.
Collapse
Affiliation(s)
- Xiuyan He
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
5
|
Yang W, Li X, Li SY, Li Q, Sun H, Li X. Synthesis of Bis(silylene) Iron Chlorides and Their Catalytic Activity for Dinitrogen Silylation. Inorg Chem 2023; 62:21014-21024. [PMID: 38095917 DOI: 10.1021/acs.inorgchem.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
In this study, three tetracoordinated bis(silylene) iron(II) chlorides, namely, [SiCHRSi]FeCl2 (1) (R = H), (2) (R = CH3), and (3) (R = Ph), were synthesized through the reactions of the three different bis(silylene) ligands [LSiCHRSiL] (L = PhC(NtBu)2, L1 (R = H), L2 (R = CH3), L3 (R = Ph)) with FeCl2·(THF)1.5 in THF. The bis(silylene) Fe complexes 1-3 could be used as effective catalysts for dinitrogen silylation, with complex 3 demonstrating the highest turnover number (TON) of 746 equiv among the three complexes. The catalytic mechanism was explored, revealing the involvement of the pentacoordinated bis(dinitrogen) iron(0) complexes [SiCHRSi]Fe(N2)2(THF), (4)-(6), as the active catalysts in the dinitrogen silylation reaction. Additionally, the cyclic silylene compound 10 was obtained from the reaction of L1 with KC8. Single-crystal X-ray diffraction analyses confirmed the molecular structures of complexes 1-3 and 10 in the solid state.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaomiao Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Sheng-Yong Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Pan X, Xu M, Xiong C, Hong D, Fang H, Cui P. Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands. Inorg Chem 2023; 62:3836-3846. [PMID: 36800534 DOI: 10.1021/acs.inorgchem.2c04099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Min Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
7
|
Merakeb L, Bennaamane S, De Freitas J, Clot E, Mézailles N, Robert M. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex. Angew Chem Int Ed Engl 2022; 61:e202209899. [PMID: 35941077 PMCID: PMC9804441 DOI: 10.1002/anie.202209899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/05/2023]
Abstract
Nitrogen reduction under mild conditions (room T and atmospheric P), using a non-fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3 ], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoI N2 MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton-coupled electron transfer (PCET) conversion studies of N2 to NH3 .
Collapse
Affiliation(s)
- Lydia Merakeb
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Jérémy De Freitas
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Eric Clot
- ICGMUniv MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
- Institut Universitaire de France (IUF)75005ParisFrance
| |
Collapse
|
8
|
Merakeb L, Bennaamane S, De Freitas J, Clot E, Mézailles N, Robert M. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Clot
- Université Montpellier 1: Universite de Montpellier Chemistry FRANCE
| | | | - Marc Robert
- Universite Paris Cité - Laboraoire Electrochimie Moleculaire - UMR CNRS 7591 Chemistry Department 15 rue Jean de Baif 75013 Paris FRANCE
| |
Collapse
|
9
|
Meng F, Kuriyama S, Egi A, Tanaka H, Yoshizawa K, Nishibayashi Y. Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Nagoya 457-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Haufe LC, Arrowsmith M, Dietz M, Gärtner A, Bertermann R, Braunschweig H. Spontaneous N 2-diboranylation of [W(N 2) 2(dppe) 2] with B 2Br 4(SMe 2) 2. Dalton Trans 2022; 51:12786-12790. [PMID: 35861163 DOI: 10.1039/d2dt02135h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1,3-bromoboration of [W(N2)2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with B2Br4(SMe2)2 in the presence of various Lewis bases L yields diboranyldiazenido complexes, with L coordinating either at the terminal or internal boron atom. The 2 : 1 reaction of [W(N2)2(dppe)2] and B2Br4(SMe2)2 yields a 1,2-bis(diazenido)diborane-bridged ditungsten complex with a fully planar π-conjugated BrWN2B2Br2N2WBr core.
Collapse
Affiliation(s)
- Lisa C Haufe
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Kuriyama S, Wei S, Kato T, Nishibayashi Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules 2022; 27:2373. [PMID: 35408764 PMCID: PMC9000597 DOI: 10.3390/molecules27072373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (S.K.); (S.W.); (T.K.)
| |
Collapse
|
12
|
Kuriyama S, Wei S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorg Chem 2022; 61:5190-5195. [PMID: 35313105 DOI: 10.1021/acs.inorgchem.2c00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.
Collapse
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shenglan Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Ott JC, Bürgy D, Guan H, Gade LH. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res 2022; 55:857-868. [PMID: 35164502 DOI: 10.1021/acs.accounts.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusLow-valent, low-coordinate 3d metal complexes represent a class of extraordinarily reactive compounds that can act as reagents and catalysts for challenging bond-activation reactions. The pursuit of these electron-deficient metal complexes in low oxidation states demands ancillary ligands capable of providing not only energetic stabilization but also sufficiently high steric bulk at the metal center. From this perspective, pincer ligands are particularly advantageous, as their prearranged, meridional coordination mode scaffolds the active center while the substituents of the peripheral donor atoms provide effective steric shielding for the coordination sphere. In a T-shaped geometry, the transition metal complexes possess a precisely defined vacant coordination site, which, combined with the often observed high-spin electron configuration, exhibits unusually high selectivity of these compounds with respect to one-electron redox chemistry. In light of the intractable reaction pathways typically observed with related electronically unsaturated 3d transition metal complexes, the pincer coordination mode enables the isolation of low-valent compounds with more controlled and unique reactivity. We have thus investigated a series of T-shaped metal(I) complexes using three different types of pincer ligands, which may be regarded as "metalloradicals" due to their selectively exposed unpaired electrons.These compounds display remarkably high thermal stability and represent rarely observed "naked" monovalent metal species featuring both monomeric and dimeric structures. Extensive reactivity studies using various organic substrates highlight a strong tendency of these paramagnetic compounds to undergo one-electron oxidation, leading to the isolation of a plethora of metal(II) species with reduced organic ligands as unusual structural elements. The exploration of C2 symmetric T-shaped Ni(I) complexes as asymmetric catalysts also shows success in enantioselective hydrodehalogenation of geminal dihalogenides. In addition, this specific class of low-valent, low-coordinate complexes can be further diversified by introducing redox-active pincer ligands or building homobimetallic systems with two T-shaped units.This Account focuses on the discussion of selected examples of iron, cobalt, and nickel pincer complexes bearing a [P,N,P] or [N,N,N] donor set; however, their electronic structure and radical-type reactivity can be broadly extended to other pincer systems. The availability of various types of pincer ligands should allow fine-tuning of the reactivity of the T-shaped complexes. Given the unprecedented reactivity observed with these compounds, we expect the studies of T-shaped 3d metal complexes to be a fertile field for advancing base metal catalysis.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - David Bürgy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Zhang G, Liu T, Song J, Quan Y, Jin L, Si M, Liao Q. N 2 Cleavage on d 4/d 4 Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. J Am Chem Soc 2022; 144:2444-2449. [PMID: 35014788 DOI: 10.1021/jacs.1c11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of N-containing organophosphine compounds using N2 as the nitrogen source under mild conditions has attracted much attention. Herein, the conversion of N2 into iminophosphorane was reported. By visible light irradiation, N2 was split on a MoII complex bearing a PNCNP ligand, directly forming the MoV nitride. After the N-P bond formation on the terminal nitride, the N atom from N2 was ultimately transferred into iminophosphorane. Key intermediates were characterized.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Tanggao Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Yingyu Quan
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Mengyue Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| |
Collapse
|
15
|
Li HJ, Feng R, Wang GX, Wei J, Xi Z. Dinitrogen activation by a phosphido-bridged binuclear cobalt complex. Dalton Trans 2022; 51:16811-16815. [DOI: 10.1039/d2dt03320h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of PNPCoBr under a N2 atmosphere yielded a binuclear cobalt dinitrogen anion complex via the C–P bond cleavage of the PNP ligand.
Collapse
Affiliation(s)
- Hai-Jun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rui Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Jori N, Rajeshkumar T, Scopelliti R, Z̆ivković I, Sienkiewicz A, Maron L, Mazzanti M. Cation assisted binding and cleavage of dinitrogen by uranium complexes. Chem Sci 2022; 13:9232-9242. [PMID: 36093011 PMCID: PMC9384805 DOI: 10.1039/d2sc02530b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
N2 binding affinity decreases markedly in a series of isostructural U(iii)–alkali ions complexes with increasing cation size. N2 binding is undetectable in the Cs analogue, but the first example of cesium-assisted N2 cleavage to bis-nitride was observed at ambient condition.
Collapse
Affiliation(s)
- Nadir Jori
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Z̆ivković
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ADSresonances Sàrl, Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Sang S, Unruh T, Demeshko S, Domenianni LI, van Leest NP, Marquetand P, Schneck F, Würtele C, de Zwart FJ, de Bruin B, González L, Vöhringer P, Schneider S. Photo-Initiated Cobalt-Catalyzed Radical Olefin Hydrogenation. Chemistry 2021; 27:16978-16989. [PMID: 34156122 PMCID: PMC9292329 DOI: 10.1002/chem.202101705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M-H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co-H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.
Collapse
Affiliation(s)
- Sier Sang
- Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Tobias Unruh
- Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-UniversitätWegelerstrasse 1253117BonnGermany
| | - Serhiy Demeshko
- Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Luis I. Domenianni
- Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-UniversitätWegelerstrasse 1253117BonnGermany
| | - Nicolaas P. van Leest
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Felix Schneck
- Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Christian Würtele
- Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Felix J. de Zwart
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Peter Vöhringer
- Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-UniversitätWegelerstrasse 1253117BonnGermany
| | - Sven Schneider
- Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| |
Collapse
|
18
|
Bae DY, Lee G, Lee E. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorg Chem 2021; 60:12813-12822. [PMID: 34492761 DOI: 10.1021/acs.inorgchem.1c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new type of dititanium dinitrogen complex supported by a triphenolamine (TPA) ligand is reported. Analysis by single-crystal X-ray diffraction and Raman and NMR spectroscopy reveals different coordination geometries for the two titanium centers. Hence, coordination of TPA and a nitrogen ligand results in trigonal-bipyramidal geometry, while an octahedral titanium center is obtained upon additional coordination of an ethoxide generated upon C-O bond cleavage in a diethyl ether solvent molecule. The titanium complex successfully generates ammonia in the presence of an excess amount of PCy3HI and KC8 in 154% yield (per titanium atom). A titanium complex with a bulkier TPA does not form a dinitrogen complex, and mononuclear titanium dinitrogen complexes were not accessible, presumably because of the high tendency of early transition metals to form binuclear dinitrogen complexes.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
19
|
Bennaamane S, Espada MF, Mulas A, Personeni T, Saffon-Merceron N, Fustier-Boutignon M, Bucher C, Mézailles N. Catalytic Reduction of N 2 to Borylamine at a Molybdenum Complex. Angew Chem Int Ed Engl 2021; 60:20210-20214. [PMID: 34213041 DOI: 10.1002/anie.202106025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Indexed: 12/31/2022]
Abstract
Catalytic formation of borylamines from atmospheric N2 is achieved for the first time using a series of homogenous (triphosphine)Mo complexes. Stepwise functionalization of the (triphosphine)Mo-nitrido complex with chloroborane led to the synthesis of the imido complex. Electrochemical characterization of the (PPP)Mo-nitrido and (PPP)Mo-borylimido complexes showed that the latter is much more easily reduced.
Collapse
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Maria F Espada
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Mulas
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Théo Personeni
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-FR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Marie Fustier-Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Christophe Bucher
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
20
|
Bennaamane S, Espada MF, Mulas A, Personeni T, Saffon‐Merceron N, Fustier‐Boutignon M, Bucher C, Mézailles N. Catalytic Reduction of N
2
to Borylamine at a Molybdenum Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| | - Maria F. Espada
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| | - Andrea Mulas
- Université Lyon ENS Lyon CNRS, Université Lyon 1 Laboratoire de Chimie, UMR 5182 46 Allée d'Italie 69364 Lyon France
| | - Théo Personeni
- Université Lyon ENS Lyon CNRS, Université Lyon 1 Laboratoire de Chimie, UMR 5182 46 Allée d'Italie 69364 Lyon France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse ICT-FR2599 Université Paul Sabatier CNRS 31062 Toulouse Cedex France
| | - Marie Fustier‐Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| | - Christophe Bucher
- Université Lyon ENS Lyon CNRS, Université Lyon 1 Laboratoire de Chimie, UMR 5182 46 Allée d'Italie 69364 Lyon France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|
21
|
Li M, Gupta SK, Dechert S, Demeshko S, Meyer F. Merging Pincer Motifs and Potential Metal-Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N 2 to N(SiMe 3 ) 3. Angew Chem Int Ed Engl 2021; 60:14480-14487. [PMID: 33829680 PMCID: PMC8251579 DOI: 10.1002/anie.202101387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Using a pyrazolate-bridged dinucleating ligand that provides two proximate pincer-type PNN binding sites ("two-in-one pincer"), different synthetic routes have been developed towards its dicobalt(I) complex 2 that features a twice deprotonated ligand backbone and two weakly activated terminal N2 substrate ligands directed into the bimetallic pocket. Protonation of 2 is shown to occur at the ligand scaffold and to trigger conversion to a tetracobalt(I) complex 4 with two end-on μ1,2 -bridging N2 ; in THF 4 is labile and undergoes temperature-dependent N2 /triflate ligand exchange. These pyrazolate-based systems combine the potential of exhibiting both metal-metal and metal-ligand cooperativity, viz. two concepts that have emerged as promising design motifs for molecular N2 fixation catalysts. Complex 2 serves as an efficient (pre)catalyst for the reductive silylation of N2 into N(SiMe3 )3 (using KC8 and Me3 SiCl), yielding up to 240 equiv N(SiMe3 )3 per catalyst.
Collapse
Affiliation(s)
- Ming Li
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Sandeep K. Gupta
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Sebastian Dechert
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Serhiy Demeshko
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Franc Meyer
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
- Universität GöttingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)Tammannstrasse 637077GöttingenGermany
- Universität GöttingenWöhler Research Institute for Sustainable Chemistry (WISCh)Tammannstrasse 237077GöttingenGermany
| |
Collapse
|
22
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen‐Bridged Dirhenium Complex Bearing PNP‐Pincer Ligands under Mild Reaction Conditions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University Minami-ku Nagoya 457-8530 Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
23
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions*. Angew Chem Int Ed Engl 2021; 60:13906-13912. [PMID: 33835664 DOI: 10.1002/anie.202102175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Indexed: 01/07/2023]
Abstract
A series of rhenium complexes bearing a pyridine-based PNP-type pincer ligand are synthesized from rhenium phosphine complexes as precursors. A dinitrogen-bridged dirhenium complex bearing the PNP-type pincer ligands catalytically converts dinitrogen into ammonia during the reaction with KC8 as a reductant and [HPCy3 ]BArF 4 (Cy=cyclohexyl, ArF =3,5-(CF3 )2 C6 H3 ) as a proton source at -78 °C to afford 8.4 equiv of ammonia based on the rhenium atom of the catalyst. The rhenium-dinitrogen complex also catalyzes silylation of dinitrogen in the reaction with KC8 as a reductant and Me3 SiCl as a silylating reagent under ambient reaction conditions to afford 11.7 equiv of tris(trimethylsilyl)amine based on the rhenium atom of the catalyst. These results demonstrate the first successful example of catalytic nitrogen fixation under mild reaction conditions using rhenium-dinitrogen complexes as catalysts.
Collapse
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, 457-8530, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
24
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross-Metathesis of N 2 -Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021; 60:12242-12247. [PMID: 33608987 DOI: 10.1002/anie.202015183] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/11/2022]
Abstract
The direct synthesis of nitrile from N2 under mild conditions is of great importance and has attracted much interest. Herein, we report a direct conversion of N2 into nitrile via a nitrile-alkyne cross-metathesis (NACM) process involving a N2 -derived Mo nitride. Treatment of the Mo nitride with alkyne in the presence of KOTf afforded an alkyne-coordinated nitride, which was then transformed into MoV carbyne and the corresponding nitrile upon 1 e- oxidation. Both aryl- and alkyl-substituted alkynes underwent this process smoothly. Experiments and DFT calculations have proved that the oxidation state of the Mo center plays a crucial role. This method does not rely on the nucleophilicity of the N2 -derived metal nitride, offering a novel strategy for N2 fixation chemistry.
Collapse
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Xin Hong
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
25
|
Li M, Gupta SK, Dechert S, Demeshko S, Meyer F. Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N
2
to N(SiMe
3
)
3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming Li
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sandeep K. Gupta
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
- Universität Göttingen International Center for Advanced Studies of Energy Conversion (ICASEC) Tammannstrasse 6 37077 Göttingen Germany
- Universität Göttingen Wöhler Research Institute for Sustainable Chemistry (WISCh) Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
26
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
27
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
28
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross‐Metathesis of N
2
‐Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Qian Liao
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Xin Hong
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Li Jin
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|
29
|
Kuriyama S, Nishibayashi Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
31
|
Matveeva R, Blasius CK, Wadepohl H, Gade LH. Reactivity of a T-shaped cobalt(I) pincer-complex. Dalton Trans 2021; 50:6802-6810. [PMID: 34032245 DOI: 10.1039/d1dt00277e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a paramagnetic T-shaped cobalt(i) complex, [(iPrboxmi)Co], stabilised by a monoanionic bis(oxazolinylmethylidene)-isoindolate (boxmi) NNN pincer ligand is described. The exposure to carbon monoxide as an additional neutral ligand resulted in the square-planar species [(iPrboxmi)Co(CO)], accompanied by a change in the electronic spin state from S = 1 to S = 0. In contrast, upon treatment with trimethylphosphine the formation of the distorted tetrahedral complex [(iPrboxmi)Co(PMe3)] was observed (S = 1). Reacting [(iPrboxmi)Co] with iodine (I2), organic peroxides (tBu2O2, (SiMe3)2O2) and diphenyldisulphide (Ph2S2) yielded the tetracoordinated complexes [(iPrboxmi)CoI], [(iPrboxmi)Co(OtBu)], [(iPrboxmi)Co(OSiMe3)] and [(iPrboxmi)Co(SPh)], respectively, demonstrating the capability of the boxmi-supported cobalt(i) complex to homolytically cleave bonds and thus its distinct one-electron reactivity. Furthermore, a square-planar cobalt(ii) alkynyl complex [(iPrboxmi)Co(CCArF)] was identified as the main product in the reaction between [(iPrboxmi)Co] and a terminal alkyne, 4-fluoro-1-ethynylbenzene. Putting such species in the context of the previously investigated hydroboration catalysis, its stoichiometric reaction with pinacolborane revealed its potential conversion into a cobalt(ii) hydride complex, thus confirming its original attribution as off-cycle species.
Collapse
Affiliation(s)
- Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Dong Y, Zhang P, Fan Q, Du X, Xie S, Sun H, Li X, Fuhr O, Fenske D. The Effect of Substituents on the Formation of Silyl [PSiP] Pincer Cobalt(I) Complexes and Catalytic Application in Both Nitrogen Silylation and Alkene Hydrosilylation. Inorg Chem 2020; 59:16489-16499. [PMID: 33108179 DOI: 10.1021/acs.inorgchem.0c02332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four different [PSiP]-pincer ligands L1-L4 ((2-Ph2PC6H4)2SiHR (R = H (L1) and Ph (L2)) and (2-iPr2PC6H4)2SiHR' (R' = Ph (L3) and H (L4)) were used to investigate the effect of substituents at P and/or Si atom of the [PSiP] pincer ligands on the formation of silyl cobalt(I) complexes by the reactions with CoMe(PMe3)4 via Si-H cleavage. Two penta-coordinated silyl cobalt(I) complexes, (2-Ph2PC6H4)2HSiCo(PMe3)2 (1) and (2-Ph2PC6H4)2PhSiCo(PMe3)2 (2), were obtained from the reactions of L1 and L2 with CoMe(PMe3)4, respectively. Under similar reaction conditions, a tetra-coordinated cobalt(I) complex (2-iPr2PC6H4)2PhSiCo(PMe3) (3) was isolated from the interaction of L3 with CoMe(PMe3)4. It was found that, only in the case of ligand L4, silyl dinitrogen cobalt(I) complex 4, [(2-iPr2PC6H4)2HSiCo(N2)(PMe3)], was formed. Our results indicate that the increasing of electron cloud density at the Co center is beneficial for the formation of a dinitrogen cobalt complex because the large electron density at Co center leads to the enhancement of the π-backbonding from cobalt to the coordinated N2. It was found that silyl dinitrogen cobalt(I) complex 4 is an effective catalyst for catalytic transformation of dinitrogen into silylamine. Among these four silyl cobalt(I) complexes, complex 1 is the best catalyst for hydrosilylation of alkenes with excellent regioselectivity. For aromatic alkenes, catalyst 1 provided Markovnikov products, while for aliphatic alkenes, anti-Markovnikov products could be obtained. Both catalytic reaction mechanisms were proposed and discussed. The molecular structures of complexes 1-4 were confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Abstract
A persistent challenge in chemistry is to activate abundant, yet inert molecules such as hydrocarbons and atmospheric N2. In particular, forming C–N bonds from N2 typically requires a reactive organic precursor1, which limits the ability to design catalytic cycles. Here, we report an diketiminate-supported iron system that is able to sequentially activate benzene and N2 to form aniline derivatives. The key to this new coupling reaction is the partial silylation of a reduced iron-N2 complex, which is followed by migratory insertion of a benzene-derived phenyl group to the nitrogen. Further reduction releases the nitrogen products, and the resulting iron species can re-enter the cyclic pathway. Using a mixture of sodium powder, crown ether, and trimethylsilyl bromide, an easily prepared diketiminate iron bromide complex2 can mediate the one-pot conversion of several petroleum-derived compounds into the corresponding silylated aniline derivatives using N2 as the nitrogen source. Numerous compounds along the cyclic pathway have been isolated and crystallographically characterized; their reactivity outlines the mechanism including the hydrocarbon activation step and the N2 functionalization step. This strategy incorporates nitrogen atoms from N2 directly into abundant hydrocarbons.
Collapse
|
34
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
35
|
Kawakami R, Kuriyama S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Iridium-catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions. CHEM LETT 2020. [DOI: 10.1246/cl.200254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ryosuke Kawakami
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Science, Daido University, Minami-ku, Nagoya, Aichi 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Kim S, Loose F, Chirik PJ. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem Rev 2020; 120:5637-5681. [DOI: 10.1021/acs.chemrev.9b00705] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
Eaton MC, Knight BJ, Catalano VJ, Murray LJ. Evaluating Metal Ion Identity on Catalytic Silylation of Dinitrogen Using a Series of Trimetallic Complexes. Eur J Inorg Chem 2020; 2020:1519-1524. [PMID: 33071629 DOI: 10.1002/ejic.201901335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report catalytic silylation of dinitrogen to tris(trimethylsilyl)amine by a series of trinuclear first row transition metal complexes (M = Cr, Mn, Fe, Co, Ni) housed in our tris(β-diketiminate) cyclophane (L 3- ). Yields are expectedly dependent on metal ion type ranging from 14 to 199 equiv NH4 +/complex after protonolysis for the Mn to Co congeners, respectively. For the series of complexes, the number of turnovers trend observed is Co > Fe > Cr > Ni > Mn, consistent with prior reports of greater efficacy of Co over Fe in other ligand systems for this reaction.
Collapse
Affiliation(s)
- Mary C Eaton
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | - Brian J Knight
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | | | - Leslie J Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| |
Collapse
|
38
|
Sanz CA, Stein CAM, Fryzuk MD. Synthesis of a T-Shaped Cobalt(I) Complex and Its Dinitrogen Adduct. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Corey A. Sanz
- Department of Chemistry; The University of British Columbia; 2036 Main Mall V6T 1Z1 Vancouver BC Canada
| | - Carolin A. M. Stein
- Department of Chemistry; The University of British Columbia; 2036 Main Mall V6T 1Z1 Vancouver BC Canada
| | - Michael D. Fryzuk
- Department of Chemistry; The University of British Columbia; 2036 Main Mall V6T 1Z1 Vancouver BC Canada
| |
Collapse
|
39
|
Wasada-Tsutsui Y, Wasada H, Suzuki T, Katayama A, Kajita Y, Inomata T, Ozawa T, Masuda H. Efficient Electronic Structure to Stabilize N2
-Bridged Dinuclear Complexes Intended for N2
Activation: Iminophosphorane Iron(I) and Cobalt(I). Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuko Wasada-Tsutsui
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Hiroaki Wasada
- Faculty of Regional Studies; Gifu University; Yanagido Gifu 501-1193 Japan
| | - Tatsuya Suzuki
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Akira Katayama
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Yuji Kajita
- Department of Applied Chemistry; Faculty of Engineering; Aichi Institute of Technology; 1247 Yachigusa, Yakusa-cho Toyota 470-0392 Japan
| | - Tomohiko Inomata
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Hideki Masuda
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
- Department of Applied Chemistry; Faculty of Engineering; Aichi Institute of Technology; 1247 Yachigusa, Yakusa-cho Toyota 470-0392 Japan
| |
Collapse
|
40
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Lohrey TD, Bergman RG, Arnold J. Controlling dinitrogen functionalization at rhenium through alkali metal ion pairing. Dalton Trans 2019; 48:17936-17944. [PMID: 31793591 DOI: 10.1039/c9dt04489b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rhenium(i) salt Na[Re(η5-Cp)(BDI)] can be cooled in solution under a dinitrogen atmosphere to selectively access complexes containing rhenium(iii) centers bound to direduced, doubly-bonded N2 (i.e. diazenide) fragments. We demonstrate this reactivity is critically dependent on ion pairing involving the Na+ ion in the starting material, as N2 binding by Na[Re(η5-Cp)(BDI)] proved to be much less favorable when the Na+ was sequestered by benzo-12-crown-4. The analogous chemistry of Na[Re(η5-Cp)(BDI)] with carbon monoxide (CO) and 2,6-xylylisocyanide (XylNC) was also investigated, which provided structural and spectroscopic bases for determining the impact of ion pairing on π-acid activation in this system.
Collapse
Affiliation(s)
- Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Kawakami R, Kuriyama S, Tanaka H, Arashiba K, Konomi A, Nakajima K, Yoshizawa K, Nishibayashi Y. Catalytic reduction of dinitrogen to tris(trimethylsilyl)amine using rhodium complexes with a pyrrole-based PNP-type pincer ligand. Chem Commun (Camb) 2019; 55:14886-14889. [PMID: 31720597 DOI: 10.1039/c9cc06896a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium complexes bearing an anionic pyrrole-based PNP-type pincer ligand are synthesised and found to work as effective catalysts for the transformation of molecular dinitrogen into tris(trimethylsilyl)amine under mild reaction conditions. This is the first successful example of rhodium-catalysed dinitrogen reduction under mild reaction conditions.
Collapse
Affiliation(s)
- Ryosuke Kawakami
- Department of Systems Innovation, and School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Beagan DM, Huerfano IJ, Polezhaev AV, Caulton KG. Reductive Silylation Using a Bis-silylated Diaza-2,5-cyclohexadiene. Chemistry 2019; 25:8105-8111. [PMID: 30994211 DOI: 10.1002/chem.201900879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/06/2022]
Abstract
1,4-Bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene, 1, was tested as a reagent for the reductive silylation of various unsaturated functionalities, including N-heterocycles, quinones, and other redox-active moieties in addition to deoxygenation of main group oxides. Whereas most reactions tested are thermodynamically favorable, based on DFT calculations, a few do not occur, perhaps giving limited insight on the mechanism of this very attractive reductive process. Of note, reductive silylation reactions show a strong solvent dependence where a polar solvent facilitates conversions.
Collapse
Affiliation(s)
- Daniel M Beagan
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - I J Huerfano
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Kenneth G Caulton
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
44
|
|
45
|
Choi J, Lee Y. A Low‐Spin Three‐Coordinate Cobalt(I) Complex and Its Reactivity toward H
2
and Silane. Angew Chem Int Ed Engl 2019; 58:6938-6942. [DOI: 10.1002/anie.201901007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jonghoon Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yunho Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
46
|
Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem Rev 2019; 119:6509-6560. [DOI: 10.1021/acs.chemrev.9b00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Seihwan Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
47
|
Choi J, Lee Y. A Low‐Spin Three‐Coordinate Cobalt(I) Complex and Its Reactivity toward H
2
and Silane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonghoon Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yunho Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
48
|
Ghana P, van Krüchten FD, Spaniol TP, van Leusen J, Kögerler P, Okuda J. Conversion of dinitrogen to tris(trimethylsilyl)amine catalyzed by titanium triamido-amine complexes. Chem Commun (Camb) 2019; 55:3231-3234. [PMID: 30806394 DOI: 10.1039/c8cc09742a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using a triaryl-Tren ligated titanium dinitrogen complex, K2[{(Xy-N3N)Ti}2(μ2-N2)] (3), prepared by two-electron reduction of [TiCl(Xy-N3N)] (1-Cl) under N2 atmosphere, catalytic fixation of molecular nitrogen to form tris(trimethylsilyl)amine was achieved under ambient conditions with a turnover number (TON) of up to 16.5 per titanium atom.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Yin J, Li J, Wang GX, Yin ZB, Zhang WX, Xi Z. Dinitrogen Functionalization Affording Chromium Hydrazido Complex. J Am Chem Soc 2019; 141:4241-4247. [DOI: 10.1021/jacs.9b00822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jianhao Yin
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jiapeng Li
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Gao-Xiang Wang
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhu-Bao Yin
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular
Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
|