1
|
Wang Y, Wang Q, Shan X, Wu Y, Hou S, Zhang A, Hou Y. Characteristics of cold-adapted carbonic anhydrase and efficient carbon dioxide capture based on cell surface display technology. BIORESOURCE TECHNOLOGY 2024; 399:130539. [PMID: 38458264 DOI: 10.1016/j.biortech.2024.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Carbonic anhydrase (CA) is currently under investigation because of its potential to capture CO2. A novel N-domain of ice nucleoproteins (INPN)-mediated surface display technique was developed to produce CA with low-temperature capture CO2 based on the mining and characterization of Colwellia sp. CA (CsCA) with cold-adapted enzyme structural features and catalytic properties. CsCA and INPN were effectively integrated into the outer membrane of the cell as fusion proteins. Throughout the display process, the integrity of the membrane of engineered bacteria BL21/INPN-CsCA was maintained. Notably, the study affirmed positive applicability, wherein 94 % activity persisted after 5 d at 15 °C, and 73 % of the activity was regained after 5 cycles of CO2 capture. BL21/INPN-CsCA displayed a high CO2 capture capacity of 52 mg of CaCO3/mg of whole-cell biocatalysts during CO2 mineralization at 25 °C. Therefore, the CsCA functional cell surface display technology could contribute significantly to environmentally friendly CO2 capture.
Collapse
Affiliation(s)
- Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xuejing Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yuwei Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Shumiao Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
2
|
Kaur G, Taggar MS, Kalia A. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111627-111647. [PMID: 37280490 DOI: 10.1007/s11356-023-27919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Devising and consolidating cost-effective and greener technologies for sustainable energy production pertain to some of the most pressing needs of the present times. Bioconversion of abundantly available lignocellulosic materials into fermentable sugars to produce biofuels involves the cost-extensive requirement of hydrolytic enzymes called cellulases. Cellulases are highly selective and eco-friendly biocatalysts responsible for deconstruction of complex polysaccharides into simple sugars. Currently, immobilization of cellulases is being carried out on magnetic nanoparticles functionalized with suitable biopolymers such as chitosan. Chitosan, a biocompatible polymer, exhibits high surface area, chemical/thermal stability, functionality, and reusability. The chitosan-functionalized magnetic nanocomposites (Ch-MNCs) present a nanobiocatalytic system that enables easy retrieval, separation, and recycling of cellulases, thereby offering a cost-effective and sustainable approach for biomass hydrolysis. These functional nanostructures show enormous potential owing to certain physicochemical and structural features that have been discussed in a comprehensive manner in this review. It provides an insight into the synthesis, immobilization, and application of cellulase immobilized Ch-MNCs for biomass hydrolysis. This review aims to bridge the gap between sustainable utilization and economic viability of employing replenishable agro-residues for cellulosic ethanol production by incorporating the recently emerging nanocomposite immobilization approach.
Collapse
Affiliation(s)
- Gurkanwal Kaur
- Department of Biochemistry, College of Basic Sciences & Humanities, Punjab Agricultural University, Ludhiana-141004, Punjab, India.
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, College of Agricultural Engineering & Technology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| |
Collapse
|
3
|
Zhu X, Du C, Gao B, He B. Strategies to improve the mass transfer in the CO 2 capture process using immobilized carbonic anhydrase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117370. [PMID: 36716546 DOI: 10.1016/j.jenvman.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
High carbon dioxide (CO2) concentration in the atmosphere urgently requires eco-friendly mitigation strategies. Carbonic anhydrase (CA) is a high-quality enzyme protein, available from a wide range of sources, which has an extremely high catalytic efficiency for the hydration of CO2 compared with other catalytic CO2 conversion systems. While free CA is costly and weakly stable, CA immobilization can significantly improve its stability and allow enzyme recycling. However, gaseous CO2 is significantly different from traditional liquid substrates. Additionally, due to the presence of enzyme carriers, there is limited mass transfer between CO2 and the active center of immobilized CA. Most of the available reviews provide an overview of the improvement in catalytic activity and stability of CA by different immobilization methods and substrates. However, they do not address the limited mass transfer between CO2 and the active center of immobilized CA. Therefore, by focusing on the mass transfer process, this review presents CA immobilization strategies that are more efficient and of greater environmental tolerance by categorizing the methods of enhancing the mass transfer process at each stage of the enzymatic CO2 capture reaction. Such improvements in this green and environmentally friendly biological carbon capture process can increase its efficiency for industrial applications.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenxi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Bo Gao
- School of Chemical Engineering, Northwest University, Xi'an, 710021, China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
4
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
5
|
Zaidi S, Srivastava N, Kumar Khare S. Microbial carbonic anhydrase mediated carbon capture, sequestration & utilization: A sustainable approach to delivering bio-renewables. BIORESOURCE TECHNOLOGY 2022; 365:128174. [PMID: 36283672 DOI: 10.1016/j.biortech.2022.128174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In the recent scenario, anthropogenic interventions have alarmingly disrupted climatic conditions. The persistent change in the climate necessitates carbon neutrality. Efficient ways of carbon capture and sequestration could be employed for sustainable product generation. Carbonic anhydrase (CA) is an enzyme that reversibly catalyzes the conversion of carbon dioxide to bicarbonate ions, further utilized by cells for metabolic processes. Hence, utilizing CA from microbial sources for carbon sequestration and the corresponding delivery of bio-renewables could be the eco-friendly approach. Consequently, the microbial CA and amine-based carbon capture chemicals are synergistically applied to enhance carbon capture efficiency and eventual utilization. This review comprehends recent developments coupled with engineering techniques, especially in microbial CA, to create integrated systems for CO2 sequestration. It envisages developing sustainable approaches towards mitigating environmental CO2 from industries and fossil fuels to generate bio-renewables and other value-added chemicals.
Collapse
Affiliation(s)
- Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Yoon Y, Kim HS, Yoon S, Yeon KM, Kim J. Precipitation-based microscale enzyme reactors coupled with porous and adhesive elastomer for effective bacterial decontamination and membrane antifouling on-demand. ENVIRONMENTAL RESEARCH 2022; 212:113407. [PMID: 35523281 DOI: 10.1016/j.envres.2022.113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial contamination of water environments can cause various troubles in various areas. As one of potential solutions, we develop enzyme-immobilized elastomer, and demonstrate the uses of enzyme reactions on-demand for effective microbial decontamination and antifouling. Asymmetrically-structured elastomer is prepared by combining two polydimethylsiloxane (PDMS) layers with different degrees of crosslinking: highly-crosslinked and lightly-crosslinked PDMS layers. At the surface of highly-crosslinked PDMS layer, porous structure with average diameter of 842 nm is formed by dissolving pre-packed and entrapped latex beads. Lightly-crosslinked PDMS on the other side, due to its adhesive nature, enables iterative attachments on various materials under either dry or wet condition. Glucose oxidase (GOx) is immobilized by using the pores at the surface of highly-crosslinked PDMS matrix via a ship-in-a-bottle protocol of precipitation-based microscale enzyme reactor (p-MER), which consists of GOx adsorption, precipitation and chemical crosslinking (EAPC). As a result, crosslinked enzyme aggregates (CLEAs) of GOx not only are well entrapped within many pores of highly-crosslinked PDMS layer (ship-in-bottle) but also cover the external surface of matrix, both of which are well connected together. Highly-interconnected network of CLEAs themselves effectively prevents enzyme leaching, which shows the 25% residual activity of GOx under shaking at 200 rpm for 156 days after 48% initial drop of loosely-bound p-MER after 4 days. In presence of glucose, the underwater attachment of biocatalytic elastomer demonstrates the generation of hydrogen peroxide via p-MER-catalyzed glucose oxidation, exhibiting effective biocidal activities against both gram-positive S. aureus and gram-negative E. coli. Adhesion-induced GOx-catalyzed reaction also alleviates the biofouling of membrane, suggesting its extendibility to various engineering systems being suffered by biofouling. This study of biocatalytic elastomer has demonstrated its new opportunities for the facile and on-demand enzyme-catalyzed reactions in various environmental applications, such as bactericidal treatment, water treatment/purification, and pollutant degradation.
Collapse
Affiliation(s)
- YoungChul Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Han Sol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seji Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Min Yeon
- Engineering Center, Samsung C&T Corporation, Tower B, 26, Sangil-ro, 6- gil, Gangdong-gu, Seoul, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Rasouli H, Nguyen K, Iliuta MC. Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2022. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Deng Y, Ouyang J, Liu H, Wang J, Zhu Y, Chen Z, Yang C, Li D, Ma K. An effective immobilization of β-glucosidases by partly cross-linking enzyme aggregates. Prep Biochem Biotechnol 2022; 52:1035-1043. [PMID: 35015605 DOI: 10.1080/10826068.2021.2024848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the β-glucosidase extracted from Agrocybe aegirit. The immobilized β-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized β-glucosidase (β-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The β-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the β-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.
Collapse
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Hu Liu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ziqian Chen
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
11
|
Talekar S, Jo BH, Dordick JS, Kim J. Carbonic anhydrase for CO 2 capture, conversion and utilization. Curr Opin Biotechnol 2022; 74:230-240. [PMID: 34992045 DOI: 10.1016/j.copbio.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
Carbonic anhydrase (CA) enzymes, catalyzing the CO2 hydration at a high turnover number, can be employed in expediting CO2 capture, conversion and utilization to aid in carbon neutrality. Despite extensive research over the last decade, there remain challenges in CA-related technologies due to poor stability and suboptimal use of CAs. Herein, we discuss recent advances in CA stabilization by protein engineering and enzyme immobilization, and shed light on state-of-the-art of in vitro and in vivo CA-mediated CO2 conversion for improved production of value-added chemicals using CO2 as a feedstock.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy 12180, NY, USA.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Nanobiocatalysts: Advancements and applications in enzyme technology. BIORESOURCE TECHNOLOGY 2021; 337:125491. [PMID: 34320770 DOI: 10.1016/j.biortech.2021.125491] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature. This review covers a wide range of nanobiocatalysts including polymeric, metallic, silica and carbon nanocarriers as well as their recent developments in controlling enzyme activity. The enormous potential of nanobiocatalysts in bioprocessing in designing effective laboratory trials forapplications in various fields such as food, pharmaceuticals, biofuel, and bioremediation is also discussed extensively.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India.
| |
Collapse
|
13
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
14
|
Fu Y, Fan F, Zhang Y, Wang B, Cao Z. Conformational Change of H64 and Substrate Transportation: Insight Into a Full Picture of Enzymatic Hydration of CO 2 by Carbonic Anhydrase. Front Chem 2021; 9:706959. [PMID: 34307302 PMCID: PMC8299336 DOI: 10.3389/fchem.2021.706959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The enzymatic hydration of CO2 into HCO3 - by carbonic anhydrase (CA) is highly efficient and environment-friendly measure for CO2 sequestration. Here extensive MM MD and QM/MM MD simulations were used to explore the whole enzymatic process, and a full picture of the enzymatic hydration of CO2 by CA was achieved. Prior to CO2 hydration, the proton transfer from the water molecule (WT1) to H64 is the rate-limiting step with the free energy barrier of 10.4 kcal/mol, which leads to the ready state with the Zn-bound OH-. The nucleophilic attack of OH- on CO2 produces HCO3 - with the free energy barrier of 4.4 kcal/mol and the free energy release of about 8.0 kcal/mol. Q92 as the key residue manipulates both CO2 transportation to the active site and release of HCO3 -. The unprotonated H64 in CA prefers in an inward orientation, while the outward conformation is favorable energetically for its protonated counterpart. The conformational transition of H64 between inward and outward correlates with its protonation state, which is mediated by the proton transfer and the product release. The whole enzymatic cycle has the free energy span of 10.4 kcal/mol for the initial proton transfer step and the free energy change of -6.5 kcal/mol. The mechanistic details provide a comprehensive understanding of the entire reversible conversion of CO2 into bicarbonate and roles of key residues in chemical and nonchemical steps for the enzymatic hydration of CO2.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Feng Y, Hu H, Wang Z, Du Y, Zhong L, Zhang C, Jiang Y, Jia S, Cui J. Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization. J Colloid Interface Sci 2021; 590:436-445. [PMID: 33561593 DOI: 10.1016/j.jcis.2021.01.078] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022]
Abstract
Metal-organic frameworks (MOFs) have been emerged as a promising support for immobilizing enzymes owing to the tunable porosity, high surface area, and structural diversity. However, most of these possess nanometer size and small pores, which are difficult to recover them from the reaction medium and present low immobilization efficiency and protein loading capacity, and high substrate diffusion limitations. Herein, a novel magnetic amino-functionalized zeolitic imidazolate framework-8 (ZIF-8) with 3D highly ordered macroporous structure was synthesized using the assembled polystyrene (PS) nanosphere monoliths as a template. Subsequently, catalase (CAT) molecules were immobilized on the surface of macroporous magnetic ZIF-8 and inside the macropores by precipitation, covalent binding and cross-linking. The resultant immobilized CAT showed high immobilization efficiency (58%) and protein loading capacity (29%), leading to 500% higher activity than the immobilized CAT on ZIF-8 (CAT/ZIF-8). Meanwhile, the immobilized CAT could be easily recovered with a magnet without obvious activity loss. The traditional CAT/ZIF-8 lost its activity after 6 cycles, whereas, the immobilized CAT retained 90% activity of its initial activity after reusing for 8 cycles, indicating excellent reusability. In conclusion, this study provides a facile and efficient approach to immobilize enzymes on/in MOFs with enhanced activity and excellent recyclability.
Collapse
Affiliation(s)
- Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenxi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No 9, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wu Z, Nan Y, Zhao Y, Wang X, Huang S, Shi J. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Wen H, Zhang L, Du Y, Wang Z, Jiang Y, Bian H, Cui J, Jia S. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, Cao Y. 3D hollow-out TiO 2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B 2020; 8:2363-2370. [PMID: 32104865 DOI: 10.1039/d0tb00082e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-high sensitivity is difficult to achieve using conventional enzymatic glucose biosensors due to the lack of exposed active sites and steric-hinderance effects. Thus, in the present study, we report a photoelectrochemical (PEC) enzymatic glucose biosensor based on 3-dimensional (3D) hollow-out titanium dioxide (TiO2) nanowire cluster (NWc)/glucose oxidase (GOx), providing more number of exposed active sites, thus constructing a sensor with a higher affinity toward glucose reaction. Excellent performance with an ultra-high sensitivity of 58.9 μA mM-1 cm-2 and 0-2 mM linear range with a determination limit of 8.7 μM was obtained for the detection of glucose. This study might provide a new approach to expose active sites efficiently for remarkable photoelectrochemical performances.
Collapse
Affiliation(s)
- Wenke Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Shin S, Kim HS, Kim MI, Lee J, Park HG, Kim J. Crowding and confinement effects on enzyme stability in mesoporous silicas. Int J Biol Macromol 2020; 144:118-126. [DOI: 10.1016/j.ijbiomac.2019.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
|
23
|
Jun SH, Yang J, Jeon H, Kim HS, Pack SP, Jin E, Kim J. Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO 2 Conversion and Utilization in Expedited Microalgal Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1223-1231. [PMID: 31899628 DOI: 10.1021/acs.est.9b05284] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbonic anhydrases convert CO2 to bicarbonate at a high turnover rate up to 106 s-1, but their actual applications in CO2 conversion processes are hampered by their poor stability. This study reports highly loaded and stabilized bovine carbonic anhydrase (bCA) upon being immobilized onto electrospun polymer nanofibers in the form of enzyme precipitate coating (EPC). The EPC protocol, consisting of enzyme covalent attachment, precipitation, and cross-linking, maintained 65.3% of initial activity even after being incubated in aqueous solution at room temperature under shaking at 200 rpm for 868 days. EPC also showed strong resistance to the treatment of the metal chelation agent, ethylenediaminetetraacetic acid, and molecular dynamic simulation was carried out to elucidate the prevention of metal leaching from the active site of bCA upon being cross-linked in the form of EPC. Highly stable EPC with high bCA loading was employed for the conversion of bubbling CO2 to bicarbonate, and the bicarbonate solution was utilized as a carbon source for expedited microalgae growth in a separate bioreactor. The addition of EPC in the bubbling CO2 reactor resulted in 134 and 231% accelerated microalgae growths compared to the controls with and without 25 mM sodium bicarbonate, respectively. EPC with high enzyme loading and unprecedentedly successful stabilization of enzyme stability has a great potential to be used for the development of various enzyme-mediated CO2 conversion and utilization technologies.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Jusang Yang
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Hancheol Jeon
- Department of Genetic Resources Research , National Marine Biodiversity Institute of Korea , Seocheon 33662 , Republic of Korea
| | - Han Sol Kim
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics , Korea University , Sejong 30019 , Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|