1
|
Cao Y, Wong HPH, Warwicker J, Hay S, de Visser SP. What is the Origin of the Regioselective C 3-Hydroxylation of L-Arg by the Nonheme Iron Enzyme Capreomycin C? Chemistry 2024; 30:e202402604. [PMID: 39190221 DOI: 10.1002/chem.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
The nonheme iron dioxygenase capreomycin C (CmnC) hydroxylates a free L-arginine amino acid regio- and stereospecifically at the C3-position as part of the capreomycin antibiotics biosynthesis. Little is known on its structure, catalytic cycle and substrate specificity and, therefore, a comprehensive computational study was performed. A large QM cluster model of CmnC was created of 297 atoms and the mechanisms for C3-H, C4-H and C5-H hydroxylation and C3-C4 desaturation were investigated. All low-energy pathways correspond to radical reaction mechanisms with an initial hydrogen atom abstraction followed by OH rebound to form alcohol product complexes. The work is compared to alternative L-Arg hydroxylating nonheme iron dioxygenases and the differences in active site polarity are compared. We show that a tight hydrogen bonding network in the substrate binding pocket positions the substrate in an ideal orientation for C3-H activation, whereby the polar groups in the substrate binding pocket induce an electric field effect that guides the selectivity.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
2
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Hardy FG, Wong HPH, de Visser SP. Computational Study Into the Oxidative Ring-Closure Mechanism During the Biosynthesis of Deoxypodophyllotoxin. Chemistry 2024; 30:e202400019. [PMID: 38323740 DOI: 10.1002/chem.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.
Collapse
Affiliation(s)
- Fintan G Hardy
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
4
|
Mallick S, Mandal T, Kumari N, Roy L, De Sarkar S. Divergent Electrochemical Synthesis of Indoles through pK a Regulation of Amides: Synthetic and Mechanistic Insights. Chemistry 2024; 30:e202304002. [PMID: 38290995 DOI: 10.1002/chem.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.
Collapse
Affiliation(s)
- Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus, Bhubaneswar, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Fu Y, Wang B, Cao Z. Biodegradation of 2,5-Dihydroxypyridine by 2,5-Dihydroxypyridine Dioxygenase and Its Mutants: Insights into O–O Bond Activation and Flexible Reaction Mechanisms from QM/MM Simulations. Inorg Chem 2022; 61:20501-20512. [DOI: 10.1021/acs.inorgchem.2c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Li RN, Chen SL. Mechanism for the Halogenation and Azidation of Lysine Catalyzed by Non-heme Iron BesD Enzyme. Chem Asian J 2022; 17:e202200438. [PMID: 35763338 DOI: 10.1002/asia.202200438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Selective halogenation is important in synthetic chemistry. BesD, a new member of the non-heme Fe(II)/α-ketoglutarate (αKG)-dependent halogenase family, can activate the sp3 C-H bond and halogenate lysine, in particular without a carrier protein. Using the density functional calculations, a chlorination mechanism in BesD has been proposed, mainly including the formation of Cl-Fe(IV)=O through the αKG decarboxylation, the isomerization of Cl-Fe(IV)=O, the substrate hydrogen abstraction by Fe(IV)=O, and the rebound of chloro to the substrate carbon radical. The hydrogen abstraction is rate-limiting. The isomerization of Cl-Fe(IV)=O is essential for the hydrogen abstraction and the chiral selectivity. The BesD-catalyzed bromination and azidation of lysine adopt the same mechanism as the chlorination. The hardly-changed overall barriers indicate that the introduced ligands (X) do not affect the reaction rate significantly, implying that the X-introduced reactions catalyzed by BesD may be extended to other X anions.
Collapse
Affiliation(s)
- Rui-Ning Li
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 100081, Beijing, CHINA
| | - Shi-Lu Chen
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 5th, ZhongGuanCun South Street, 100081, Beijing, CHINA
| |
Collapse
|
7
|
Ali HS, de Visser SP. Electrostatic Perturbations in the Substrate-Binding Pocket of Taurine/α-Ketoglutarate Dioxygenase Determine its Selectivity. Chemistry 2022; 28:e202104167. [PMID: 34967481 PMCID: PMC9304159 DOI: 10.1002/chem.202104167] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Taurine/α-ketoglutarate dioxygenase is an important enzyme that takes part in the cysteine catabolism process in the human body and selectively hydroxylates taurine at the C1 -position. Recent computational studies showed that in the gas-phase the C2 -H bond of taurine is substantially weaker than the C1 -H bond, yet no evidence exists of 2-hydroxytaurine products. To this end, a detailed computational study on the selectivity patterns in TauD was performed. The calculations show that the second-coordination sphere and the protonation states of residues play a major role in guiding the enzyme to the right selectivity. Specifically, a single proton on an active site histidine residue can change the regioselectivity of the reaction through its electrostatic perturbations in the active site and effectively changes the C1 -H and C2 -H bond strengths of taurine. This is further emphasized by many polar and hydrogen bonding interactions of the protein cage in TauD with the substrate and the oxidant that weaken the pro-R C1 -H bond and triggers a chemoselective reaction process. The large cluster models reproduce the experimental free energy of activation excellently.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
8
|
Nath R, Manna RN, Paul A. Decoding Regioselective Reaction Mechanism of the Gentisic Acid Catalyzed by Gentisate 1,2-Dioxygenase Enzyme. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00510g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gentisate 1,2-dioxygenase (GDO), a ring-fission non-heme dioxygenase enzyme, displays a unique regioselective reaction of gentisic acid (GTQ) in the presence of molecular oxygen. GTQ is an important intermediate in the...
Collapse
|
9
|
Wong HPH, Mokkawes T, de Visser SP. Can the isonitrile biosynthesis enzyme ScoE assist with the biosynthesis of isonitrile groups in drug molecules? A computational study. Phys Chem Chem Phys 2022; 24:27250-27262. [DOI: 10.1039/d2cp03409c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational studies show that the isonitrile synthesizing enzyme ScoE can catalyse the conversion of γ-Gly substituents in substrates to isonitrile. This enables efficient isonitrile substitution into target molecules such as axisonitrile-1.
Collapse
Affiliation(s)
- Henrik P. H. Wong
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Lin YT, Ali HS, de Visser S. Biodegradation of herbicides by a plant nonheme iron dioxygenase: mechanism and selectivity of substrate analogues. Chemistry 2021; 28:e202103982. [PMID: 34911156 DOI: 10.1002/chem.202103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogs by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C 2 -hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R - and S -methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R -isomer give high rebound barriers.
Collapse
Affiliation(s)
- Yen-Ting Lin
- UoM: The University of Manchester, Chemical Engineering and Analytical Science, UNITED KINGDOM
| | - Hafiz S Ali
- UoM: The University of Manchester, Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
11
|
Yeh CCG, Pierides C, Jameson GNL, de Visser SP. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study. Chemistry 2021; 27:13793-13806. [PMID: 34310770 DOI: 10.1002/chem.202101878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/09/2022]
Abstract
Thiol dioxygenases are important enzymes for human health; they are involved in the detoxification and catabolism of toxic thiol-containing natural products such as cysteine. As such, these enzymes have relevance to the development of Alzheimer's and Parkinson's diseases in the brain. Recent crystal structure coordinates of cysteine and 3-mercaptopropionate dioxygenase (CDO and MDO) showed major differences in the second-coordination spheres of the two enzymes. To understand the difference in activity between these two analogous enzymes, we created large, active-site cluster models. We show that CDO and MDO have different iron(III)-superoxo-bound structures due to differences in ligand coordination. Furthermore, our studies show that the differences in the second-coordination sphere and particularly the position of a positively charged Arg residue results in changes in substrate positioning, mobility and enzymatic turnover. Furthermore, the substrate scope of MDO is explored with cysteinate and 2-mercaptosuccinic acid and their reactivity is predicted.
Collapse
Affiliation(s)
- C-C George Yeh
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christos Pierides
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Vic, 3010, Australia
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
12
|
Density Functional Theory Study into the Reaction Mechanism of Isonitrile Biosynthesis by the Nonheme Iron Enzyme ScoE. Top Catal 2021. [DOI: 10.1007/s11244-021-01460-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe nonheme iron enzyme ScoE catalyzes the biosynthesis of an isonitrile substituent in a peptide chain. To understand details of the reaction mechanism we created a large active site cluster model of 212 atoms that contains substrate, the active oxidant and the first- and second-coordination sphere of the protein and solvent. Several possible reaction mechanisms were tested and it is shown that isonitrile can only be formed through two consecutive catalytic cycles that both use one molecule of dioxygen and α-ketoglutarate. In both cycles the active species is an iron(IV)-oxo species that in the first reaction cycle reacts through two consecutive hydrogen atom abstraction steps: first from the N–H group and thereafter from the C–H group to desaturate the NH-CH2 bond. The alternative ordering of hydrogen atom abstraction steps was also tested but found to be higher in energy. Moreover, the electronic configurations along that pathway implicate an initial hydride transfer followed by proton transfer. We highlight an active site Lys residue that is shown to donate charge in the transition states and influences the relative barrier heights and bifurcation pathways. A second catalytic cycle of the reaction of iron(IV)-oxo with desaturated substrate starts with hydrogen atom abstraction followed by decarboxylation to give isonitrile directly. The catalytic cycle is completed with a proton transfer to iron(II)-hydroxo to generate the iron(II)-water resting state. The work is compared with experimental observation and previous computational studies on this system and put in a larger perspective of nonheme iron chemistry.
Collapse
|
13
|
Lin YT, Ali HS, de Visser SP. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry 2021; 27:8851-8864. [PMID: 33978257 DOI: 10.1002/chem.202100791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/08/2022]
Abstract
The nonheme iron dioxygenase 2-(trimethylammonio)-ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio- and chemoselective hydroxylation at the C1 -position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2 -H bond in favor of C1 -hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)-oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1 -hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1 -H and C2 -H bonds of the substrate, and strongly strengthens the C2 -H bond in the substrate-bound orientation.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hafiz Saqib Ali
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
14
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
15
|
Banerjee A, Li J, Molenda MA, Opalade AA, Adhikary A, Brennessel WW, Malkhasian AYS, Jackson TA, Chavez FA. Probing the Mechanism for 2,4'-Dihydroxyacetophenone Dioxygenase Using Biomimetic Iron Complexes. Inorg Chem 2021; 60:7168-7179. [PMID: 33900072 DOI: 10.1021/acs.inorgchem.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis and characterization of [Fe(T1Et4iPrIP)(2-OH-AP)(OTf)](OTf) (2), [Fe(T1Et4iPrIP)(2-O-AP)](OTf) (3), and [Fe(T1Et4iPrIP)(DMF)3](OTf)3 (4) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; 2-OH-AP = 2-hydroxyacetophenone, and 2-O-AP- = monodeprotonated 2-hydroxyacetophenone). Both 2 and 3 serve as model complexes for the enzyme-substrate adduct for the nonheme enzyme 2,4'-dihydroacetophenone (DHAP) dioxygenase or DAD, while 4 serves as a model for the ferric form of DAD. Complexes 2-4 have been characterized by X-ray crystallography which reveals T1Et4iPrIP to bind iron in a tridentate fashion. Complex 2 additionally contains a bidentate 2-OH-AP ligand and a monodentate triflate ligand yielding distorted octahedral geometry, while 3 possesses a bidentate 2-O-AP- ligand and exhibits distorted trigonal bipyramidal geometry (τ = 0.56). Complex 4 displays distorted octahedral geometry with 3 DMF ligands completing the ligand set. The UV-vis spectrum of 2 matches more closely to the DAD-substrate spectrum than 3, and therefore, it is believed that the substrate for DAD is bound in the protonated form. TD-DFT studies indicate that visible absorption bands for 2 and 3 are due to MLCT bands. Complexes 2 and 3 are capable of oxidizing the coordinated substrate mimics in a stoichiometric and catalytic fashion in the presence of O2. Complex 4 does not convert 2-OH-AP to products under the same catalytic conditions; however, it becomes anaerobically reduced in the presence of 2 equiv 2-OH-AP to 2.
Collapse
Affiliation(s)
- Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), P D Patel Institute of Applied Sciences, 388421 Anand, Gujrat, India
| | - Jia Li
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Monika A Molenda
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | | | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ferman A Chavez
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| |
Collapse
|
16
|
Han SB, Ali HS, de Visser SP. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction. Inorg Chem 2021; 60:4800-4815. [DOI: 10.1021/acs.inorgchem.0c03749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sungho Bosco Han
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
17
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Latifi R, Minnick JL, Quesne MG, de Visser SP, Tahsini L. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways. Dalton Trans 2020; 49:4266-4276. [PMID: 32141456 DOI: 10.1039/d0dt00007h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA base repair mechanisms of alkylated DNA bases is an important reaction in chemical biology and particularly in the human body. It is typically catalyzed by an α-ketoglutarate-dependent nonheme iron dioxygenase named the AlkB repair enzyme. In this work we report a detailed computational study into the structure and reactivity of AlkB repair enzymes with alkylated DNA bases. In particular, we investigate the aliphatic hydroxylation and C[double bond, length as m-dash]C epoxidation mechanisms of alkylated DNA bases by a high-valent iron(iv)-oxo intermediate. Our computational studies use quantum mechanics/molecular mechanics methods on full enzymatic structures as well as cluster models on active site systems. The work shows that the iron(iv)-oxo species is rapidly formed after dioxygen binding to an iron(ii) center and passes a bicyclic ring structure as intermediate. Subsequent cluster models explore the mechanism of substrate hydroxylation and epoxidation of alkylated DNA bases. The work shows low energy barriers for substrate activation and consequently energetically feasible pathways are predicted. Overall, the work shows that a high-valent iron(iv)-oxo species can efficiently dealkylate alkylated DNA bases and return them into their original form.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Matthew G Quesne
- Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon, OX110FA, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, 131 Princess Street, Manchester M1 7DN, UK.
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
19
|
Kaur M, Kaur B, Kaur J, Kaur A, Bhatti R, Singh P. Role of water in cyclooxygenase catalysis and design of anti-inflammatory agents targeting two sites of the enzyme. Sci Rep 2020; 10:10764. [PMID: 32612190 PMCID: PMC7329864 DOI: 10.1038/s41598-020-67655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/12/2020] [Indexed: 11/15/2022] Open
Abstract
While designing the anti-inflammatory agents targeting cyclooxygenase-2 (COX-2), we first identified a water loop around the heme playing critical role in the enzyme catalysis. The results of molecular dynamic studies supported by the strong hydrogen-bonding equilibria of the participating atoms, radical stabilization energies, the pKa of the H-donor/acceptor sites and the cyclooxygenase activity of pertinent muCOX-2 ravelled the working of the water–peptide channel for coordinating the flow of H·/electron between the heme and Y385. Based on the working of H·/electron transfer channel between the 12.5 Å distant radical generation and the radical disposal sites, a series of molecules was designed and synthesized. Among this category of compounds, an appreciably potent anti-inflammatory agent exhibiting IC50 0.06 μM against COX-2 and reversing the formalin induced analgesia and carageenan induced inflammation in mice by 90% was identified. Further it was revealed that, justifying its bidentate design, the compound targets water loop (heme bound site) and the arachidonic acid binding pockets of COX-2.
Collapse
Affiliation(s)
- Manpreet Kaur
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Baljit Kaur
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Jagroop Kaur
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Palwinder Singh
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
20
|
Yan J, Chen S. How To Produce Methane Precursor in the Upper Ocean by An Untypical Non‐Heme Fe‐Dependent Methylphosphonate Synthase? Chemphyschem 2020; 21:385-396. [DOI: 10.1002/cphc.202000025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ji‐Fan Yan
- Key Laboratory of Cluster Science of Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Shi‐Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
21
|
Manna RN, Dutta M, Jana B. Mechanistic study of the ATP hydrolysis reaction in dynein motor protein. Phys Chem Chem Phys 2019; 22:1534-1542. [PMID: 31872818 DOI: 10.1039/c9cp02194a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynein, a large and complex motor protein, harnesses energy from adenosine triphosphate (ATP) hydrolysis to regulate essential cellular activities. The ATP hydrolysis mechanism for the dynein motor is still shrouded in mystery. Herein, molecular dynamics simulations of a dynein motor disclosed that two water molecules are present close to the γ-phosphate of ATP and Glu1742 at the AAA1 site of dynein. We have proposed three possible mechanisms for the ATP hydrolysis. We divulge by using a quantum mechanics/molecular mechanics (QM/MM) study that two water molecules and Glu1742 are crucial for facilitating the ATP hydrolysis reaction in dynein. Moreover, the ATP hydrolysis step is initiated by the activation of lytic water (W1) by Glu1742 through relay proton transfers with the help of auxiliary water (W2) yielding HPO42- and ADP, as a product. In the next step, a proton is shifted back from Glu1742 to generate inorganic phosphate (H2PO4-) via another relay proton transfer event. The overall activation barrier for the Glu1742 assisted ATP hydrolysis is found to be the most favourable pathway compared to other plausible pathways. We also unearthed that ATP hydrolysis in dynein follows a so-called associative-like pathway in its rate-limiting step. Our study ascertained the important indirect roles of the two amino acids (such as Arg2109, Asn1792) and Mg2+ ion in the ATP hydrolysis of dynein. Additionally, multiple sequence alignment of the different organisms of dynein motors has conveyed the evolutionary importance of the Glu1742, Asn1742, and Arg2109 residues, respectively. As similar mechanisms are also prevalent in other motors, and GTPase and ATPase enzymes, the present finding spells out the definitive requirement of a proton relay process through an extended water-chain as one of the key components in an enzymatic ATP hydrolysis reaction.
Collapse
Affiliation(s)
- Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Mandira Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
22
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
23
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
24
|
Singh W, Quinn D, Moody TS, Huang M. Reaction Mechanism of Histone Demethylation in αKG-dependent Non-Heme Iron Enzymes. J Phys Chem B 2019; 123:7801-7811. [PMID: 31469562 DOI: 10.1021/acs.jpcb.9b06064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histone demethylases (KDMs) catalyze histone lysine demethylation, an important epigenetic process that controls gene expression in eukaryotes, and represent important cancer drug targets for cancer treatment. Demethylation of histone is comprised of sequential reaction steps including oxygen activation, decarboxylation, and demethylation. The initial oxygen binding and activation steps have been studied. However, the information on the complete catalytic reaction cycle is limited, which has impeded the structure-based design of inhibitors targeting KDMs. Here we report the mechanism of the complete reaction steps catalyzed by a representative nonheme iron αKG-dependent KDM, PHF8 using QM/MM approaches. The atomic-level understanding on the complete reaction mechanism of PHF8 would shed light on the structure-based design of selective inhibitors targeting KDMs to intervene in cancer epigenetics.
Collapse
Affiliation(s)
- Warispreet Singh
- School of Chemistry & Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast BT9 5AG , Northern Ireland , United Kingdom.,Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom
| | - Derek Quinn
- Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom
| | - Thomas S Moody
- Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate , Athlone , Co. Roscommon , Ireland
| | - Meilan Huang
- School of Chemistry & Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast BT9 5AG , Northern Ireland , United Kingdom
| |
Collapse
|
25
|
Li S, Lu J, Lai W. Mechanistic insights into ring cleavage of hydroquinone by PnpCD from quantum mechanical/molecular mechanical calculations. Org Biomol Chem 2019; 17:8194-8205. [DOI: 10.1039/c9ob01084j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations for ring cleavage of hydroquinone by PnpCD show that Asn258 loses coordination to the iron when the reaction begins. The first-sphere Glu262 can act as an acid–base catalyst to lower the rate-limiting barrier.
Collapse
Affiliation(s)
- Senzhi Li
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Jiarui Lu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenzhen Lai
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|