1
|
Borden O, Joseph BT, Head MC, Ammons OA, Kim DE, Bonino AC, Keith JM, Chianese AR. Highly Enantiomerically Enriched Secondary Alcohols via Epoxide Hydrogenolysis. Organometallics 2024; 43:1490-1501. [PMID: 38993820 PMCID: PMC11234370 DOI: 10.1021/acs.organomet.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
In this article, we report the development of ruthenium-catalyzed hydrogenolysis of epoxides to selectively give the branched (Markovnikov) alcohol products. In contrast to previously reported catalysts, the use of Milstein's PNN-pincer-ruthenium complex at room temperature allows the conversion of enantiomerically enriched epoxides to secondary alcohols without racemization of the product. The catalyst is effective for a range of aryl epoxides, alkyl epoxides, and glycidyl ethers and is the first homogeneous system to selectively promote hydrogenolysis of glycidol to 1,2-propanediol, without loss of enantiomeric purity. A detailed mechanistic study was conducted, including experimental observations of catalyst speciation under catalytically relevant conditions, comprehensive kinetic characterization of the catalytic reaction, and computational analysis via density functional theory. Heterolytic hydrogen cleavage is mediated by the ruthenium center and exogenous alkoxide base. Epoxide ring opening occurs through an opposite-side attack of the ruthenium hydride on the less-hindered epoxide carbon, giving the branched alcohol product selectively.
Collapse
Affiliation(s)
- Olivia
J. Borden
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Marianna C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Obsidian A. Ammons
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Diane Eun Kim
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Abigail C. Bonino
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
2
|
Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat Chem 2022; 14:1233-1241. [PMID: 36097055 DOI: 10.1038/s41557-022-01036-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N-H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N-M' group (M' = alkali metals) for the N-H moiety using a large excess of metal alkoxides (M'OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn-NLi). Kinetic studies show that the rate of hydride transfer from HMn-NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn-NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn-NLi as the active catalyst, whereas HMn-NH is much less effective. These results highlight the superiority of M/NM' bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Haobo Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hengxu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China. .,College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
|
4
|
Hamza A, Sorochkina K, Kótai B, Chernichenko K, Berta D, Bolte M, Nieger M, Repo T, Pápai I. Origin of Stereoselectivity in FLP-Catalyzed Asymmetric Hydrogenation of Imines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Kristina Sorochkina
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Bianka Kótai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Konstantin Chernichenko
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Dénes Berta
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Michael Bolte
- Institute of Inorganic Chemistry, Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Timo Repo
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|