1
|
Courtney DK, Su Y, Jacobson T, Khana D, Ailiani A, Amador-Noguez D, Pfleger BF. Relative Activities of the β-ketoacyl-CoA and Acyl-CoA Reductases Influence Product Profile and Flux in a Reversed β-Oxidation Pathway. ACS Catal 2023; 13:5914-5925. [PMID: 38094510 PMCID: PMC10718561 DOI: 10.1021/acscatal.3c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The β-Oxidation pathway, normally involved in the catabolism of fatty acids, can be functionally made to act as a fermentative, iterative, elongation pathway when driven by the activity of a trans-enoyl-CoA reductase. The terminal acyl-CoA reduction to alcohol can occur on substrates with varied chain lengths, leading to a broad distribution of fermentation products in vivo. Tight control of the average chain length and product profile is desirable as chain length greatly influences molecular properties and commercial value. Lacking a termination enzyme with a narrow chain length preference, we sought alternative factors that could influence the product profile and pathway flux in the iterative pathway. In this study, we reconstituted the reversed β-oxidation (R-βox) pathway in vitro with a purified tri-functional complex (FadBA) responsible for the thiolase, enoyl-CoA hydratase and hydroxyacyl-CoA dehydrogenase activities, a trans-enoyl-CoA reductase (TER), and an acyl-CoA reductase (ACR). Using this system, we determined the rate limiting step of the elongation cycle and demonstrated that by controlling the ratio of these three enzymes and the ratio of NADH and NADPH, we can influence the average chain length of the alcohol product profile.
Collapse
Affiliation(s)
- Dylan K. Courtney
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Tyler Jacobson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Daven Khana
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Aditya Ailiani
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
2
|
Peoples J, Ruppe S, Mains K, Cipriano EC, Fox JM. A Kinetic Framework for Modeling Oleochemical Biosynthesis in E. coli. Biotechnol Bioeng 2022; 119:3149-3161. [PMID: 35959746 DOI: 10.1002/bit.28209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Microorganisms build fatty acids with biocatalytic assembly lines, or fatty acid synthases (FASs), that can be repurposed to produce a broad set of fuels and chemicals. Despite their versatility, the product profiles of FAS-based pathways are challenging to adjust without experimental iteration, and off-target products are common. This study uses a detailed kinetic model of the E. coli FAS as a foundation to model nine oleochemical pathways. These models provide good fits to experimental data and help explain unexpected results from in vivo studies. An analysis of pathways for alkanes and fatty acid ethyl esters, for example, suggests that reductions in titer caused by enzyme overexpression-an experimentally consistent phenomenon-can result from shifts in metabolite pools that are incompatible with the substrate specificities of downstream enzymes, and a focused examination of multiple alcohol pathways indicates that coordinated shifts in enzyme concentrations provide a general means of tuning the product profiles of pathways with promiscuous components. The study concludes by integrating all models into a graphical user interface. The models supplied by this work provide a versatile kinetic framework for studying oleochemical pathways in different biochemical contexts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303
| | - Sophia Ruppe
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303
| | - Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303
| | - Elia C Cipriano
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303
| |
Collapse
|
3
|
Busta L, Chapman KD, Cahoon EB. Better together: Protein partnerships for lineage-specific oil accumulation. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102191. [PMID: 35220088 DOI: 10.1016/j.pbi.2022.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Plant-derived oils are a major agricultural product that exist in both ubiquitous forms such as common vegetable oils and in specialized forms such as castor oil and coconut oil. These specialized oils are the result of lineage-specific metabolic pathways that create oils rich in unusual fatty acids. Considerable progress has been made toward understanding the enzymes that mediate fatty acid biosynthesis, triacylglycerol assembly, and oil storage. However, efforts to translate this knowledge into renewable bioproducts via engineered oil-producing plants and algae have had limited success. Here, we review recent evidence that protein-protein interactions in each of the three major phases of oil formation appear to have profound effects on specialized oil accumulation. We suggest that furthering our knowledge of the noncatalytic attributes of enzymes and other proteins involved in oil formation will be a critical step toward creating renewable bioproducts derived from high performing, engineered oilseeds.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA.
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
4
|
Mains K, Peoples J, Fox JM. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab Eng 2021; 69:209-220. [PMID: 34826644 DOI: 10.1016/j.ymben.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
5
|
Belliveau NM, Chure G, Hueschen CL, Garcia HG, Kondev J, Fisher DS, Theriot JA, Phillips R. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Syst 2021; 12:924-944.e2. [PMID: 34214468 PMCID: PMC8460600 DOI: 10.1016/j.cels.2021.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Despite abundant measurements of bacterial growth rate, cell size, and protein content, we lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we estimate the basic requirements and physical constraints on steady-state growth by considering key processes in cellular physiology across a collection of Escherichia coli proteomic data covering ≈4,000 proteins and 36 growth rates. Our analysis suggests that cells are predominantly tuned for the task of cell doubling across a continuum of growth rates; specific processes do not limit growth rate or dictate cell size. We present a model of proteomic regulation as a function of nutrient supply that reconciles observed interdependences between protein synthesis, cell size, and growth rate and propose that a theoretical inability to parallelize ribosomal synthesis places a firm limit on the achievable growth rate. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Griffin Chure
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina L Hueschen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hernan G Garcia
- Department of Molecular Cell Biology and Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proc Natl Acad Sci U S A 2020; 117:23557-23564. [PMID: 32883882 DOI: 10.1073/pnas.2013924117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) of Escherichia coli and paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures-and helps explain-the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives-the total production, unsaturated fraction, and average length of fatty acids-than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.
Collapse
|
8
|
Mindrebo JT, Patel A, Kim WE, Davis TD, Chen A, Bartholow TG, La Clair JJ, McCammon JA, Noel JP, Burkart MD. Gating mechanism of elongating β-ketoacyl-ACP synthases. Nat Commun 2020; 11:1727. [PMID: 32265440 PMCID: PMC7138838 DOI: 10.1038/s41467-020-15455-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Carbon-carbon bond forming reactions are essential transformations in natural product biosynthesis. During de novo fatty acid and polyketide biosynthesis, β-ketoacyl-acyl carrier protein (ACP) synthases (KS), catalyze this process via a decarboxylative Claisen-like condensation reaction. KSs must recognize multiple chemically distinct ACPs and choreograph a ping-pong mechanism, often in an iterative fashion. Here, we report crystal structures of substrate mimetic bearing ACPs in complex with the elongating KSs from Escherichia coli, FabF and FabB, in order to better understand the stereochemical features governing substrate discrimination by KSs. Complemented by molecular dynamics (MD) simulations and mutagenesis studies, these structures reveal conformational states accessed during KS catalysis. These data taken together support a gating mechanism that regulates acyl-ACP binding and substrate delivery to the KS active site. Two active site loops undergo large conformational excursions during this dynamic gating mechanism and are likely evolutionarily conserved features in elongating KSs.
Collapse
Affiliation(s)
- Jeffrey T Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Woojoo E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Joseph P Noel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA. .,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA. .,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
9
|
Enhanced Production of Fatty Acid Ethyl Ester with Engineered fabHDG Operon in Escherichia coli. Microorganisms 2019; 7:microorganisms7110552. [PMID: 31717929 PMCID: PMC6920873 DOI: 10.3390/microorganisms7110552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, or fatty acid ethyl ester (FAEE), is an environmentally safe, next-generation biofuel. Conventionally, FAEE is produced by the conversion of oil/fats, obtained from plants, animals, and microorganisms, by transesterification. Recently, metabolic engineering of bacteria for ready-to-use biodiesel was developed. In Escherichia coli, it is produced by fatty acyl-carrier proteins and ethanol, with the help of thioesterase (TesB) and wax synthase (WS) enzymes. One of the foremost barriers in microbial FAEE production is the feedback inhibition of the fatty acid (FA) operon (fabHDG). Here, we studied the effect of biodiesel biosynthesis in E. coli with an engineered fabHDG operon. With a basic FAEE producing BD1 strain harboring tes and ws genes, biodiesel of 32 mg/L were produced. Optimal FAEE biosynthesis was achieved in the BD2 strain that carries an overexpressed operon (fabH, fabD, and fabG genes) and achieved up to 1291 mg/L of biodiesel, a 40-fold rise compared to the BD1 strain. The composition of FAEE obtained from the BD2 strain was 65% (C10:C2, decanoic acid ethyl ester) and 35% (C12:C2, dodecanoic acid ethyl ester). Our findings indicate that overexpression of the native FA operon, along with FAEE biosynthesis enzymes, improved biodiesel biosynthesis in E. coli.
Collapse
|
10
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|