1
|
Hu T, Yue Z, Wang Y, Yu Y, Chang Y, Pei L, Chen W, Han P, Martens W, Waclawik ER, Wu H, Yong Zhu H, Jia J. Cu@CuO x/WO 3 with photo-regulated singlet oxygen and oxygen adatoms generation for selective photocatalytic aromatic amines to imines. J Colloid Interface Sci 2024; 663:632-643. [PMID: 38430833 DOI: 10.1016/j.jcis.2024.02.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Photocatalysts can absorb light and activate molecular O2 under mild conditions, but the generation of unsuitable reactive oxygen species often limits their use in synthesizing fine chemicals. To address this issue, we disperse 1 wt% copper on tungsten trioxide (WO3) support to create an efficient catalyst for selective oxidative coupling of aromatic amines to imines under sunlight irradiation at room temperature. Copper consists of a metallic copper core and an oxide shell. Experimental and density functional theory calculations have confirmed that Cu2O is the primary activation site. Under λ < 475 nm, the light excites electrons of the valence bands in Cu2O and WO3, which activate O2 to superoxide radical •O2-. Then rapidly transforms into oxygen adatoms (•O) and oxygen anion radicals (•O-) species on the surface of Cu2O. Simultaneously, it is captured by holes in the WO3 valence band to generate singlet oxygen (1O2). •O bind to 1O2 promoting the coupling reaction of amines. When λ > 475 nm, intense light absorption due to the localized surface plasmon resonance excites numerous electrons in Cu to promote the oxidative coupling with the adsorbed O2. This study presents a promising approach towards the design of high-performance photocatalysts for solar energy conversion and environmentally-friendly oxidative organic synthesis.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yonghe Yu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yuhong Chang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Linjuan Pei
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Wenwen Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Pengfei Han
- College of Chemistry and Chemical Engineering Hunan University Changsha, 410082, PR China
| | - Wayde Martens
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Eric R Waclawik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Huai Yong Zhu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
2
|
Xiao G, Guo Z, Lin B, Fu M, Ye D, Hu Y. Cu-VWT Catalysts for Synergistic Elimination of NO x and Volatile Organic Compounds from Coal-Fired Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10095-10104. [PMID: 35766897 DOI: 10.1021/acs.est.2c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dual-function catalyst, designated as Cu5-VWT, has been constructed for the synergistic removal of NOx and volatile organic compounds under complex coal-fired flue gas conditions. The removal of toluene, propylene, dichloromethane, and naphthalene all exceeded 99% (350 °C), and the catalyst could effectively block the generation of polycyclic aromatic hydrocarbons. Mechanistic studies have shown that Cu sites on the Cu5-VWT catalyst facilitate catalytic oxidation, while V sites facilitate NOx reduction. Thus, toluene oxidation and NOx reduction can proceed simultaneously. The removal of total hydrocarbons and nonmethane total hydrocarbons from 1200 m3·h-1 real coal-fired flue gas by a monolithic catalyst were determined as 92 and 96%, respectively, much higher than those of 54 and 72% over a commercial VWT catalyst, indicating great promise for industrial application.
Collapse
Affiliation(s)
- Gaofei Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyang Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Beilong Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Lu X, Guo H, Chen J, Wang D, Lee AF, Gu X. Selective Catalytic Transfer Hydrogenation of Lignin to Alkyl Guaiacols Over NiMo/Al-MCM-41. CHEMSUSCHEM 2022; 15:e202200099. [PMID: 35192235 DOI: 10.1002/cssc.202200099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Efficient deoxygenation of lignin-derived bio-oils is central to their adoption as precursors to sustainable liquid fuels in place of current fossil resources. In-situ catalytic transfer hydrogenation (CTH), using isopropanol and formic acid as solvent and in-situ hydrogen sources, was demonstrated over metal-doped and promoted MCM-41 for the depolymerization of oxygen-rich (35.85 wt%) lignin from Chinese fir sawdust (termed O-lignin). A NiMo/Al-MCM-41 catalyst conferred an optimal lignin-derived oil yield of 61.6 wt% with a comparatively low molecular weight (Mw =542 g mol-1 , Mn =290 g mol-1 ) and H/C ratio of 1.39. High selectivity to alkyl guaiacols was attributed to efficient in-situ hydrogen transfer from isopropanol/formic acid donors, and a synergy between surface acid sites in the Al-doped MCM-41 support and reducible Ni/Mo species, which improved the chemical stability and quality of the resulting lignin-derived bio-oils.
Collapse
Affiliation(s)
- Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Haoquan Guo
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Jiajia Chen
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Duoying Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Adam F Lee
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC3000, Australia
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| |
Collapse
|
4
|
Monai M, Gambino M, Wannakao S, Weckhuysen BM. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 2021; 50:11503-11529. [PMID: 34661210 DOI: 10.1039/d1cs00357g] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marianna Gambino
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Sippakorn Wannakao
- SCG Chemicals Co., Ltd, 1 Siam-Cement Rd, Bang sue, Bangkok 1080, Thailand
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
5
|
Vandervelden C, Jystad A, Peters B, Caricato M. Predicted Properties of Active Catalyst Sites on Amorphous Silica: Impact of Silica Preoptimization Protocol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Craig Vandervelden
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Amy Jystad
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Baron Peters
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Tielens F, Gierada M, Handzlik J, Calatayud M. Characterization of amorphous silica based catalysts using DFT computational methods. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Differences in acid and catalytic properties of W incorporated spherical SiO2 and 1%Al-doped SiO2 in propene metathesis. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wu J, Ramanathan A, Kersting R, Jystad A, Zhu H, Hu Y, Marshall CP, Caricato M, Subramaniam B. Enhanced Olefin Metathesis Performance of Tungsten and Niobium Incorporated Bimetallic Silicates: Evidence of Synergistic Effects. ChemCatChem 2020. [DOI: 10.1002/cctc.201902131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian‐Feng Wu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
| | - Anand Ramanathan
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
| | | | - Amy Jystad
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
| | - Hongda Zhu
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
- Department of Chemical and Petroleum EngineeringThe University of Kansas Lawrence KS-66045 USA
| | - Yongfeng Hu
- Canadian Light Source Inc.University of Saskatchewan Saskatoon Saskatchewan S7 N 2 V3 Canada
| | - Craig P. Marshall
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
- Department of GeologyThe University of Kansas Lawrence KS-66045 USA
| | - Marco Caricato
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
| | - Bala Subramaniam
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
- Department of Chemical and Petroleum EngineeringThe University of Kansas Lawrence KS-66045 USA
| |
Collapse
|
9
|
Kiani D, Sourav S, Baltrusaitis J, Wachs IE. Oxidative Coupling of Methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01585] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniyal Kiani
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sagar Sourav
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Israel E. Wachs
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|