1
|
Wang C, Jin Z, Guo L, Yamamoto O, Kaida C, He Y, Ma Q, Wang K, Tsubaki N. New Insights for High-Throughput CO 2 Hydrogenation to High-Quality Fuel. Angew Chem Int Ed Engl 2024; 63:e202408275. [PMID: 39073840 DOI: 10.1002/anie.202408275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
In the case of CO2 thermal-catalytic hydrogenation, highly selective olefin generation and subsequent olefin secondary reactions to fuel hydrocarbons in an ultra-short residence time is a huge challenge, especially under industrially feasible conditions. Here, we report a pioneering synthetic process that achieves selective production of high-volume commercial gasoline with the assistance of fast response mechanism. In situ experiments and DFT calculations demonstrate that the designed NaFeGaZr presents exceptional carbiding prowess, and swiftly forms carbides even at extremely brief gas residence times, facilitating olefin production. The created successive hollow zeolite HZSM-5 further reinforces aromatization of olefin diffused from NaFeGaZr via optimized mass transfer in the hollow channel of zeolite. Benefiting from its rapid response mechanism within the multifunctional catalytic system, this catalyst effectively prevents the excessive hydrogenation of intermediates and controls the swift conversion of intermediates into aromatics, even in high-throughput settings. This enables a rapid one-step synthesis of high-quality gasoline-range hydrocarbons without any post-treatment, with high commercial product compatibility and space-time yield up to 0.9 kggasoline ⋅ kgcat -1 ⋅ h-1. These findings from the current work can provide a shed for the preparation of efficient catalysts and in-depth understanding of C1 catalysis in industrial level.
Collapse
Affiliation(s)
- Chengwei Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Lisheng Guo
- School of Chemistry and Chemical Engineering, Anhui University Hefei, Anhui, 230601, P. R. China
| | - Osami Yamamoto
- Advanced Power Unit & Energy Research, Honda R&D Co., Ltd., Shimotakanezawa 4630, Haga-machi, Haga-gun, Tochigi, 321-3321, Japan
| | - Chiharu Kaida
- Advanced Power Unit & Energy Research, Honda R&D Co., Ltd., Shimotakanezawa 4630, Haga-machi, Haga-gun, Tochigi, 321-3321, Japan
| | - Yingluo He
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan, Ningxia, 750021, P. R. China
| | - Kangzhou Wang
- School of Materials and New Energy, Ningxia University Yinchuan, Ningxia, 750021, P. R. China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| |
Collapse
|
2
|
Chen Y, Jiang L, Lin S, Dong P, Fu X, Wang Y, Liu Q, Wu M. Carbon-Supported Fe-Based Catalyst for Thermal-Catalytic CO 2 Hydrogenation into C 2+ Alcohols: The Effect of Carbon Support Porosity on Catalytic Performance. Molecules 2024; 29:4628. [PMID: 39407558 PMCID: PMC11477620 DOI: 10.3390/molecules29194628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 10/20/2024] Open
Abstract
Carbon materials supported Fe-based catalysts possess great potential for the thermal-catalytic hydrogenation of CO2 into valuable chemicals, such as alkenes and oxygenates, due to the excellent active sites' accessibility, appropriate interaction between the active site and carbon support, as well as the excellent capacities in C-O bond activation and C-C bond coupling. Even though tremendous progress has been made to boost the CO2 hydrogenation performance of carbon-supported Fe-based catalysts, e.g., additives modification, the choice of different carbon materials (graphene or carbon nanotubes), electronic property tailoring, etc., the effect of carbon support porosity on the evolution of Fe-based active sites and the corresponding catalytic performance has been rarely investigated. Herein, a series of porous carbon samples with different porosities are obtained by the K2CO3 activation of petroleum pitch under different temperatures. Fe-based active sites and the alkali promoter Na are anchored on the porous carbon to study the effect of carbon support porosity on the physicochemical properties of Fe-based active sites and CO2 hydrogenation performance. Multiple characterizations clarify that the bigger meso/macro-pores in the carbon support are beneficial for the formation of the Fe5C2 crystal phase for C-C bond coupling, therefore boosting the synthesis of C2+ chemicals, especially C2+ alcohols (C2+OH), while the limited micro-pores are unfavorable for C2+ chemicals synthesis owing to the sluggish crystal phase evolution and reactants' inaccessibility. We wish our work could enrich the horizon for the rational design of highly efficient carbon-supported Fe-based catalysts.
Collapse
Affiliation(s)
- Yongjie Chen
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Lei Jiang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Simin Lin
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Pei Dong
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Xiaoli Fu
- Shandong Energy Group Co., Ltd., Jinan 250014, China; (X.F.); (Q.L.)
| | - Yang Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Qiang Liu
- Shandong Energy Group Co., Ltd., Jinan 250014, China; (X.F.); (Q.L.)
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| |
Collapse
|
3
|
Wang X, Zeng T, Guo X, Yan Z, Ban H, Yao R, Li C, Gu XK, Ding M. Breaking the activity-selectivity trade-off of CO 2 hydrogenation to light olefins. Proc Natl Acad Sci U S A 2024; 121:e2408297121. [PMID: 39236240 PMCID: PMC11406295 DOI: 10.1073/pnas.2408297121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity-selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2-C4= selectivity of 83%, resulting in a C2-C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2-C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2-C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.
Collapse
Affiliation(s)
- Xiaoyue Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ting Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaohong Guo
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhiqiang Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Hongyan Ban
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ruwei Yao
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Congming Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Wang K, Liu N, Wei J, Yu Y, Zhang J, Orege JI, Song L, Ge Q, Sun J. Bifunctional CoFe/HZSM-5 catalysts orient CO 2 hydrogenation towards liquid hydrocarbons. Chem Commun (Camb) 2023; 59:13767-13770. [PMID: 37920957 DOI: 10.1039/d3cc04409b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Converting CO2 to liquid (C5+) hydrocarbons remains a significant hurdle. Our study shows that CoFe/HZSM-5 boosts C5+ selectivity to 73.4%, up from 59% for Fe/HZSM-5. This study highlights the pivotal roles of zeolite acidity and catalyst proximity in this improvement. These insights pave the way for more effective CO2 utilization.
Collapse
Affiliation(s)
- Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixin Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Joshua Iseoluwa Orege
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifei Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Wang Y, Sun J, Tsubaki N. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis. Acc Chem Res 2023; 56:2341-2353. [PMID: 37579494 DOI: 10.1021/acs.accounts.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusC1 catalysis, which refers to the conversion of molecules with a single carbon atom, such as CO, CO2, and CH4, into clean fuels and basic building blocks for chemical industries, has built a bridge between carbon resource utilization and valuable chemical supply. With respect to the goal of carbon neutrality, C1 catalysis also plays an essential role owing to its integrated functions in the green catalytic process with fewer CO2 emissions and even direct high-value-added utilization of greenhouse gases (CO2 and CH4). However, the inert nature of the C-O or C-H bond in C1 molecules as well as uncontrollable C-C coupling render C1 catalysis challenging. The rational design of highly active catalytic materials (denoted as C1 catalysts) with strong capacities for C-O or C-H bond activation and C-C coupling by convenient nanomaterials fabrication methods to boost the catalytic performance of C1 molecule conversion, including targeted product selectivity and long-term stability, is the cornerstone of C1 catalysis.Notably, the familiar concepts in heterogeneous catalysis, such as tandem catalysis and confinement catalysis, are applicable for C1 catalysis and have been successfully used to design a C1 catalyst. Regarding the tandem catalysis concept that integrates multiple reactions in a single-pass via a bi- or multifunctional catalyst, it is promising to shed new light on the oriented conversion of C1 molecules, especially for C2+ hydrocarbon or oxygenate synthesis. The confinement effect is powerful for controlling the product distribution and enhancing activation efficiency of inert chemical bonds in C1 catalysis due to the unique reactants/intermediate adsorption and evolution behaviors on the confined catalytic interface with a special electronic environment. Moreover, metal-support interactions (MSIs), electronic properties of the active site, and catalytic engineering issues are also susceptible to the C1 molecule conversion performance. Therefore, under the guidance of basic and novel rules in heterogeneous catalysis, the innovation of catalytic materials with the aid of advanced catalytic materials fabrication techniques has always been a hot research topic in C1 catalysis.In this Account, we briefly describe the challenges in thermal-catalytic C1 molecule (mainly CO, CO2, and CH4) conversion. At the same time, the synergistic functioning of the physicochemical properties of the catalytic materials on the performance in C1 molecule conversion is highlighted. More importantly, we summarize our progress in rationally designing tailor-made C1 catalysts to enhance C1 molecule activation efficiency and targeted product selectivity via powerful nanomaterials fabrication techniques, such as traditional wet-chemistry strategies, the magnetron sputtering method, and 3D printing technology. Specifically, the ingenious capsule catalyst and ammonia pools in zeolites fabricated by a wet chemistry process possess an extraordinary effect on the transformation of CO, CO2, and CH4 molecules. Also, the sputtering method is reliable in modulating the electronic properties of metallic active sites for C1 molecule conversion, thereby tailoring the final product selectivity. Furthermore, we showcase the strong capability of metal 3D printing technology in fabricating a self-catalytic reactor, by which the functions of the reaction field and nanoscale active sites are well integrated. Finally, we predict the future research opportunities in highly efficient C1 catalyst design with the assistance of clever nanomaterials fabrication techniques.
Collapse
Affiliation(s)
- Yang Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| |
Collapse
|
6
|
Ojelade OA. CO 2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. Chempluschem 2023; 88:e202300301. [PMID: 37580947 DOI: 10.1002/cplu.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The emission of CO2 from fossil fuels is the largest driver of global climate change. To realize the target of a carbon-neutrality by 2050, CO2 capture and utilization is crucial. The efficient conversion of CO2 to C5+ gasoline and aromatics remains elusive mainly due to CO2 thermodynamic stability and the high energy barrier of the C-C coupling step. Herein, advances in mechanistic understanding via Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), density functional theory (DFT), and microkinetic modeling are discussed. It further emphasizes the power of machine learning (ML) to accelerate the search for optimal catalysts. A significant effort has been invested into this field of research with volumes of experimental and characterization data, this study discusses how they can be used as input features for machine learning prediction in a bid to better understand catalytic properties capable of accelerating breakthroughs in the process.
Collapse
Affiliation(s)
- Opeyemi A Ojelade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Lee MG, Li XY, Ozden A, Wicks J, Ou P, Li Y, Dorakhan R, Lee J, Park HK, Yang JW, Chen B, Abed J, dos Reis R, Lee G, Huang JE, Peng T, Chin YH, Sinton D, Sargent EH. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat Catal 2023. [DOI: 10.1038/s41929-023-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Hua Z, Yang Y, Liu J. Direct hydrogenation of carbon dioxide to value-added aromatics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
10
|
To AT, Arellano-Treviño MA, Nash CP, Ruddy DA. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Lu P, Liang J, Wang K, Liu B, Atchimarungsri T, Wang Y, Zhang X, Tian J, Jiang Y, Liu Z, Reubroycharoen P, Zhao T, Zhang J, Gao X. Boosting Liquid Hydrocarbon Synthesis from CO 2 Hydrogenation via Tailoring Acid Properties of HZSM-5 Zeolite. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengfei Lu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Jie Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Kangzhou Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Bo Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Thachapan Atchimarungsri
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Yuan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Xingjun Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Jumei Tian
- Ningxia Academy of Metrology and Quality Inspection, National Quality Supervision and Inspection Center for Coal and Coal Chemical Products (Ningxia), Yinchuan750200, China
| | - Yongjun Jiang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
- Coal Chemical Industry Technology Research Institute, China Energy Group Ningxia Industry Coal Co. Ltd., Yinchuan750411, Ningxia, China
| | - Zhihao Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Prasert Reubroycharoen
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Tiansheng Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan750021, China
- Ningxia Academy of Metrology and Quality Inspection, National Quality Supervision and Inspection Center for Coal and Coal Chemical Products (Ningxia), Yinchuan750200, China
| |
Collapse
|
12
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
13
|
Du P, Qi R, Zhang Y, Gu Q, Xu X, Tan Y, Liu X, Wang A, Zhu B, Yang B, Zhang T. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hydrogenation of Carbon Dioxide to Value-Added Liquid Fuels and Aromatics over Fe-Based Catalysts Based on the Fischer–Tropsch Synthesis Route. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogenation of CO2 to value-added chemicals and fuels not only effectively alleviates climate change but also reduces over-dependence on fossil fuels. Therefore, much attention has been paid to the chemical conversion of CO2 to value-added products, such as liquid fuels and aromatics. Recently, efficient catalysts have been developed to face the challenge of the chemical inertness of CO2 and the difficulty of C–C coupling. Considering the lack of a detailed summary on hydrogenation of CO2 to liquid fuels and aromatics via the Fischer–Tropsch synthesis (FTS) route, we conducted a comprehensive and systematic review of the research progress on the development of efficient catalysts for hydrogenation of CO2 to liquid fuels and aromatics. In this work, we summarized the factors influencing the catalytic activity and stability of various catalysts, the strategies for optimizing catalytic performance and product distribution, the effects of reaction conditions on catalytic performance, and possible reaction mechanisms for CO2 hydrogenation via the FTS route. Furthermore, we also provided an overview of the challenges and opportunities for future research associated with hydrogenation of CO2 to liquid fuels and aromatics.
Collapse
|
15
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Basina G, Diamantopoulos G, Devlin E, Psycharis V, Alhassan SM, Pissas M, Hadjipanayis G, Tomou A, Bouras A, Hadjipanayis C, Tzitzios V. LAPONITE® nanodisk-"decorated" Fe 3O 4 nanoparticles: a biocompatible nano-hybrid with ultrafast magnetic hyperthermia and MRI contrast agent ability. J Mater Chem B 2022; 10:4935-4943. [PMID: 35535802 DOI: 10.1039/d2tb00139j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Magnetic Fe3O4 nanoparticles "decorated" by LAPONITE® nanodisks have been materialized utilizing the Schikorr reaction following a facile approach and tested as mediators of heat for localized magnetic hyperthermia (MH) and as magnetic resonance imaging (MRI) agents. The synthetic protocol involves the interaction between two layered inorganic compounds, ferrous hydroxide, Fe(OH)2, and the synthetic smectite LAPONITE® clay Na0.7+[(Si8Mg5.5Li0.3)O20(OH)4]0.7-, towards the formation of superparamagnetic Fe3O4 nanoparticles, which are well decorated by the diamagnetic clay nanodisks. The latter imparts high negative ζ-potential values (up to -34.1 mV) to the particles, which provide stability against flocculation and precipitation, resulting in stable water dispersions. The obtained LAPONITE®-"decorated" Fe3O4 nanohybrids were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, dynamic light scattering (DLS) and vibrating sample magnetometry (VSM) at room temperature, revealing superior magnetic hyperthermia performance with specific absorption rate (SAR) values reaching 540 W gFe-1 (28 kA m-1, 150 kHz) for the hybrid material with a magnetic loading of 50 wt% Fe3O4/LAPONITE®. Toxicity studies were also performed with human glioblastoma (GBM) cells and human foreskin fibroblasts (HFF), which show negligible to no toxicity. Furthermore, T2-weighted MR imaging of rodent brain shows that the LAPONITE®-"decorated" Fe3O4 nanohybrids predominantly affected the transverse T2 relaxation time of tissue water, which resulted in a signal drop on the MRI T2-weighted imaging, allowing for imaging of the magnetic nanoparticles.
Collapse
Affiliation(s)
- Georgia Basina
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA. .,Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Diamantopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Eamonn Devlin
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Hadjipanayis
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA.
| | - Aphrodite Tomou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Goodfellow Cambridge Ltd., Ermine Business Park, Huntingdon PE29 6WR, Cambridge, UK
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Constantinos Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vasileios Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Fedorov A, Linke D. Data analysis of CO2 hydrogenation catalysts for hydrocarbon production. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Dokania A, Ramirez A, Shterk G, Cerrillo JL, Gascon J. Modifying the Hydrogenation Activity of Zeolite Beta for Enhancing the Yield and Selectivity to Fuel‐Range Alkanes from Carbon Dioxide. Chempluschem 2022; 87:e202200177. [DOI: 10.1002/cplu.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Abhay Dokania
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Adrian Ramirez
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Genrikh Shterk
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Jose Luis Cerrillo
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Jorge Gascon
- King Abdullah University of Science and Technology Kaust Catalysis Center Bldg.3, Level 4, Room 4235 23955-6900 Thuwal SAUDI ARABIA
| |
Collapse
|
19
|
Hydrogenation of CO2 on Nanostructured Cu/FeOx Catalysts: The Effect of Morphology and Cu Load on Selectivity. Catalysts 2022. [DOI: 10.3390/catal12050516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to study the influence of copper content and particle morphology on the performance of Cu/FeOx catalysts in the gas-phase conversion of CO2 with hydrogen. All four investigated catalysts with a copper content between 0 and 5 wt% were found highly efficient, with CO2 conversion reaching 36.8%, and their selectivity towards C1 versus C2-C4, C2-C4=, and C5+ products was dependent on catalyst composition, morphology, and temperature. The observed range of products is different from those observed for catalysts with similar composition but synthesized using other precursors and chemistries, which yield different morphologies. The findings presented in this paper indicate potential new ways of tuning the morphology and composition of iron-oxide-based particles, ultimately yielding catalyst compositions and morphologies with variable catalytic performances.
Collapse
|
20
|
Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63802-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Sun Z, Chen X, Lu F, Zhou L, Zhang Y. Effect of Rb promoter on Fe3O4 microsphere catalyst for CO2 hydrogenation to light olefins. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Zhang P, Yan J, Han F, Qiao X, Guan Q, Li W. Controllable assembly of Fe 3O 4–Fe 3C@MC by in situ doping of Mn for CO 2 selective hydrogenation to light olefins. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00173j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn in situ doped Fe3C anchored in mesoporous carbon was prepared and employed for converting CO2 to light olefins successfully. The in situ doped Mn modified the ratio of FeOx/FeCx and surface electron density, which optimized the C/H on active sites.
Collapse
Affiliation(s)
- Pengze Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| | - Jingyu Yan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| | - Fei Han
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| | - Xianliang Qiao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China
| |
Collapse
|
23
|
Qiao M, Wang S, Ji Y, Liu X, Yan S, Xie S, Pei Y, Li H, Zong B. Potassium as a Versatile Promoter to Tailor the Distribution of the Olefins in CO2 Hydrogenation over Iron‐Based Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202101535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minghua Qiao
- Fudan University Chemistry Department No. 220 Handan Road 200433 Shanghai CHINA
| | - Shunwu Wang
- Fudan University Department of Chemistry CHINA
| | - Yushan Ji
- Fudan University Department of Chemistry CHINA
| | | | - Shirun Yan
- Fudan University Department of Chemistry CHINA
| | - Songhai Xie
- Fudan University Department of Chemistry CHINA
| | - Yan Pei
- Fudan University Department of Chemistry CHINA
| | - Hexing Li
- Shanghai Normal University College of Chemistry and Materials Science College of Chemistry and Materials Science CHINA
| | - Baoning Zong
- Sinopec Research Institute of Petroleum Processing State Key Laboratory of Catalytic Materials and Chemical Engineering CHINA
| |
Collapse
|
24
|
Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins. Catalysts 2021. [DOI: 10.3390/catal11121447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability.
Collapse
|
25
|
Dokania A, Ould-Chikh S, Ramirez A, Cerrillo JL, Aguilar A, Russkikh A, Alkhalaf A, Hita I, Bavykina A, Shterk G, Wehbe N, Prat A, Lahera E, Castaño P, Fonda E, Hazemann JL, Gascon J. Designing a Multifunctional Catalyst for the Direct Production of Gasoline-Range Isoparaffins from CO 2. JACS AU 2021; 1:1961-1974. [PMID: 34841412 PMCID: PMC8611669 DOI: 10.1021/jacsau.1c00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The production of carbon-neutral fuels from CO2 presents an avenue for causing an appreciable effect in terms of volume toward the mitigation of global carbon emissions. To that end, the production of isoparaffin-rich fuels is highly desirable. Here, we demonstrate the potential of a multifunctional catalyst combination, consisting of a methanol producer (InCo) and a Zn-modified zeolite beta, which produces a mostly isoparaffinic hydrocarbon mixture from CO2 (up to ∼85% isoparaffin selectivity among hydrocarbons) at a CO2 conversion of >15%. The catalyst combination was thoroughly characterized via an extensive complement of techniques. Specifically, operando X-ray absorption spectroscopy (XAS) reveals that Zn (which plays a crucial role of providing a hydrogenating function, improving the stability of the overall catalyst combination and isomerization performance) is likely present in the form of Zn6O6 clusters within the zeolite component, in contrast to previously reported estimations.
Collapse
Affiliation(s)
- Abhay Dokania
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Samy Ould-Chikh
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Jose Luis Cerrillo
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Antonio Aguilar
- Institut
Neel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Artem Russkikh
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Ahmed Alkhalaf
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Idoia Hita
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Anastasiya Bavykina
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Genrikh Shterk
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Nimer Wehbe
- King
Abdullah University of Science and Technology, Imaging and Characterization Core Laboratories, Thuwal 23955, Saudi Arabia
| | - Alain Prat
- Institut
Neel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Eric Lahera
- OSUG,
UMS 832 CNRS-Université Grenoble Alpes, F-38041 Grenoble, France
| | - Pedro Castaño
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| | - Emiliano Fonda
- Synchrotron
SOLEIL, L’orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Jean-Louis Hazemann
- Institut
Neel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Jorge Gascon
- King
Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
26
|
Wang LX, Wang L, Xiao FS. Tuning product selectivity in CO 2 hydrogenation over metal-based catalysts. Chem Sci 2021; 12:14660-14673. [PMID: 34820082 PMCID: PMC8597847 DOI: 10.1039/d1sc03109k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Conversion of CO2 into chemicals is a promising strategy for CO2 utilization, but its intricate transformation pathways and insufficient product selectivity still pose challenges. Exploiting new catalysts for tuning product selectivity in CO2 hydrogenation is important to improve the viability of this technology, where reverse water-gas shift (RWGS) and methanation as competitive reactions play key roles in controlling product selectivity in CO2 hydrogenation. So far, a series of metal-based catalysts with adjustable strong metal-support interactions, metal surface structure, and local environment of active sites have been developed, significantly tuning the product selectivity in CO2 hydrogenation. Herein, we describe the recent advances in the fundamental understanding of the two reactions in CO2 hydrogenation, in terms of emerging new catalysts which regulate the catalytic structure and switch reaction pathways, where the strong metal-support interactions, metal surface structure, and local environment of the active sites are particularly discussed. They are expected to enable efficient catalyst design for minimizing the deep hydrogenation and controlling the reaction towards the RWGS reaction. Finally, the potential utilization of these strategies for improving the performance of industrial catalysts is examined.
Collapse
Affiliation(s)
- Ling-Xiang Wang
- Department of Chemistry, Zhejiang University Hangzhou 310028 China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
27
|
Pawelec B, Guil-López R, Mota N, Fierro JLG, Navarro Yerga RM. Catalysts for the Conversion of CO 2 to Low Molecular Weight Olefins-A Review. MATERIALS 2021; 14:ma14226952. [PMID: 34832354 PMCID: PMC8622015 DOI: 10.3390/ma14226952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/05/2023]
Abstract
There is a large worldwide demand for light olefins (C2=-C4=), which are needed for the production of high value-added chemicals and plastics. Light olefins can be produced by petroleum processing, direct/indirect conversion of synthesis gas (CO + H2) and hydrogenation of CO2. Among these methods, catalytic hydrogenation of CO2 is the most recently studied because it could contribute to alleviating CO2 emissions into the atmosphere. However, due to thermodynamic reasons, the design of catalysts for the selective production of light olefins from CO2 presents different challenges. In this regard, the recent progress in the synthesis of nanomaterials with well-controlled morphologies and active phase dispersion has opened new perspectives for the production of light olefins. In this review, recent advances in catalyst design are presented, with emphasis on catalysts operating through the modified Fischer-Tropsch pathway. The advantages and disadvantages of olefin production from CO2 via CO or methanol-mediated reaction routes were analyzed, as well as the prospects for the design of a single catalyst for direct olefin production. Conclusions were drawn on the prospect of a new catalyst design for the production of light olefins from CO2.
Collapse
|
28
|
Wang W, Wang X, Zhang G, Wang K, Zhang F, Yan T, Miller JT, Guo X, Song C. CO2 Hydrogenation to Olefin-Rich Hydrocarbons Over Fe-Cu Bimetallic Catalysts: An Investigation of Fe-Cu Interaction and Surface Species. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.708014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported a strong Fe-Cu synergy in CO2 hydrogenation to olefin-rich C2+ hydrocarbons over the γ-Al2O3 supported bimetallic Fe-Cu catalysts. In this work, we aimed to clarify such a synergy by investigating the catalyst structure, Fe-Cu interaction, and catalyst surface properties through a series of characterizations. H2-TPR results showed that the addition of Cu made both Fe and Cu easier to reduce via the strong interaction between Fe and Cu. It was further confirmed by X-ray absorption spectroscopy (XAS) and TEM, which showed the presence of metallic Fe and Fe-Cu alloy phases in the reduced Fe-Cu(0.17) catalyst induced by Cu addition. By correlating TPD results with the reaction performance, we found that the addition of Cu enhanced both the moderately and strongly adsorbed H2 and CO2 species, consequently enhanced CO2 conversion and C2+ selectivity. Adding K increased the adsorbed-CO2/adsorbed-H2 ratio by greatly enhancing the moderately and strongly adsorbed CO2 and slightly suppressing the moderately and strongly adsorbed H2, resulting in a significantly increased O/P ratio in the produced hydrocarbons. The product distribution analysis and in situ DRIFTS suggested that CO2 hydrogenation over the Fe-Cu catalyst involved both an indirect route with CO as the primary product and a direct route to higher hydrocarbons.
Collapse
|
29
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
30
|
Sánchez-López P, Kotolevich Y, Yocupicio-Gaxiola RI, Antúnez-García J, Chowdari RK, Petranovskii V, Fuentes-Moyado S. Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Front Chem 2021; 9:716745. [PMID: 34434919 PMCID: PMC8380812 DOI: 10.3389/fchem.2021.716745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
This article reviews the current state and development of thermal catalytic processes using transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of theoretical studies to understand the details of the catalytic processes. Structural features inherent to zeolites, and their corresponding properties such as ion exchange capacity, stable and very regular microporosity, the ability to create additional mesoporosity, as well as the potential chemical modification of their properties by isomorphic substitution of tetrahedral atoms in the crystal framework, make them unique catalyst carriers. New methods that modify zeolites, including sequential ion exchange, multiple isomorphic substitution, and the creation of hierarchically porous structures both during synthesis and in subsequent stages of post-synthetic processing, continue to be discovered. TM/Z catalysts can be applied to new processes such as CO2 capture/conversion, methane activation/conversion, selective catalytic NOx reduction (SCR-deNOx), catalytic depolymerization, biomass conversion and H2 production/storage.
Collapse
Affiliation(s)
- Perla Sánchez-López
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Yulia Kotolevich
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | | | - Joel Antúnez-García
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Ramesh Kumar Chowdari
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Vitalii Petranovskii
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Sergio Fuentes-Moyado
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| |
Collapse
|
31
|
Yao R, Wei J, Ge Q, Xu J, Han Y, Xu H, Sun J. Structure sensitivity of iron oxide catalyst for CO2 hydrogenation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Sibi MG, Verma D, Setiyadi HC, Khan MK, Karanwal N, Kwak SK, Chung KY, Park JH, Han D, Nam KW, Kim J. Synthesis of Monocarboxylic Acids via Direct CO 2 Conversion over Ni–Zn Intermetallic Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro,
Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro,
Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Handi Cayadi Setiyadi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Muhammad Kashif Khan
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro,
Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Neha Karanwal
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan 44919, Republic of Korea
| | - Kyung Yoon Chung
- Center for Energy Storage Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae-Ho Park
- Center for Energy Storage Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro,
Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| |
Collapse
|
33
|
Tian P, Gu M, Qiu R, Yang Z, Xuan F, Zhu M. Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Tian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runfa Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zixu Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhen Xuan
- Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
34
|
Cui Y, Guo L, Gao W, Wang K, Zhao H, He Y, Zhang P, Yang G, Tsubaki N. From Single Metal to Bimetallic Sites: Enhanced Higher Hydrocarbons Yield of CO
2
Hydrogenation over Bimetallic Catalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202101072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Cui
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Lisheng Guo
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Weizhe Gao
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Kangzhou Wang
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Heng Zhao
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Yingluo He
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Peipei Zhang
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Guohui Yang
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Noritatsu Tsubaki
- Department of Applied Chemistry School of Engineering University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| |
Collapse
|
35
|
Karabulut D, Akyalcin S. Friedel-Crafts alkylation of benzene with benzyl alcohol over H-MCM-22. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
MCM-22 was synthesized by using silicic acid powder as a silica source under the static hydrothermal condition and characterized by X-ray diffraction, nitrogen adsorption-desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The liquid phase benzylation of benzene with benzyl alcohol to diphenylmethane was investigated over H-MCM-22. The effects of reaction parameters on the conversion of benzyl alcohol and product distribution were determined. Under optimal reaction conditions, diphenylmethane yield of 92.1% was achieved for 99.3% conversion of benzyl alcohol in 3 h of reaction period. The reusability of the catalyst was also investigated after calcination of the catalyst in stagnant air at 500 °C for 4 h. The results show that the organic species produced during the reaction deposited in the catalyst lead to the deactivation of the catalyst and the calcination of the deactivated catalyst causes catalyst dealumination.
Collapse
|
36
|
Yang X, Sun W, Ma M, Xu C, Ren R, Qiao J, Wang Z, Li Z, Zhen S, Sun K. Achieving Highly Efficient Carbon Dioxide Electrolysis by In Situ Construction of the Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20060-20069. [PMID: 33886263 DOI: 10.1021/acsami.1c02146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of active cathode catalysts, with abundant active sites and outstanding catalytic activity for CO2 electroreduction, is important to promote the development of solid oxide electrolysis cells (SOECs). Herein, A-site-deficient perovskite oxide (La0.2Sr0.8)0.9Ti0.5Mn0.4Cu0.1O3-δ (LSTMC) is synthesized and studied as a promising cathode for SOECs. Cu nanoparticles can be rapidly and uniformly in situ-exsolved under reducing conditions. The heterostructure formed by the exsoluted Cu and LSTMC provides abundant active sites for the catalytic conversion of CO2 to CO. Combined with the remarkable oxygen-ion transport capacity of the LSTMC substrate, the specially designed Cu@LSTMC cathode exhibits a dramatically improved electrochemical performance. Furthermore, first-principles calculations proposed a mechanism for the adsorption and activation of CO2 by the heterostructure. Electrochemically, the Cu@LSTMC presents a high current density of 2.82 A cm-2 at 1.8 V and 800 °C, which is about 2.5 times higher than that of LSTM (1.09A cm-2).
Collapse
Affiliation(s)
- Xiaoxia Yang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wang Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Minjian Ma
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chunming Xu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Rongzheng Ren
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinshuo Qiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shuying Zhen
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100081, People's Republic of China
| | - Kening Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
37
|
Cui WG, Li YT, Yu L, Zhang H, Hu TL. Zeolite-Encapsulated Ultrasmall Cu/ZnO x Nanoparticles for the Hydrogenation of CO 2 to Methanol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18693-18703. [PMID: 33852283 DOI: 10.1021/acsami.1c00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective hydrogenation of CO2 to methanol is a "two birds, one stone" technology to mitigate the greenhouse effect and solve the energy demand-supply deficit. Cu-based catalysts can effectively catalyze this reaction but suffer from low catalytic stability caused by the sintering of Cu species. Here, we report a series of zeolite-fixed catalysts Cu/ZnOx(Y)@Na-ZSM-5 (Y is the mass ratios of Cu/Zn in the catalysts) with core-shell structures to overcome this issue and strengthen the transformation. Fascinatingly, in this work, we first employed bimetallic metal-organic framework, CuZn-HKUST-1, nanoparticles (NPs) as a sacrificial agent to introduce ultrasmall Cu/ZnOx NPs (∼2 nm) into the crystalline particles of the Na-ZSM-5 zeolite via a hydrothermal synthesis method. The catalytic results showed that the optimized zeolite-encapsulated Cu/ZnOx(1.38)@Na-ZSM-5 catalyst exhibited the space time yield of methanol (STYMeOH) of 44.88 gMeOH·gCu-1·h-1, much more efficient than the supported Cu/ZnOx/Na-ZSM-5 catalyst (13.32 gMeOH·gCu-1·h-1) and industrial Cu/ZnO/Al2O3 catalyst (8.46 gMeOH·gCu-1·h-1) under identical conditions. Multiple studies demonstrated that the confinement in the zeolite formwork affords an intimate surrounding for the active phase to create synergies and avoid the separation of Cu-ZnOx interfaces, which results in an improved performance. More importantly, in the long-term test, the Cu/ZnOx(1.38)@Na-ZSM-5 catalyst exhibited constant STYMeOH with superior durability benefitted from its fixed structure. The current findings demonstrate the importance of confinement effects in designing highly efficient and stable methanol synthesis catalysts.
Collapse
Affiliation(s)
- Wen-Gang Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| |
Collapse
|
38
|
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Wang X, Zeng C, Gong N, Zhang T, Wu Y, Zhang J, Song F, Yang G, Tan Y. Effective Suppression of CO Selectivity for CO 2 Hydrogenation to High-Quality Gasoline. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - ChunYang Zeng
- China Petroleum Chemical Industry Federation, Beijing 100723, China
| | - Nana Gong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yingquan Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Junfeng Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Faen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Guohui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Engineering Research Center for Coal-Based Synthesis, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
40
|
Yao B, Xiao T, Makgae OA, Jie X, Gonzalez-Cortes S, Guan S, Kirkland AI, Dilworth JR, Al-Megren HA, Alshihri SM, Dobson PJ, Owen GP, Thomas JM, Edwards PP. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat Commun 2020; 11:6395. [PMID: 33353949 PMCID: PMC7755904 DOI: 10.1038/s41467-020-20214-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022] Open
Abstract
With mounting concerns over climate change, the utilisation or conversion of carbon dioxide into sustainable, synthetic hydrocarbons fuels, most notably for transportation purposes, continues to attract worldwide interest. This is particularly true in the search for sustainable or renewable aviation fuels. These offer considerable potential since, instead of consuming fossil crude oil, the fuels are produced from carbon dioxide using sustainable renewable hydrogen and energy. We report here a synthetic protocol to the fixation of carbon dioxide by converting it directly into aviation jet fuel using novel, inexpensive iron-based catalysts. We prepare the Fe-Mn-K catalyst by the so-called Organic Combustion Method, and the catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). The conversion reaction also produces light olefins ethylene, propylene, and butenes, totalling a yield of 8.7%, which are important raw materials for the petrochemical industry and are presently also only obtained from fossil crude oil. As this carbon dioxide is extracted from air, and re-emitted from jet fuels when combusted in flight, the overall effect is a carbon-neutral fuel. This contrasts with jet fuels produced from hydrocarbon fossil sources where the combustion process unlocks the fossil carbon and places it into the atmosphere, in longevity, as aerial carbon - carbon dioxide.
Collapse
Affiliation(s)
- Benzhen Yao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Tiancun Xiao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Ofentse A Makgae
- Department of Materials, University of Oxford, Parks Roads, Oxford, OX1 3PH, UK
| | - Xiangyu Jie
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- Merton College, University of Oxford, Merton Street, Oxford, OX1 4JD, UK
| | - Sergio Gonzalez-Cortes
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Shaoliang Guan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK
- Harwell-XPS - The EPSRC National Facility for Photoelectron Spectroscopy, Research Complex at Harwell (RCaH), Didcot, Oxon, OX11 0FA, UK
| | - Angus I Kirkland
- Department of Materials, University of Oxford, Parks Roads, Oxford, OX1 3PH, UK
- Electron Physical Sciences Imaging Centre, Diamond Lightsource Ltd., Didcot, Oxford, OX11 0DE, UK
| | - Jonathan R Dilworth
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Hamid A Al-Megren
- Materials Division, King Abdulaziz City for Science and Technology, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Saeed M Alshihri
- Materials Division, King Abdulaziz City for Science and Technology, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Peter J Dobson
- The Queen's College, University of Oxford, Oxford, OX1 4AW, UK
| | - Gari P Owen
- Annwvyn Solutions, 76 Rochester Avenue, Bromley, Kent, BR1 3DW, UK
| | - John M Thomas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Peter P Edwards
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
41
|
Zheng YL, Liu HC, Zhang YW. Engineering Heterostructured Nanocatalysts for CO 2 Transformation Reactions: Advances and Perspectives. CHEMSUSCHEM 2020; 13:6090-6123. [PMID: 32662587 DOI: 10.1002/cssc.202001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
As a conceivable route to achieving anthropological carbon looping, carbon capture and utilization (CCU) technologies employ waste CO2 as an accessible C1 building block to generate upgraded chemicals or fuels, thereby simultaneously remedying environmental issues and energy crises. However, efficient CO2 conversion is disfavored by both its thermodynamics and its kinetics. Heterostructured materials with well-controlled interfaces have great potential for enhanced catalytic performance in various CO2 transformation reactions, owing to the synergistic effects among components, numerous interfacial and/or surface active sites, increased CO2 adsorption capacity, promoted charge transfer efficiency, and unique physicochemical properties. This Review highlights the state of the art in typical heterostructures, such as core-shell, yolk-shell, Janus, hierarchical (branched and hollow), and 2D/2D layered structures, applied for CO2 conversion with various energy inputs (radiation, electricity, heat). Fabrication methods of different heterostructures and structure-composition-performance relationships are also discussed concisely. Finally, a brief summary and prospective research directions are provided. The motivation of this Review is to offer instructive information on the applicability of inorganic heterostructures for CO2 transformation reactions, and it is hoped that further enlightening studies in this field could emerge in the future.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Hai-Chao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
42
|
Goud D, Gupta R, Maligal-Ganesh R, Peter SC. Review of Catalyst Design and Mechanistic Studies for the Production of Olefins from Anthropogenic CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03799] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rimzhim Gupta
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Raghu Maligal-Ganesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
43
|
Xu Y, Zhai P, Deng Y, Xie J, Liu X, Wang S, Ma D. Highly Selective Olefin Production from CO 2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives. Angew Chem Int Ed Engl 2020; 59:21736-21744. [PMID: 32809247 DOI: 10.1002/anie.202009620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Indexed: 11/08/2022]
Abstract
Mn and Na additives have been widely studied to improve the efficiency of CO2 hydrogenation to valuable olefins on Fe catalysts, but their effects on the catalytic properties and mechanism are still under vigorous debate. This study shows that Fe-based catalysts with moderate Mn and Na contents are highly selective for CO2 hydrogenation to olefins, together with low selectivities for both CO and CH4 and much improved space-time olefin yields compared to state-of-the-art catalysts. Combined kinetic assessment and quasi in situ characterizations further unveil that the sole presence of Mn suppresses the activity of Fe catalysts because of the close contact between Fe and Mn, whereas the introduction of Na mediates the Fe-Mn interaction and provides strong basic sites. This subtle synergy between Na and Mn sheds light on the importance of the interplay of multiple additives that could bring an enabling strategy to improve catalytic activity and selectivity.
Collapse
Affiliation(s)
- Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Peng Zhai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Jinglin Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Xi Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, P. R. China.,Synfuels China, Beijing, 100195, P. R. China
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 36100, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
44
|
Noreen A, Li M, Fu Y, Amoo CC, Wang J, Maturura E, Du C, Yang R, Xing C, Sun J. One-Pass Hydrogenation of CO 2 to Multibranched Isoparaffins over Bifunctional Zeolite-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aqsa Noreen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Mingquan Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Yajie Fu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Cederick Cyril Amoo
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiayuan Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Elton Maturura
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Ce Du
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Ruiqin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Chuang Xing
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
45
|
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
46
|
Jiang H, Hou Z, Luo Y. A Kinetic View on Proximity-Dependent Selectivity of Carbon Dioxide Reduction on Bifunctional Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Zhang Q, Yu J, Corma A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002927. [PMID: 32697378 DOI: 10.1002/adma.202002927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Indexed: 05/21/2023]
Abstract
C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| |
Collapse
|
48
|
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO 2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020; 6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO2 emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO2 hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C2+) faces greater challenges. Highly efficient synthesis of C2+ products from CO2 hydrogenation can be achieved by a reaction coupling strategy that first converts CO2 to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
Collapse
Affiliation(s)
- Peng Gao
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Lina Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Zixuan Zhou
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Shanghai
Institute of Clean Technology, Shanghai 201620, P.R.
China
| |
Collapse
|
49
|
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Highly Selective Olefin Production from CO
2
Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|