1
|
Dutt S, Duhan N, Kale V, Banerjee P. Electrochemical Ring Opening and [3 + 2] Cycloaddition of Aziridines: Access to 1,2-Bifunctionalized Products and Imidazolines. Org Lett 2025; 27:989-994. [PMID: 39834024 DOI: 10.1021/acs.orglett.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give N-heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products. Late-stage derivatization of aziridine with natural and medicinally active compounds has also been done. Remarkably, our strategy was found to be a greener, sustainable, and atom-economical approach (E-factor = ca. 0.8). Azetidine was also found to be compatible with our protocol and generated six-membered N-heterocycles. The detailed mechanistic study highlighted that the reaction is driven via the generation of an aziridine radical cation followed by the SN2 nucleophilic attack.
Collapse
Affiliation(s)
- Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Neelam Duhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Vikas Kale
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Adam Elzubier Adam H, Zhou S, Zeng Q. Advances in cross-coupling and oxidative coupling reactions of NH-sulfoximines - a review. Chem Commun (Camb) 2025; 61:1934-1943. [PMID: 39757832 DOI: 10.1039/d4cc05308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Due to the special structure and physicochemical properties of sulfoximines, research on sulfoximines has achieved great progress in recent decades, especially in chemical and medicinal fields. This review highlights recent advancements in the N-functionalization of NH-sulfoximines, focusing on classical cross-coupling reactions with electrophilic agents and oxidative coupling reactions with extensive organic compounds, including specific (hetero)arenes, alkenes (1,4-naphthoquinones), alkanes (cyclohexanes), nucleophiles (thiols, disulfides, sulfinates, diarylphosphine oxides), organyl boronic acids, and arylhydrazines. Transition metal-catalyzed, metal-free, electrochemical and radical oxidative coupling reactions are discussed. This review also reports and discusses the mechanistic pathways of some typical reactions.
Collapse
Affiliation(s)
- Hala Adam Elzubier Adam
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Sihan Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
3
|
He S, Xu B. Electrosynthesis of Fluoroalkenes from Alpha-CF 3 and Alpha-CF 2H Benzyl Halides. Chemistry 2025:e202404449. [PMID: 39840518 DOI: 10.1002/chem.202404449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/23/2025]
Abstract
We have developed an efficient synthesis of fluoroalkenes via tandem electrochemical dehalogenation-elimination protocol. The key step is the generation of carbon anion by electrochemical reductive dehalogenation of alkyl halides. Various gem-difluoroalkenes and monofluoroalkenes were prepared in moderate to good yields from α-difluoromethylated/α-trifluoromethylated benzyl halides.
Collapse
Affiliation(s)
- Shiyu He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
5
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
6
|
Hu J, Pradhan S, Waiba S, Das S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem Sci 2025; 16:1041-1070. [PMID: 39691465 PMCID: PMC11647916 DOI: 10.1039/d4sc07491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
The direct functionalization of C-H bonds has revolutionized the field of synthetic organic chemistry by enabling efficient and atom-economical modification of arenes by avoiding prefunctionalization. However, the inherent challenges of inertness and regioselectivity in different C-H bonds, particularly for distal positions, necessitate innovative approaches. In this aspect, photoredox catalysis by utilizing both transition metal and organic photocatalysts has emerged as a powerful tool for addressing these challenges under mild reaction conditions. This review provides a comprehensive overview of recent progress in regioselective C-H functionalization in arenes via photocatalysis. Emphasizing the strategies for achieving ortho-, meta-, and para-selectivity, we explore the mechanistic insights, catalyst designs, and the novel methodologies that have expanded the scope of C-H bond functionalization. This discussion aims to offer valuable perspectives for advancing the field and developing more efficient and sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Jun Hu
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Suman Pradhan
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Satyadeep Waiba
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
7
|
Chomphunuch T, La-Ongthong K, Katrun P, Sawektreeratana N, Keawkla N, Soorukram D, Leowanawat P, Reutrakul V, Surawatanawong P, Bunchuay T, Kuhakarn C. Electrochemically Driven Site-Selective N-Hydroxymethylation of Indoles and Derivatives. Chem Asian J 2025:e202401489. [PMID: 39746853 DOI: 10.1002/asia.202401489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Described herein is a facile electrochemical strategy for the generation of formaldehyde from N,N-dimethylacetamide (DMA) and water (H2O) toward a direct and site-selective N-hydroxymethylation of indoles and derivatives. Mechanistic studies suggested that N-(hydroxymethyl)-N-methylacetamide generated in situ from DMA/H2O under electrochemical conditions serves as a formaldehyde surrogate. The developed methodology features mild, base- and metal catalyst-free conditions. The reaction can accommodate a broad range of substrate scopes and offers an alternative route to access a series of N-hydroxymethylated indole, bis-indole, carbazole, and indazole derivatives. A gram-scale synthesis was demonstrated to show the scaled-up applicability of this transformation.
Collapse
Affiliation(s)
- Thanathip Chomphunuch
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Praewpan Katrun
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Natchayatorn Keawkla
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Sun YH, Xi JM, Wei ZL, Liao WW. Electrochemical Sulfonylation of Indoles with Inorganic Sulfites and Alcohols: Direct Synthesis of Indole Sulfonic Esters. J Org Chem 2024; 89:18665-18670. [PMID: 39636073 DOI: 10.1021/acs.joc.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A direct electrochemical sulfonylation between indoles, inorganic sulfites, and alcohols was developed, in which various indoyl sulfonate esters were prepared efficiently. In this transformation, the easy-handle and cost-effective inorganic sulfite was disclosed to engage in a Csp2-H sulfonylation as the SO2 source in an undivided electrolysis cell under mild conditions. In addition, the unexpected paired electrosynthesis has been achieved, owing to the dual role of inorganic sulfites, and led to a sulfonylation/reduction sequence to rapidly deliver hydroxyl substituted indole sulfonate esters.
Collapse
Affiliation(s)
- Yun-Hai Sun
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | | | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
9
|
Paveliev S, Segida OO, Dvoretskiy A, Terent’ev AO. Electrochemically Induced Synthesis of N-Allyloxyphthalimides via Cross-Dehydrogenative C-O Coupling of N-Hydroxyphthalimide with Alkenes Bearing the Allylic Hydrogen Atom. ACS OMEGA 2024; 9:49825-49831. [PMID: 39713684 PMCID: PMC11656238 DOI: 10.1021/acsomega.4c08532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The electrochemically induced reaction between alkenes, bearing an allylic hydrogen atom, and N-hydroxyphthalimide was investigated. Cross-dehydrogenative C-O coupling with phthalimide-N-oxyl radical, derived from N-hydroxyphthalimide, occurs instead of oxidation of the allylic site, with the formation of a carbonyl group or functionalization of the double C=C bond. The discovered transformation proceeds in an undivided electrochemical cell equipped with a carbon felt anode and a platinum cathode. Coupling products were obtained with yields up to 79%. The developed process is based on the abstraction of hydrogen atom from the allylic position for functionalization while the C=C bond remains unreacted. The method exploits the ability of the phthalimide-N-oxyl radical to abstract hydrogen atoms with the following interception of the intermediate C-centered radical.
Collapse
Affiliation(s)
- Stanislav
A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Andrey Dvoretskiy
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| |
Collapse
|
10
|
Shaheeda S, Sharma S, Mandal N, Shyamal P, Datta A, Paul A, Bisai A. Regioselective Electrochemical Construction of C sp2-C sp2 Linkage at C5-C5' Position of 2-Oxindoles via an Intermolecular Anodic Dehydrogenative Coupling. Chemistry 2024; 30:e202403420. [PMID: 39308393 DOI: 10.1002/chem.202403420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024]
Abstract
Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70 % through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.
Collapse
Affiliation(s)
- Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| |
Collapse
|
11
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
12
|
Pan J, Qu H, Li Y, Bu X, Deng H, Gong H, Ma M, Xu L, Xue F. Switchable Divergent Electrochemical Hydrodehalogenation of gem-Dihalocyclopropanes. J Org Chem 2024; 89:16929-16935. [PMID: 39472296 DOI: 10.1021/acs.joc.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A comprehensive and effective electrochemical methodology is introduced for the diverse hydrodechlorination of gem-dichlorocyclopropanes and the ring cleavage hydrodefluorination of gem-difluorocyclopropanes under uniform electrochemical conditions. Moreover, the water content allows for the adjustable monohydrodechlorination or dihydrodechlorination of gem-dichlorocyclopropanes with exceptional chemoselectivity. Additionally, the mildness and practicality of this protocol facilitate its application to the late-stage functionalization of bioactive molecules. Mechanistic analyses suggest that the proton source may originate from acetonitrile.
Collapse
Affiliation(s)
- Jiayu Pan
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haoqi Qu
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuanmeng Li
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - XiaoLi Bu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - HongPing Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hao Gong
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mengtao Ma
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Li Xu
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
13
|
Zhou H, Miyasaka M, Wang YH, Kochi T, Kakiuchi F. Palladium-Catalyzed Electrochemical Iodination of 1-Arylpyridine N-Oxides. J Org Chem 2024; 89:16300-16306. [PMID: 38412366 DOI: 10.1021/acs.joc.3c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The palladium-catalyzed C-H iodination of 1-arylpyridine N-oxides proceeded under electrochemical oxidation conditions using I2 as an iodine source. The reaction of isoquinoline N-oxides possessing various para- or meta-substituted aryl groups at the 1-position proceeded to give the corresponding iodination products. Electron-donating groups on the aryl group facilitated the reaction to give relatively high yields of the product. The reaction was also found to be applicable to 2-aryl-3-picoline N-oxides.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masahiro Miyasaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu-Han Wang
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Zhou ZL, Zhang Y, Cui PZ, Li JH. Photo-/Electrocatalytic Difunctionalization of Alkenes Enabled by C-H Radical Functionalization. Chemistry 2024; 30:e202402458. [PMID: 39126402 DOI: 10.1002/chem.202402458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/12/2024]
Abstract
The difunctionalization of alkenes represents a powerful tool to incorporate two functional groups into the alkene bones for increasing molecular complexity and has been widely utilizations in chemical synthesis. Upon the catalysis of the green, sustainable, mild photo-/electrochemistry technologies, much attentions have been attracted to the development of new tactics for the transformations of the important alkene and alkane feedstocks driven by C-H radical functionalization. Herein, we summarize recent advances in the photo-/electrocatalytic difunctionalization of alkenes enabled by C-H radical functionalization. We detailedly discuss the substrate scope and the mechanisms of the photo-/electrocatalytic alkene difunctionalization reactions by selecting impressive synthetic examples, which are divided into four sections based on the final terminated step, including oxidative radical-polar crossover coupling, reductive radical-polar crossover coupling, radical-radical coupling, and transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Zi-Long Zhou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pei-Zhe Cui
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
15
|
Cheng YY, Xu J, Lin Z, Li Y, Ackermann L. Photoelectrocatalytic [4+2] Annulation for S-Heterocycle Assembly Enabled by Proton-Coupled Electron Transfer (PCET). Chemistry 2024; 30:e202402333. [PMID: 39096120 DOI: 10.1002/chem.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/04/2024]
Abstract
Cross-dehydrogenative couplings (CDC) present an efficient strategy for the assembly of biorelevant heterocycles, but are thus far largely limited to toxic transition metals and rather harsh reaction conditions. In sharp contrast, we, herein report on a mild photoelectrocatalyzed CDC-[4+2] annulation enabling the synthesis of functionalized isothiochromenes enabled by a proton-coupled electron transfer (PCET) strategy. The transformative photoelectrocatalysis obviated toxic transition-metal, high reaction temperatures, and stoichiometric chemical redox reagents. This approach was characterized by exceedingly mild conditions, ample substrate scope, and a commercially available catalyst. Gram-scale reactions and a telescoped synthesis route reflected the unique potential in the green synthesis of important S-heterocycles.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Jiawei Xu
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Yanjun Li
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| |
Collapse
|
16
|
Shinde SD, Narang G, Mahajan GM, Kumar D. Sustainable C-H Methylation Employing Dimethyl Carbonate. J Org Chem 2024; 89:14679-14694. [PMID: 39365179 DOI: 10.1021/acs.joc.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The use of CO2 and CO2-derived chemicals offers society sustainable and biocompatible chemistry for a variety of applications, ranging from materials to medicines. In this context, dimethyl carbonate (DMC) stands out owing to its low toxicity, high biodegradability, tunable reactivity, and sustainable production. Further, the ability of DMC to act as an ambient electrophile at varied temperatures and reaction conditions in order to produce methoxycarbonylated (via BAC2) and methylated products (via BAL2) is very promising. While the methylation of hetero-H (N-, O-, and S-methylation) with DMC is established and well-reviewed, the C-H methylation reaction with DMC is limited, and there is no specific literature detailing the C-methylation reaction using DMC, creating new opportunities as well as challenges in the same domain. In this context, the present perspective focuses on the new breakthroughs, recent advances, and trends in C-H methylation reactions employing DMC. A critical analysis of the mechanistic course of reactions under each category was undertaken. We believe this timely perspective will offer an in-depth analysis of existing literature with critical remarks, which will certainly inspire fellow researchers across disciplines to understand and pursue cutting-edge research in the area of C-H methylation (alkylation) using DMC and related organic carbonates.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Garvita Narang
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Gargee Mahendra Mahajan
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Dinesh Kumar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| |
Collapse
|
17
|
Shi Y, Li G, Wang R, Zhao XJ, He Y. Copper and electrocatalytic synergy for the construction of fused quinazolinones with 2-aminobenzaldehydes and cyclic amines. RSC Adv 2024; 14:32195-32199. [PMID: 39399257 PMCID: PMC11467720 DOI: 10.1039/d4ra06539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A new copper and electrocatalytic synergy strategy for efficiently constructing fused quinazolinones has been developed. In the presence of cupric acetate and oxygen, aryl ketones and 1,2,3,4-tetrahydroisoquinoline can smoothly participate in this transformation, thus providing a variety of substituted quinazolones in an undivided cell. The reaction shows good functional group tolerance and provides universal quinazolinones at a good yield under mild conditions.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650000 P. R. China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
18
|
Naulin E, Brion A, Biatuma D, Roulland E, Genta-Jouve G, Neuville L, Masson G. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem Commun (Camb) 2024; 60:11560-11563. [PMID: 39314193 DOI: 10.1039/d4cc02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study develops a biogenetic synthesis strategy using electrooxidation and heterodimerization of N-substituted pyrrolidine-1-carboxamides to create diverse analogues of the fissoldhimine alkaloid core. Under acidic conditions, 2-alkoxypyrrolidine-1-carboxamides from Shono oxidation formed endo-heterodimers with high yields and diastereoselectivity. Enantioselective heterodimerization using chiral phosphoric acid catalysis produced exo-heterodimers with high enantioselectivity.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Aurélien Brion
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Didine Biatuma
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Emmanuel Roulland
- UMR 8038, CitCom, CNRS-Université Paris Cité, Faculté de Pharmacie 4, avenue de l'Observatoire, 75006 Paris, France
| | - Grégory Genta-Jouve
- UAR3456 CNRS LEEISA, Centre de Recherche de Montabo, IRD, 275 Route de Montabo, CEDEX BP 70620, 97334 Cayenne, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| |
Collapse
|
19
|
Wang Y, Zeng Y, Xiao Y, Wang J, Li S. Rh(III)- or Ru(II)-Catalyzed C-H Annulation with Vinylene Carbonate and an Unexpected Aerobic Oxidation/Deprotection Cascade to Yield Cinnolin-4(1 H)-ones. J Org Chem 2024; 89:14233-14241. [PMID: 39300744 DOI: 10.1021/acs.joc.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Transition metal-catalyzed C-H annulation reactions have been extensively utilized for the synthesis of cinnolines, especially the N-protected ones; however, none of them can yield cinnolin-4(1H)-ones, a significant class of bioactive skeletons. Herein, we disclose one-pot access to cinnolin-4(1H)-ones through Rh(III)- or Ru(II)-catalyzed C-H activation/annulation of N-aryl cyclic hydrazides with vinylene carbonate, followed by an O2/K2CO3-promoted aerobic oxidation/deprotection cascade. The π-conjugation of the directing groups plays a crucial role in facilitating this transformation. Notably, seven-membered enolic Rh species IMC is characterized via electrospray ionization mass spectroscopy for the first time, which, along with systematic control experiments, provides compelling evidence for the mechanistic pathway encompassing alkenyl insertion, β-oxygen elimination, protonation, and dehydration.
Collapse
Affiliation(s)
- Yuqin Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yiling Zeng
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yi Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinhua Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
20
|
Ogawa D, Sasaki A, Kochi T, Kakiuchi F. Palladium-catalyzed electrochemical C(sp 3)-H acetoxylation of alcohol derivatives with an exo-directing group. Org Biomol Chem 2024; 22:7696-7701. [PMID: 39224936 DOI: 10.1039/d4ob01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed electrochemical C(sp3)-H acetoxylation to prepare 1,2-diol derivatives was achieved using oxime ethers as exo-directing groups. Various substrates containing alkoxy groups with a methyl branch at the α-position as well as norbornan-2-ol derivative were acetoxylated only using a catalytic amount of Pd(OAc)2 along with NaOAc/Ac2O/AcOH under anodic oxidation conditions.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Ayumu Sasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
21
|
Singh P, König B, Shaikh AC. Electro-photochemical Functionalization of C(sp 3)-H bonds: Synthesis toward Sustainability. JACS AU 2024; 4:3340-3357. [PMID: 39328771 PMCID: PMC11423327 DOI: 10.1021/jacsau.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Over the past several decades, there has been a surge of interest in harnessing the functionalization of C(sp3)-H bonds due to their promising applications across various domains. Yet, traditional methodologies have heavily leaned on stoichiometric quantities of costly and often environmentally harmful metal oxidants, posing sustainability challenges for C-H activation chemistry at large. In stark contrast, the emergence of electro-photocatalytic-driven C(sp3)-H bond activation presents a transformative alternative. This approach offers a viable route for forging carbon-carbon and carbon-heteroatom bonds. It stands out by directly engaging inert C(sp3)-H bonds, prevalent in organic compounds, without the necessity for prefunctionalization or harsh reaction conditions. Such methodology simplifies the synthesis of intricate organic compounds and facilitates the creation of novel chemical architectures with remarkable efficiency and precision. This review aims to shed light on the notable strides achieved in recent years in the realm of C(sp3)-H bond functionalization through organic electro-photochemistry.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
22
|
Jat PK, Badsara SS. Rapid Access to Triarylmethanes (TRAMs) Enabled by Direct Electrolysis of Indolizines with Carbonyls. J Org Chem 2024; 89:12263-12276. [PMID: 39147725 DOI: 10.1021/acs.joc.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A fast, scalable, transition metal-free, electrochemical sp2 geminal functionalization of carbonyls enabled by anodic oxidation of non-prefunctionalized chromone-fused indolizines to access the triarylmethanes (TRAMs) is disclosed for the first time. This momentary electrochemical approach features the use of readily available carbonyls, implantation of the C(sp3) center (well-known for dramatically improving biological active potency), a broad substrate scope, and excellent yields of TRAMs with fluorescence properties.
Collapse
Affiliation(s)
- Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| |
Collapse
|
23
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Kawasaki T, Tosaki T, Miki S, Takada T, Murakami M, Ishida N. Dehydrogenative Coupling of Alkylamines with Primary Alcohols Forming α-Amino Ketones. J Am Chem Soc 2024; 146:17566-17572. [PMID: 38885646 DOI: 10.1021/jacs.4c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Acceptorless dehydrogenative coupling reactions between C-H bonds offer straightforward and atom-economical methods connecting readily available materials while liberating gaseous hydrogen as the sole byproduct. Despite the growing interest in such transformations, their realization still poses a significant challenge. Here we report a photoinduced dehydrogenative coupling reaction of alkylamines with primary alcohols. C-H bonds adjacent to nitrogen and oxygen are site-selectively cleaved, and a C-C bond is created between the carbon atoms in a cross-selective manner to produce α-amino ketones. Diverse polar functionalities such as esters, amides, and carboxylic acids survived, demonstrating the broad applicability of the present method.
Collapse
Affiliation(s)
- Tairin Kawasaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tomohiro Tosaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shousuke Miki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tsuyoshi Takada
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Alzaidi O, Wirth T. Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines. ACS ORGANIC & INORGANIC AU 2024; 4:350-355. [PMID: 38855333 PMCID: PMC11157512 DOI: 10.1021/acsorginorgau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/11/2024]
Abstract
The synthesis of selenofunctionalized oxazolines and isoxazolines from N-allyl benzamides and unsaturated oximes with diselenides was studied by utilizing a continuous flow electrochemical approach. At mild reaction conditions and short reaction times of 10 min product yields of up to 90% were achieved including a scale-up reaction. A broad substrate scope was studied and the reaction was shown to have a wide functional group tolerance.
Collapse
Affiliation(s)
- Ohud Alzaidi
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
- Department
of Chemistry, College of Science –
Al Khurma, Taif University, P.O. Box
11099, Taif 21944, Saudi Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
| |
Collapse
|
26
|
Zhang N, Cheng Z, Xia Y, Chen Z, Xue F, Zhang Y, Wang B, Wu S, Liu C. Electrochemical Oxidative 1,2-Dithiocyanation: Access to Functionalized Alkenes and Alkynes. J Org Chem 2024. [PMID: 38757807 DOI: 10.1021/acs.joc.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.
Collapse
Affiliation(s)
- Ning Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
27
|
Zhao Z, Zhang R, Liu Y, Zhu Z, Wang Q, Qiu Y. Electrochemical C-H deuteration of pyridine derivatives with D 2O. Nat Commun 2024; 15:3832. [PMID: 38714720 PMCID: PMC11076510 DOI: 10.1038/s41467-024-48262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Herein, we develop a straightforward, metal-free, and acid-/base-free electrochemical C4-selective C - H deuteration of pyridine derivatives with economic and convenient D2O at room temperature. This strategy features an efficient and environmentally friendly approach with high chemo- and regioselectivity, affording a wide range of D-compounds, such as pyridines, quinolones, N-ligands and biorelevant compounds. Notably, the mechanistic experiments and cyclic voltammetry (CV) studies demonstrate that N-butyl-2-phenylpyridinium iodide is a crucial intermediate during the electrochemical transformation, which provides a general and efficient way for deuteration of pyridine derivatives.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Ranran Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Qiuyan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
28
|
Ucheniya K, Jat PK, Chouhan A, Yadav L, Badsara SS. Electrochemical selective divergent C-H chalcogenocyanation of N-heterocyclic scaffolds. Org Biomol Chem 2024; 22:3220-3224. [PMID: 38577798 DOI: 10.1039/d4ob00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An electrochemical direct selective C-H chalcogenocyanation approach for indolizine derivatives under mild conditions has been described. Cyclic enone-fused, chromone-fused and 2-substituted indolizines possessing EDGs (electron donating groups) and EWGs (electron withdrawing groups) were successfully reacted with NH4SCN and KSeCN under electrochemical conditions to provide a wide array of mono and bis-chalcogenocyanate-indolizines in 75-94% yields. In addition, 1-substituted imidazo[1,5-a]quinolines were also successfully chalcogenocyanated under the optimized reaction conditions providing a platform for the synthesis of pharmaceutically privileged molecules. By switching the reaction conditions, the developed protocol offers selective synthesis of C-3 thiocyanate and 1,3 bis-thiocyanate indolizines in good to excellent yields under catalyst-free conditions. On the basis of control experiments and cyclic voltammetry data, a plausible reaction pathway is also presented.
Collapse
Affiliation(s)
- Kusum Ucheniya
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Amreen Chouhan
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Lalit Yadav
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
29
|
Shlapakov NS, Kobelev AD, Burykina JV, Cheng YZ, You SL, Ananikov VP. Sulfur in Waste-Free Sustainable Synthesis: Advancing Carbon-Carbon Coupling Techniques. Angew Chem Int Ed Engl 2024; 63:e202402109. [PMID: 38421344 DOI: 10.1002/anie.202402109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| |
Collapse
|
30
|
Kumar R, Dutt S, Banerjee P. Electrochemical oxidative C-C bond cleavage of methylenecyclopropanes with alcohols. Chem Commun (Camb) 2024; 60:4246-4249. [PMID: 38530248 DOI: 10.1039/d4cc00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Herein, an electrochemical approach toward the ring opening functionalization of methylenecyclopropanes (MCPs) via C-C bond cleavage in the presence of alcohols is reported. The methodology avoids the usage of external oxidants and shows good functional group tolerance. The mechanistic studies suggest that the reaction proceeds via direct single electron oxidation of the C-C bond of MCPs followed by ring opening to form the desired product.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| | - Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| |
Collapse
|
31
|
Zeng L, Ren HZ, Lv GF, Ouyang XH, He DL, Li JH. Electroreductive Remote Benzylic C(sp 3)-H Arylation of Aliphatic Ethers Using Cyanoarenes for the Synthesis of α-(Hetero)aryl Ethers. Org Lett 2024. [PMID: 38502576 DOI: 10.1021/acs.orglett.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
An iodoarene-driven electroreductive remote C(sp3)-H arylation of unsymmetrical 1-(o-iodoaryl)alkyl ethers with cyanoarenes for the site selective synthesis of α-(hetero)aryl ethers is developed. With the introduction of cyanoarenes as both aryl sources and electron transfer mediators, this method includes an iodoarene-driven strategy to enable the regiocontrollable formation of two new bonds, one C(sp2)-H bond, and one C(sp2)-C(sp3) bond, in a single reaction step through the sequence of halogen atom transfer (XAT), hydrogen atom transfer (HAT), radical-radical coupling, and decyanation.
Collapse
Affiliation(s)
- Liang Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Hua-Zhan Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Bozzi ÍAO, Machado LA, Diogo EBT, Delolo FG, Barros LOF, Graça GAP, Araujo MH, Martins FT, Pedrosa LF, da Luz LC, Moraes ES, Rodembusch FS, Guimarães JSF, Oliveira AG, Röttger SH, Werz DB, Souza CP, Fantuzzi F, Han J, Marder TB, Braunschweig H, da Silva Júnior EN. Electrochemical Diselenation of BODIPY Fluorophores for Bioimaging Applications and Sensitization of 1 O 2. Chemistry 2024; 30:e202303883. [PMID: 38085637 DOI: 10.1002/chem.202303883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report a rapid, efficient, and scope-extensive approach for the late-stage electrochemical diselenation of BODIPYs. Photophysical analyses reveal red-shifted absorption - corroborated by TD-DFT and DLPNO-STEOM-CCSD computations - and color-tunable emission with large Stokes shifts in the selenium-containing derivatives compared to their precursors. In addition, due to the presence of the heavy Se atoms, competitive ISC generates triplet states which sensitize 1 O2 and display phosphorescence in PMMA films at RT and in a frozen glass matrix at 77 K. Importantly, the selenium-containing BODIPYs demonstrate the ability to selectively stain lipid droplets, exhibiting distinct fluorescence in both green and red channels. This work highlights the potential of electrochemistry as an efficient method for synthesizing unique emission-tunable fluorophores with broad-ranging applications in bioimaging and related fields.
Collapse
Affiliation(s)
- Ícaro A O Bozzi
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana A Machado
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fábio G Delolo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiza O F Barros
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil
| | - Leandro F Pedrosa
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Fluminense, Volta Redonda, RJ, 27213-145, Brazil
| | - Lilian C da Luz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - Emmanuel S Moraes
- Universidade Estadual de Campinas (Unicamp), Cidade Universitária, 13083970 -, Campinas, SP, Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - João S F Guimarães
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Jianhua Han
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
33
|
Zhang H, Ye Z, Wu Y, Zhang X, Ma W, Zhan ZJ, Zhang F. Electrochemical Reductive Cross-Coupling of Vinyl Bromides for the Synthesis of 1,3-Dienes. Org Lett 2024; 26:994-999. [PMID: 38289335 DOI: 10.1021/acs.orglett.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An electroreductive cross-electrophile coupling protocol was developed for the construction of valuable 1,3-dienes from vinyl bromides. Furthermore, this scalable method can also be used to forge complex [4 + 2] cycloadducts in a one-pot manner. One of the most important advantages of this green and sustainable protocol is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra harmful metal catalysts and reductant.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| |
Collapse
|
34
|
Li P, Tian Y, Tian L, Wang Y. Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Org Biomol Chem 2024; 22:725-730. [PMID: 38169000 DOI: 10.1039/d3ob01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.
Collapse
Affiliation(s)
- Pan Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
35
|
Sun F, Miao M, Li W, Lan XB, Yu JQ, Zhang J, An Z. Electrochemical oxidative dehydrogenative annulation of 1-(2-aminophenyl)pyrroles with cleavage of ethers to synthesize pyrrolo[1,2- a]quinoxaline derivatives. Org Biomol Chem 2024; 22:472-476. [PMID: 38099809 DOI: 10.1039/d3ob01867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
An array of pyrrolo[1,2-a]quinoxaline derivatives were achieved with moderate to good yields via the electrochemical redox reaction, which includes the functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds. In this atom economic reaction, THF was used as both a reactant and a solvent, and H2 was the sole by-product.
Collapse
Affiliation(s)
- Fengkai Sun
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Wenxue Li
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu An
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
36
|
Hsu JH, Ball TE, Oh S, Stache EE, Fors BP. Selective Electrocatalytic Degradation of Ether-Containing Polymers. Angew Chem Int Ed Engl 2024; 63:e202316578. [PMID: 38032347 DOI: 10.1002/anie.202316578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron-rich C-H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether-based polyurethane in a green solvent. This work demonstrates a facile, electrochemically-driven route to degrade polymers containing ether functionalities.
Collapse
Affiliation(s)
- Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Tyler E Ball
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
37
|
Lin Z, Oliveira JC, Scheremetjew A, Ackermann L. Palladium-Catalyzed Electrooxidative Double C-H Arylation. J Am Chem Soc 2024; 146:228-239. [PMID: 38150013 PMCID: PMC10785825 DOI: 10.1021/jacs.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
The electrochemical transition metal-catalyzed cross-dehydrogenative reaction has emerged as a promising platform to achieve a sustainable and atom-economic organic synthesis that avoids hazardous oxidants and minimizes undesired byproducts and circuitous functional group operations. However, a poor mechanistic understanding still prevents the widespread adoption of this strategy. In this regard, we herein present an electrochemical palladium-catalyzed oxidative coupling strategy to access biaryls in the absence of a stoichiometric chemical oxidant. The robust palladaelectrocatalysis considerably suppresses the occurrence of homocoupling and oxygenation, being compatible even with electron-deficient arenes. Late-stage functionalization and Boscalid precursor synthesis further highlighted the practical importance of our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II) seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.
Collapse
Affiliation(s)
- Zhipeng Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Zhang S, Wei J, Ye X, Perez A, Shi X. Accessing gold p-acid reactivity under electrochemical anode oxidation (EAO) through oxidation relay. Nat Commun 2023; 14:8265. [PMID: 38092735 PMCID: PMC10719393 DOI: 10.1038/s41467-023-44025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The gold π-acid activation under electrochemical conditions is achieved. While EAO allows easy access to gold(III) intermediates over alternative chemical oxidation under mild conditions, the reported examples so far are limited to coupling reactions due to the rapid AuIII reductive elimination. Using aryl hydrazine-HOTf salt as precursors, the π-activation reaction mode was realized through oxidation relay. Both alkene and alkyne di-functionalization were achieved with excellent functional group compatibility and regioselectivity, which extended the versatility and utility of electrochemical gold redox chemistry for future applications.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Jingwen Wei
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Angel Perez
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
39
|
Zeng L, Wang J, Wang D, Yi H, Lei A. Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309620. [PMID: 37606535 DOI: 10.1002/anie.202309620] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Collapse
Affiliation(s)
- Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianxing Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
40
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
41
|
Shen L, Monasson O, Peroni E, Le Bideau F, Messaoudi S. Electrochemical Nickel-Catalyzed Selective Inter- and Intramolecular Arylations of Cysteine-Containing Peptides. Angew Chem Int Ed Engl 2023; 62:e202315748. [PMID: 37906608 DOI: 10.1002/anie.202315748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Here we report a simple electrochemical route towards the synthesis of S-arylated peptides by a site selective coupling of peptides with aryl halides under base free conditions. This approach demonstrates the power of electrochemistry to access both highly complex peptide conjugates and cyclic peptides.
Collapse
Affiliation(s)
- Linhua Shen
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | - Olivier Monasson
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | - Elisa Peroni
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | | | | |
Collapse
|
42
|
Bandyopadhyay M, Bhadra S, Pathak S, Menon AM, Chopra D, Patra S, Escorihuela J, De S, Ganguly D, Bhadra S, Bera MK. An Atom-Economic Method for 1,2,3-Triazole Derivatives via Oxidative [3 + 2] Cycloaddition Harnessing the Power of Electrochemical Oxidation and Click Chemistry. J Org Chem 2023; 88:15772-15782. [PMID: 37924324 DOI: 10.1021/acs.joc.3c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An electrochemical method was developed to accomplish the reagentless synthesis of 4,5-disubstituted triazole derivatives employing secondary propargyl alcohol as C-3 synthon and sodium azide as cycloaddition counterpart. The reaction was conducted at room temperature in an undivided cell with a constant current using a pencil graphite (C) anode and stainless-steel cathode in a MeCN solvent system. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments and further supported by electrochemical and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Manas Bandyopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Sayan Bhadra
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Swastik Pathak
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Snehangshu Patra
- Sustainable Hydrogen for Valuable Applications (SHYVA), 23 Allee Gilbert Becaud, 34470 Perols, France
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Souradeep De
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Suman Bhadra
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
43
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
44
|
Zhao X, Li M, Sun K, Xu Z, Tian L, Wang Y. Electrochemical deoxygenative homo-couplings of aromatic aldehydes. Chem Commun (Camb) 2023; 59:13062-13065. [PMID: 37849338 DOI: 10.1039/d3cc03346e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An electrochemical deoxygenative homo-coupling of aromatic aldehydes is achieved to selectively access bibenzyl and stilbene derivatives. The protocol allows the homo-coupling of aldehydes to occur after single-electron-reduction at the cathode. Taking advantage of the oxophilicity of triphenylphosphine, the electrochemical deoxygenation proceeds smoothly to give reductive homo-coupling products.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Meng Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
45
|
Moeller KD. Concluding remarks: A summary of the Faraday Discussion on electrosynthesis. Faraday Discuss 2023; 247:342-359. [PMID: 37747692 DOI: 10.1039/d3fd00148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A summary of the Faraday Discussion presented in this issue and a perspective on that discussion is presented. The work highlights the specific science contributions made and the key conclusions associated with those findings so that readers can identify papers that they would like to explore in more detail.
Collapse
Affiliation(s)
- Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
46
|
Li P, Kou G, Feng T, Wang M, Qiu Y. Electrochemical NiH-Catalyzed C(sp 3 )-C(sp 3 ) Coupling of Alkyl Halides and Alkyl Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311941. [PMID: 37708153 DOI: 10.1002/anie.202311941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Herein, an electrochemically driven NiH-catalyzed reductive coupling of alkyl halides and alkyl alkenes for the construction of Csp3 -Csp3 bonds is firstly reported. Notably, alkyl halides serve dual function as coupling substrates and as hydrogen sources to generate NiH species under electrochemical conditions. The tunable nature of this reaction is realized by introducing an intramolecular coordinating group to the substrate, where the product can be easily adjusted to give the desired branched products. The method proceeds under mild conditions, exhibits a broad substrate scope, and affords moderate to excellent yields with over 70 examples, including late-stage modification of natural products and drug derivatives. Mechanistic insights offer evidence for an electrochemically driven coupling process. The sp3 -carbon-halogen bonds can be activated through single electron transfer (SET) by the nickel catalyst in its low valence state, generated by cathodic reduction, and the generation of NiH species from alkyl halides is pivotal to this transformation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
47
|
Chiang CW, Li HL, Lin TJ, Chen HC, Chou YH, Chou CJ. Versatile Synthesis of Symmetric and Unsymmetric Imines via Photoelectrochemical Catalysis: Application to N-Terminal Modification of Phenylalanine. Chemistry 2023; 29:e202301379. [PMID: 37434348 DOI: 10.1002/chem.202301379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
A strategy that combines electrochemical synthesis and photoredox catalysis was reported for the efficient synthesis of imines. This approach was demonstrated to be highly versatile in producing various types of imines, including symmetric and unsymmetric imines, by exploring the impact of different substituents on the benzene ring of the arylamine. Additionally, the method was specifically applied to modify N-terminal phenylalanine residues and was found to be successful in the photoelectrochemical cross-coupling reaction between NH2 -Phe-OMe and aryl methylamines, leading to the synthesis of phenylalanine-containing imines. Therefore, this technique would present a convenient and efficient platform for synthesizing imines, with promising applications in chemical biology, drug development, and organic synthesis.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Li Li
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Yi-Hsien Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Chih-Ju Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| |
Collapse
|
48
|
Kher K, Dhaker M, Baroliya PK. Recent advances in electrochemical functionalization using diazonium salts. Org Biomol Chem 2023; 21:7052-7061. [PMID: 37610707 DOI: 10.1039/d3ob00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Arenediazonium salts have gained attention in the scientific community due to their numerous synthetic applications. In the traditional method of dediazoniation of arenediazonium salts, the requirements for toxic oxidants and costly catalysts affect their cost-effectiveness and sustainability. However, recent advances in synthetic organic electrochemistry allow for the in situ reduction of arenediazonium salts, affording different functionalizations under mild reaction conditions and with a shorter reaction time. Herein, we report advances up to now of facile organic electrochemical syntheses using arenediazonium salt precursors that avoid the use of hazardous reductants.
Collapse
Affiliation(s)
- Krishna Kher
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India.
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India.
| | | |
Collapse
|
49
|
Kumar A, Shukla K, Ahsan S, Paul A, Patil NT. Electrochemical Gold-Catalyzed 1,2-Difunctionalization of C-C Multiple Bonds. Angew Chem Int Ed Engl 2023; 62:e202308636. [PMID: 37491811 DOI: 10.1002/anie.202308636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Herein, we disclose the first report of 1,2-difunctionalization of C-C multiple bonds using electrochemical gold redox catalysis. By adopting the electrochemical strategy, the inherent π-activation and cross-coupling reactivity of gold catalysis are harnessed to develop the oxy-alkynylation of allenoates under external-oxidant-free conditions. Detailed mechanistic investigations such as 31 P NMR, control experiments, mass studies, and cyclic voltammetric (CV) analysis have been performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Khyati Shukla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Salman Ahsan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
50
|
Chen SJ, Zhong WQ, Huang JM. Electrochemical Trifluoromethylation and Sulfonylation of N-Allylamides: Synthesis of Oxazoline Derivatives. J Org Chem 2023; 88:12630-12640. [PMID: 37579302 DOI: 10.1021/acs.joc.3c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We report a new method for the synthesis of trifluoromethylated and sulfonylated oxazolines by electrochemical radical cascade cyclizations of N-allylamides with sodium trifluoromethanesulfinate or sulfonylhydrazines. This protocol provides a green and useful strategy to synthesize trifluoromethylated and sulfonylated oxazolines with a broad substrate scope under ambient conditions.
Collapse
Affiliation(s)
- Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|