1
|
Liu X, Fang J, Guan J, Wang S, Xiong Y, Mao J. Substance migration in the synthesis of single-atom catalysts. Chem Commun (Camb) 2025; 61:1800-1817. [PMID: 39749657 DOI: 10.1039/d4cc05747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, etc.) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis. For a better understanding of the effect of migration, the migration of both metal (including ions, atoms, and molecules) and nonmetal species is outlined. Moreover, we propose the research directions to guide the rational design of SACs in the future and deepen the fundamental understanding in the formation of catalysts.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shibin Wang
- Institute of Industrial Catalysis, College of Chemical Engineering Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
2
|
Li C, Meyer RJ, Yacob S, Gomez E, Lopez‐Haro M, Calvino JJ, Moliner M, Serna P, Corma A. Highly Stable Subnanometric PtIn Clusters for the Selective Dehydrogenation of Alkanes. CHEMSUSCHEM 2025; 18:e202401284. [PMID: 39183705 PMCID: PMC11739828 DOI: 10.1002/cssc.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Subnanometric PtIn clusters have been synthesized within pure silica MFI zeolites by post-synthetic incorporation of In to Pt@K-MFI. The optimized PtIn@K-MFI catalyst outcompetes state-of-the-art PtSn formulations in ethane and propane dehydrogenations, avoiding the need of large excess of Pt promoters and harsh reductive conditions.
Collapse
Affiliation(s)
- Chengeng Li
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/n46022ValènciaSpain
| | - Randall J. Meyer
- ExxonMobilTechnology and Engineering CompanyAnnandale, New Jersey08801United States
| | - Sara Yacob
- ExxonMobilTechnology and Engineering CompanyAnnandale, New Jersey08801United States
| | - Elaine Gomez
- ExxonMobilTechnology and Engineering CompanyAnnandale, New Jersey08801United States
| | - Miguel Lopez‐Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de Cádiz11003CádizSpain
| | - Jose J. Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de Cádiz11003CádizSpain
| | - Manuel Moliner
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/n46022ValènciaSpain
| | - Pedro Serna
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/n46022ValènciaSpain
- ExxonMobilTechnology and Engineering CompanyAnnandale, New Jersey08801United States
| | - Avelino Corma
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/n46022ValènciaSpain
| |
Collapse
|
3
|
Vito J, Shetty M. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67010-67027. [PMID: 38079586 PMCID: PMC11647899 DOI: 10.1021/acsami.3c11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2024]
Abstract
Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement.
Collapse
Affiliation(s)
- Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Van Dessel H, Van Minnebruggen S, Dedapper J, Paciok P, Usoltsev O, Krajnc A, Bugaev A, De Vos DE. Shape-Selective Zeolites for Tandem CO 2 Hydrogenation-Carbonylation Reactions. Angew Chem Int Ed Engl 2024:e202418670. [PMID: 39513646 DOI: 10.1002/anie.202418670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
The valorization of carbon dioxide as a C1 building block in C-C bond forming reactions is a critical link on the road to carbon-circular chemistry. Activation of this inert molecule through reduction with H2 to carbon monoxide in the reverse water-gas shift (RWGS) reaction can be followed by a wide spectrum of consecutive carbonylation reactions, but the RWGS is severely equilibrium limited at the moderate temperatures of carbonylations. Here we successfully reconcile both reactions in one pot, while avoiding incompatibilities through a zeolite-based compartmentalized approach. More specifically, Pt encapsulated in a small-pore LTA zeolite selectively generates carbon monoxide in mild reaction conditions; an ensuing one-pot carbonylation reaction allows to shift the equilibrium through continuous consumption of CO. Moreover, the zeolite encapsulation avoids undesired reactions like hydrogenation of the olefin reactant through a molecular sieving effect. This strategy was first studied in-depth for Rh-catalyzed olefin hydroformylation with CO2/H2, affording aldehydes in good yields with high regioselectivities. The methodology was then extended to a variety of carbonylations using CO2 for the synthesis of bulk and fine chemicals.
Collapse
Affiliation(s)
- Hendrik Van Dessel
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Sam Van Minnebruggen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Jasper Dedapper
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Paul Paciok
- Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Julich, 52425, Jülich, Germany
| | - Oleg Usoltsev
- CELLS-ALBA Synchrotron Radiation Facility, 08290, Cerdanyola del Vallès, Spain
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Aram Bugaev
- SuperXAS Beamline, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| |
Collapse
|
6
|
Yalcin K, Kumar R, Zuidema E, Kulkarni AR, Ciston J, Bustillo KC, Ercius P, Katz A, Gates BC, Kronawitter CX, Runnebaum RC. Reversible Intrapore Redox Cycling of Platinum in Platinum-Ion-Exchanged HZSM-5 Catalysts. ACS Catal 2024; 14:4999-5005. [PMID: 38601777 PMCID: PMC11002820 DOI: 10.1021/acscatal.3c06325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Isolated platinum(II) ions anchored at acid sites in the pores of zeolite HZSM-5, initially introduced by aqueous ion exchange, were reduced to form platinum nanoparticles that are stably dispersed with a narrow size distribution (1.3 ± 0.4 nm in average diameter). The nanoparticles were confined in reservoirs within the porous zeolite particles, as shown by electron beam tomography and the shape-selective catalysis of alkene hydrogenation. When the nanoparticles were oxidatively fragmented in dry air at elevated temperature, platinum returned to its initial in-pore atomically dispersed state with a charge of +2, as shown previously by X-ray absorption spectroscopy. The results determine the conditions under which platinum is retained within the pores of HZSM-5 particles during redox cycles that are characteristic of the reductive conditions of catalyst operation and the oxidative conditions of catalyst regeneration.
Collapse
Affiliation(s)
- Kaan Yalcin
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ram Kumar
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Erik Zuidema
- Shell
Global Solutions B.V. Amsterdam 1031 HW, The Netherlands
| | - Ambarish R. Kulkarni
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jim Ciston
- National
Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C. Bustillo
- National
Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Ercius
- National
Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Katz
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Bruce C. Gates
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C. Runnebaum
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
- Department
of Viticulture & Enology, University
of California, Davis, 95616, United States
| |
Collapse
|
7
|
Dong Q, Zhang C, Zhang H, Yu F, Liu S, Fan B, Li R. Design and preparation of Pt@SSZ-13@β core-shell catalyst for hydrocracking of naphthalene. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Li T, Wang S, Yu H, Yuan L, Zhang D, Yin H. Encapsulation of Noble Metal Nanoclusters into Zeolites for Highly Efficient Catalytic Hydrogenation of Nitroaromatics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tianhao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Luohao Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
9
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. J Am Chem Soc 2022; 144:13874-13887. [PMID: 35854402 DOI: 10.1021/jacs.2c05386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).
Collapse
Affiliation(s)
- Noah Felvey
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Le Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
12
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
13
|
Tian Y, Duan H, Zhang B, Gong S, Lu Z, Dai L, Qiao C, Liu G, Zhao Y. Template Guiding for the Encapsulation of Uniformly Subnanometric Platinum Clusters in Beta‐Zeolites Enabling High Catalytic Activity and Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yajie Tian
- Henan Province Engineering Research Centre of Catalytic Reaction College of Chemistry and Chemical Engineering Henan University Jinming Road Kaifeng 475004 China
- Key Lab for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Road Kaifeng 475004 China
| | - Haonan Duan
- Henan Province Engineering Research Centre of Catalytic Reaction College of Chemistry and Chemical Engineering Henan University Jinming Road Kaifeng 475004 China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Siyuan Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Zongjing Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Lei Dai
- Key Lab for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Road Kaifeng 475004 China
| | - Congzhen Qiao
- Henan Province Engineering Research Centre of Catalytic Reaction College of Chemistry and Chemical Engineering Henan University Jinming Road Kaifeng 475004 China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Road Kaifeng 475004 China
| |
Collapse
|
14
|
Tian Y, Duan H, Zhang B, Gong S, Lu Z, Dai L, Qiao C, Liu G, Zhao Y. Template Guiding for the Encapsulation of Uniformly Subnanometric Platinum Clusters in Beta-Zeolites Enabling High Catalytic Activity and Stability. Angew Chem Int Ed Engl 2021; 60:21713-21717. [PMID: 34350671 DOI: 10.1002/anie.202108059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Subnanometric metal clusters have attracted extensive attention because of their unique properties as heterogeneous catalysts. However, it is challenging to obtain uniformly distributed metal clusters under synthesis and reaction conditions. Herein, we report a template-guidance protocol to synthesize subnanometric metal clusters uniformly encapsulated in beta-zeolite, with the metal ions anchored to the internal channels of the zeolite template via electrostatic interactions. Pt metal clusters with a narrow size range of 0.89 to 1.22 nm have been obtained on the intersectional sites of beta-zeolite (Pt@beta) with a broad range of Si/Al molar ratios (15-200). The uniformly distributed Pt clusters in Pt@H-beta are subject to strong electron withdrawal by the zeolite, which promotes transfer of active hydrogen, providing excellent activity and stability in hydrodeoxygenation reactions. A general strategy is thus proposed for the encapsulation of subnanometric metal clusters in zeolites with high thermal stability.
Collapse
Affiliation(s)
- Yajie Tian
- Henan Province Engineering Research Centre of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Jinming Road, Kaifeng, 475004, China.,Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Haonan Duan
- Henan Province Engineering Research Centre of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Siyuan Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Zongjing Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Lei Dai
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Congzhen Qiao
- Henan Province Engineering Research Centre of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Jinming Road, Kaifeng, 475004, China
| |
Collapse
|
15
|
Chen L, Kovarik L, Szanyi J. Temperature-Dependent Communication between Pt/Al 2O 3 Catalysts and Anatase TiO 2 Dilutant: the Effects of Metal Migration and Carbon Transfer on the Reverse Water–Gas Shift Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev 2021; 50:8511-8595. [PMID: 34128513 DOI: 10.1039/d0cs01459a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
Collapse
Affiliation(s)
- Pablo Del Campo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
17
|
Serna P, Rodríguez-Fernández A, Yacob S, Kliewer C, Moliner M, Corma A. Single-Site vs. Cluster Catalysis in High Temperature Oxidations. Angew Chem Int Ed Engl 2021; 60:15954-15962. [PMID: 33881798 DOI: 10.1002/anie.202102339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Indexed: 12/28/2022]
Abstract
The behavior of single Pt atoms and small Pt clusters was investigated for high-temperature oxidations. The high stability of these molecular sites in CHA is a key to intrinsic structure-performance descriptions of elemental steps such as O2 dissociation, and subsequent oxidation catalysis. Subtle changes in the atomic structure of Pt are responsible for drastic changes in performance driven by specific gas/metal/support interactions. Whereas single Pt atoms and Pt clusters (> ca. 1 nm) are unable to activate, scramble, and desorb two O2 molecules at moderate T (200 °C), clusters <1 nm do so catalytically, but undergo oxidative fragmentation. Oxidation of alkanes at high T is attributed to stable single Pt atoms, and the C-H cleavage is inferred to be rate-determining and less sensitive to changes in metal nuclearity compared to its effect on O2 scrambling. In contrast, when combustion involves CO, catalysis is dominated by metal clusters, not single Pt atoms.
Collapse
Affiliation(s)
- Pedro Serna
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Aida Rodríguez-Fernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| | - Sara Yacob
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Christine Kliewer
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
18
|
Serna P, Rodríguez‐Fernández A, Yacob S, Kliewer C, Moliner M, Corma A. Single‐Site vs. Cluster Catalysis in High Temperature Oxidations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Serna
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Aida Rodríguez‐Fernández
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| | - Sara Yacob
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Christine Kliewer
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| |
Collapse
|
19
|
Krishna SH, Jones CB, Gounder R. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annu Rev Chem Biomol Eng 2021; 12:115-136. [PMID: 33826852 DOI: 10.1146/annurev-chembioeng-092120-010920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
20
|
Chen Y, Sun H, Gates BC. Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004665. [PMID: 33185034 DOI: 10.1002/smll.202004665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 06/11/2023]
Abstract
When metal nanoparticles on supports are made smaller and smaller-to the limit of atomic dispersion-they become cationic and take on new catalytic properties that are only recently being discovered. The synthesis of these materials is reviewed, including their structure characterization-especially by atomic-resolution electron microscopy and X-ray absorption and infrared spectroscopies-and relationships between structure and catalyst performance, for reactions including hydrogenations, oxidations, and the water gas shift. Structure determination is challenging because of the intrinsic nonuniformity of the support surfaces-and therefore the structures on them-but fundamental understanding has advanced rapidly, benefiting from nearly uniform catalysts consisting of metals on well-defined-crystalline-supports and their characterization by spectroscopy and microscopy. Recent advances in atomic-resolution electron microscopy have spurred the field, providing stunning images and deep insights into structure. The iridium catalysts have typically been made from organoiridium precursors, opening the way to understanding and control of the metal-support bonding and ligands on the metal, including catalytic reaction intermediates. Platinum catalysts are usually made with less precision, from salt precursors, but they catalyze a wider array of reactions than the iridium, typically being stable at higher temperatures and seemingly offering rich prospect for discovery of new catalysts.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hanlei Sun
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
21
|
De S, Ould-Chikh S, Aguilar A, Hazemann JL, Zitolo A, Ramirez A, Telalovic S, Gascon J. Stable Cr-MFI Catalysts for the Nonoxidative Dehydrogenation of Ethane: Catalytic Performance and Nature of the Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Antonio Aguilar
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
22
|
Yasumura S, Ide H, Ueda T, Jing Y, Liu C, Kon K, Toyao T, Maeno Z, Shimizu KI. Transformation of Bulk Pd to Pd Cations in Small-Pore CHA Zeolites Facilitated by NO. JACS AU 2021; 1:201-211. [PMID: 34467284 PMCID: PMC8395613 DOI: 10.1021/jacsau.0c00112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Atomic dispersion of metal species has attracted attention as a unique phenomenon that affects adsorption properties and catalytic activities and that can be used to design so-called single atom materials. In this work, we describe atomic dispersion of bulk Pd into small pores of CHA zeolites. Under 4% NO flow at 600 °C, bulk Pd metal on the outside of CHA zeolites effectively disperses, affording Pd2+ cations on Al sites with concomitant formation of N2O, as revealed by microscopic and spectroscopic characterizations combined with mass spectroscopy. In the present method, even commercially available submicrosized Pd black can be used as a Pd source, and importantly, 4.1 wt % of atomic Pd2+ cations, which is the highest loading amount reported so far, can be introduced into CHA zeolites. The structural evolution of bulk Pd metal is also investigated by in situ X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), as well as ab initio thermodynamic analysis using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Hajime Ide
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taihei Ueda
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Chong Liu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kenichi Kon
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
23
|
Liu L, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P, Calvino JJ, Corma A. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Nelson NC, Chen L, Meira D, Kovarik L, Szanyi J. In Situ Dispersion of Palladium on TiO 2 During Reverse Water-Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angew Chem Int Ed Engl 2020; 59:17657-17663. [PMID: 32589820 DOI: 10.1002/anie.202007576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Indexed: 11/08/2022]
Abstract
The application of single-atom catalysts (SACs) to high-temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water-gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2 ) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X-ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high-temperature rWGS conditions is associated with Pd-Ti coordination, which manifests upon O-vacancy formation, and the artificial increase in TiO2 surface area.
Collapse
Affiliation(s)
- Nicholas C Nelson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Debora Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
26
|
Hou D, Grajciar L, Nachtigall P, Heard CJ. Origin of the Unusual Stability of Zeolite-Encapsulated Sub-Nanometer Platinum. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
27
|
Nelson NC, Chen L, Meira D, Kovarik L, Szanyi J. In Situ Dispersion of Palladium on TiO
2
During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas C. Nelson
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Linxiao Chen
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Debora Meira
- CLS@APS sector 20 Advanced Photon Source Argonne National Laboratory 9700 S. Cass Avenue Argonne IL 60439 USA
- Canadian Light Source Inc. 44 Innovation Boulevard Saskatoon Saskatchewan S7N 2V3 Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - János Szanyi
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
28
|
|
29
|
Zhang B, Tian Y, Chen D, Li L, Li G, Wang L, Zhang X, Liu G. Selective steam reforming of
n
‐dodecane over stable subnanometric NiPt clusters encapsulated in Silicalite‐1 zeolite. AIChE J 2020. [DOI: 10.1002/aic.16917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Yajie Tian
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
- College of Chemistry and Chemical EngineeringHenan University Kaifeng China
| | - Dali Chen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Ling Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| |
Collapse
|
30
|
Han F, Yuan M, Mine S, Sun H, Chen H, Toyao T, Matsuoka M, Zhu K, Zhang J, Wang W, Xue T. Formation of Highly Active Superoxide Sites on CuO Nanoclusters Encapsulated in SAPO-34 for Catalytic Selective Ammonia Oxidation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Han
- Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300 071, P. R. China
| | - Mengqi Yuan
- Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300 071, P. R. China
| | - Shinya Mine
- Department of Applied Chemistry, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan
| | - Han Sun
- Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300 071, P. R. China
| | - Haijun Chen
- Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300 071, P. R. China
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Masaya Matsuoka
- Department of Applied Chemistry, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan
| | - Kake Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200 237, P. R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200 237, P. R. China
| | - Weichao Wang
- Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300 071, P. R. China
| | - Tao Xue
- Analysis and Measurement Center, Tianjin University, Tianjin 300 072, P. R. China
| |
Collapse
|
31
|
Liu A, Liu L, Cao Y, Wang J, Si R, Gao F, Dong L. Controlling Dynamic Structural Transformation of Atomically Dispersed CuOx Species and Influence on Their Catalytic Performances. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02773] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Annai Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Yuan Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Jiaming Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Fei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
32
|
Sun Q, Wang N, Bai R, Hui Y, Zhang T, Do DA, Zhang P, Song L, Miao S, Yu J. Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802350. [PMID: 31131197 PMCID: PMC6524121 DOI: 10.1002/advs.201802350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Indexed: 05/26/2023]
Abstract
Taking advantage of the synergetic effect of confined ultrasmall metal clusters and zeolite frameworks is an efficient strategy for improving the catalytic performance of metal nanocatalysts. Herein, it is demonstrated that the synergetic effect of ultrasmall ruthenium (Ru) clusters and intrinsic Brønsted acidity of zeolite frameworks can significantly promote the hydrogen generation of ammonia borane (AB) hydrolysis. Ultrasmall Ru clusters are embedded onto the silicoaluminophosphate SAPO-34 (CHA) and various aluminosilicate zeolites (MFI, *BEA, and FAU) with tunable acidities by a facile incipient wetness impregnation method. Evidenced by high-resolution scanning transmission electron microscopy, the sub-nanometric Ru clusters are uniformly distributed throughout the zeolite crystals. The X-ray absorption spectroscopy measurements reveal the existence of Ru-H species between Ru clusters and adjacent Brønsted acid sites of zeolites, which could synergistically activate AB and water molecules, significantly enhancing the hydrogen evolution rate of AB hydrolysis. Notably, the Ru/SAPO-34-0.8Si (Si/Al = 0.8) and Ru/FAU (Si/Al = 30) catalysts with strong acidities afford high turnover frequency values up to 490 and 627 min-1, respectively. These values are more than a 13-fold enhancement than that of the commercial Ru/C catalyst, and among the top level over other heterogeneous catalysts tested under similar conditions.
Collapse
Affiliation(s)
- Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Risheng Bai
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and TechnologyLiaoning ProvinceLiaoning Shihua UniversityFushun113001China
| | - Tianjun Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - David A. Do
- Department of ChemistryDalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Peng Zhang
- Department of ChemistryDalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and TechnologyLiaoning ProvinceLiaoning Shihua UniversityFushun113001China
| | - Shu Miao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
- International Center of Future ScienceJilin University2699 Qianjin StreetChangchun130012P. R. China
| |
Collapse
|
33
|
|