1
|
Wu RK, Zhang SQ, Hong X. Post-Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes. Chemistry 2024:e202403316. [PMID: 39262303 DOI: 10.1002/chem.202403316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
Collapse
Affiliation(s)
- Rong-Kai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province, 453007, China
| |
Collapse
|
2
|
Li F, Lan J, Li X, Chung LW. A Synergistic Bimetallic Ti/Co-Catalyzed Isomerization of Epoxides to Allylic Alcohols Enabled by Two-State Reactivity. Inorg Chem 2024; 63:6285-6295. [PMID: 38517250 DOI: 10.1021/acs.inorgchem.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Isomerization of epoxides into versatile allylic alcohols is an atom-economical synthetic method to afford vicinal bifunctional groups. Comprehensive density functional theory (DFT) calculations were carried out to elucidate the complex mechanism of a bimetallic Ti/Co-catalyzed selective isomerization of epoxides to allyl alcohols by examining several possible pathways. Our results suggest a possible mechanism involving (1) radical-type epoxide ring opening catalyzed by Cp2Ti(III)Cl leading to a Ti(IV)-bound β-alkyl radical, (2) hydrogen-atom transfer (HAT) catalyzed by the Co(II) catalyst to form the Ti(IV)-enolate and Co(III)-H intermediate, (3) protonation to give the alcohols, and (4) proton abstraction to form the Co(I) species followed by electron transfer to regenerate the active Co(II) and Ti(III) species. Moreover, bimetallic catalysis and two-state reactivity enable the key rate-determining HAT step. Furthermore, a subtle balance between dispersion-driven bimetallic processes and entropy-driven monometallic processes determines the most favorable pathway, among which the monometallic process is energetically more favorable in all steps except the vital hydrogen-atom transfer step. Our study should provide an in-depth mechanistic understanding of bimetallic catalysis.
Collapse
Affiliation(s)
- Fangfang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jialing Lan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Babu US, Kotipalli R, Nanubolu JB, Reddy MS. Pd-Catalyzed Vicinal Intermolecular Annulations of Iodoarenes, Indoles, and Carbazoles with Enynes. Chemistry 2024; 30:e202302788. [PMID: 37929623 DOI: 10.1002/chem.202302788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Reaching the formidable C-H corners has been one of the top priorities of organic chemists in the recent past. This prompted us to disclose herein a vicinal annulation of 2-iodo benzoates, indoles, and carbazoles with N-embedded 1,6-enynes through 7-/8-membered palladacycles. The relay does not require the assistance of any directing group, leading to multicyclic scaffolds, which are readily diversified to an array of adducts (with new functional tethers and/or three contiguous stereocenters), in which we showcase a rare benzylic mono-oxygenation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Jagadeesh Babu Nanubolu, Analytical Department, CSIR-IICT, Hyderabad, 500007, India
| | - Maddi Sridhar Reddy
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
4
|
Chen BW. Equilibrium and kinetic isotope effects in heterogeneous catalysis: A density functional theory perspective. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
5
|
Su Y, Wang X, Lin Q, Shen Q, Xu S, Fang L, Wen X. E-Selective semi-hydrogenation of alkynes via a sulfur-radical mediation over cyclodextrin-modified nickel nanocatalyst. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient cyclodextrin-modified Ni catalyst was developed for E-selective semi-hydrogenation of alkynes that takes into account for the highly active Hδ− and Hδ+, in situ formed Ni nanoparticles, and the host–guest interaction.
Collapse
Affiliation(s)
- Yatao Su
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiu Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qianwen Lin
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qi Shen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Shuangwen Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Liping Fang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xin Wen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Bajo S, Theulier CA, Campos J. Mechanistic Investigations on Hydrogenation, Isomerization and Hydrosilylation Reactions Mediated by a Germyl-Rhodium System. ChemCatChem 2022; 14:e202200157. [PMID: 36032040 PMCID: PMC9401076 DOI: 10.1002/cctc.202200157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Indexed: 11/07/2022]
Abstract
We recently disclosed a dehydrogenative double C-H bond activation reaction in the unusual pincer-type rhodium-germyl complex [(ArMes)2ClGeRh] (ArMes=C6H3-2,6-(C6H2-2,4,6-Me3)2). Herein we investigate the catalytic applications of this Rh/Ge system in several transformations, namely trans-semihydrogenation of internal alkynes, trans-isomerization of olefins and hydrosilylation of alkynes. We have compared the activity and selectivity of this catalyst against other common rhodium precursors, as well as related sterically hindered rhodium complexes, being the one with the germyl fragment superior in terms of selectivity towards E-isomers. To increase this selectivity, a tandem catalytic protocol that incorporates the use of a heterogeneous catalyst for the trans-semihydrogenation of internal alkynes has been devised. Kinetic mechanistic investigations provide important information regarding the individual catalytic cycles that comprise the overall trans-semihydrogenation of internal alkynes.
Collapse
Affiliation(s)
- Sonia Bajo
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| | - Cyril A. Theulier
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
7
|
Ess DH. Quasiclassical Direct Dynamics Trajectory Simulations of Organometallic Reactions. Acc Chem Res 2021; 54:4410-4422. [PMID: 34761673 DOI: 10.1021/acs.accounts.1c00575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Homogeneous metal-mediated organometallic reactions represent a very large and diverse reaction class. Density functional theory calculations are now routinely carried out and reported for analyzing organometallic mechanisms and reaction pathways. While density functional theory calculations are extremely powerful to understand the energy and structure of organometallic reactions, there are several assumptions in their use and interpretation to define reaction mechanisms and to analyze reaction selectivity. Almost always it is assumed that potential energy structures calculated with density functional theory adequately describe mechanisms and selectivity within the framework of statistical theories, for example, transition state theory and RRKM theory. However, these static structures and corresponding energy landscapes do not provide atomic motion information during reactions that could reveal nonstatistical intermediates without complete intramolecular vibrational redistribution and nonintrinsic reaction coordinate (non-IRC) pathways. While nonstatistical intermediates and non-IRC reaction pathways are now relatively well established for organic reactions, these dynamic effects have heretofore been highly underexplored in organometallic reactions. Through a series of quasiclassical density functional theory direct dynamics trajectory studies, my group has recently demonstrated that dynamic effects occur in a variety of fundamental organometallic reactions, especially bond activation reactions. For example, in the C-H activation reaction between methane and [Cp*(PMe3)IrIII(CH3)]+, while the density functional theory energy landscape showed a two-step oxidative cleavage and reductive coupling mechanism, trajectories revealed a mixture of this two-step mechanism and a dynamic one-step mechanism that skipped the [Cp*(PMe3)IrV(H)(CH3)2]+ intermediate. This study also showed that despite a methane σ-complex being located on the density functional theory surface before oxidative cleavage and after reductive coupling, this intermediate is always skipped and should not be considered an intermediate during reactive trajectories. For non-IRC reaction pathways, quasiclassical direct dynamics trajectories showed that for the isomerization of [Tp(NO)(PMe3)W(η2-benzene)] to [Tp(NO)(PMe3)W(H)(Ph)], there are many dynamic reaction pathway connections due to a relatively flat energy landscape and π coordination is not necessary for C-H bond activation through oxidative cleavage. Trajectories also showed that dynamic effects are important in selectivity for ethylene C-H activation versus π coordination in reaction with Cp(PMe3)2Re, and trajectories provide a more quantitative model of selectivity than transition state theory. Quasiclassical trajectories examining Au-catalyzed monoallylic diol cyclizations showed dynamic coupling of several reaction steps that include alkoxylation π bond addition, proton shuttling, and water elimination reaction steps. Overall, these studies highlight the need to use direct dynamics trajectory simulations to consider atomic motion during reactions to understand organometallic reaction mechanisms and selectivity.
Collapse
Affiliation(s)
- Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
8
|
Speelman AL, Tran BL, Erickson JD, Vasiliu M, Dixon DA, Bullock RM. Accelerating the insertion reactions of (NHC)Cu-H via remote ligand functionalization. Chem Sci 2021; 12:11495-11505. [PMID: 34567502 PMCID: PMC8409461 DOI: 10.1039/d1sc01911b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Most ligand designs for reactions catalyzed by (NHC)Cu-H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, t Bu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu-H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu-H monomer, resulting in faster formation of Cu-H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu-H species.
Collapse
Affiliation(s)
- Amy L Speelman
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Ba L Tran
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Jeremy D Erickson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama Tuscaloosa AL 35487 USA
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama Tuscaloosa AL 35487 USA
| | - R Morris Bullock
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
9
|
Azpíroz R, Greger I, Oro LA, Passarelli V, Castarlenas R, Pérez‐Torrente JJ. Preparation of Butadienylpyridines by Iridium-NHC-Catalyzed Alkyne Hydroalkenylation and Quinolizine Rearrangement. Chemistry 2021; 27:11868-11878. [PMID: 33998070 PMCID: PMC8453560 DOI: 10.1002/chem.202101414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Iridium(I) N-heterocyclic carbene complexes of formula Ir(κ2 O,O'-BHetA)(IPr)(η2 -coe) [BHetA=bis-heteroatomic acidato, acetylacetonate or acetate; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-carbene; coe=cyclooctene] have been prepared by treating Ir(κ2 O,O'-BHetA)(η2 -coe)2 complexes with IPr. These complexes react with 2-vinylpyridine to afford the hydrido-iridium(III)-alkenyl cyclometalated derivatives IrH(κ2 O,O'-BHetA)(κ2 N,C-C7 H6 N)(IPr) through the iridium(I) intermediate Ir(κ2 O,O'-BHetA)(IPr)(η2 -C7 H7 N). The cyclometalated IrH(κ2 O,O'-acac)(κ2 N,C-C7 H6 N)(IPr) complex efficiently catalyzes the hydroalkenylation of aromatic and aliphatic terminal alkynes and enynes with 2-vinylpyridine to afford 2-(4R-butadienyl)pyridines with Z,E configuration as the major reaction products (yield up to 89 %). In addition, unprecedented (Z)-2-butadienyl-5R-pyridine derivatives have been obtained as minor reaction products (yield up to 21 %) from the elusive 1Z,3gem-butadienyl hydroalkenylation products. These compounds undergo a thermal 6π-electrocyclization to afford bicyclic 4H-quinolizine derivatives that, under catalytic reaction conditions, tautomerize to 6H-quinolizine to afford the (Z)-2-(butadienyl)-5R-pyridine by a retro-electrocyclization reaction.
Collapse
Affiliation(s)
- Ramón Azpíroz
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
| | - Ingo Greger
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
- CLARIANT, Gendorf Site84508BurgkirchenGermany
| | - Luis A. Oro
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea-ISQCHUniversidad de Zaragoza-CSIC, Facultad de Ciencias50009ZaragozaSpain
| |
Collapse
|
10
|
Yu HC, Telser J, Mankad NP. Synthesis and characterization of heteromultinuclear Ni/M clusters (M = Fe, Ru, W) including a paramagnetic (NHC)Ni-WCp*(CO) 3 heterobinuclear complex. Organometallics 2021; 40:2123-2132. [PMID: 36405371 PMCID: PMC9674107 DOI: 10.1021/acs.organomet.1c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diverse range of heteromultinuclear NiI/[MCO] clusters (MCO = CpFe(CO)2, CpRu(CO)2, Cp*W(CO)3) supported by a N-heterocyclic carbene ligand have been synthesized by reacting the NiI precursor, [IPrNi(μ-Cl)]2, with [MCO]- reagents under various conditions. Clusters with Ni2Fe2, NiFe2, Ni2Ru, Ni2Ru2, NiRu2, and Ni2W, and NiW cores were all characterized using NMR and IR spectroscopies and X-ray crystallography. The NiI-containing paramagnetic heterobinuclear species, IPrNi-Wp* (7), was further characterized by EPR spectroscopy and DFT calculations. Notably, unlike previously studied (NHC)CuI-[MCO] derivatives, complex 7 was found to coordinate Lewis bases like 3-chloropyridine to produce (IPr)(3-Clpy)NiWp* (9). Complex 9 further underwent thermolytic C-Cl activation, proposed to involve NHC-free [(3-Clpy)Ni(μ-Wp*)]2 (10), to provide the C-arylated N-heterocyclic carbene product, [IPr(py-3-yl)]+[Cp*WCl2(CO)2]- (11).
Collapse
Affiliation(s)
- Hsien-Cheng Yu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Kpante M, Wolf LM. Pathway Bifurcations in the Activation of Allylic Halides by Palladium and Their Influence on the Dynamics of η 1 and η 3 Allyl Intermediates. J Org Chem 2021; 86:9637-9650. [PMID: 34190566 DOI: 10.1021/acs.joc.1c00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-catalyzed allylic substitution often exhibits complex product selectivity patterns, which have been primarily attributed to π ↔ σ ↔ π isomerization of the η1 and η3 allyl intermediates. Product selectivity may be even further complicated if η1- and η3-allyls share a single transition state (TS), leading to their formation resulting in a post-transition-state bifurcation (PTSB). In this work, density functional theory calculations using ab initio molecular dynamics (AIMD) have been carried out that support the presence of a PTSB in Pd-catalyzed allylic halide activation directly influencing product selectivity. The AIMD results initiated from the TS predict the η1-allyl to be favored in the gas phase and a low dielectric (ε < 2.5) for trialkylphosphines, while the selectivity shifts toward the η3-allyl in higher dielectrics. The minimum energy path is also predicted to shift in product preference, consistent with the dynamics predictions. The bifurcation in allylic chloride activation is predicted to largely favor the η3-allyl at any solvent polarity. A PTSB was also discovered to be present in Ni and Pt allylic activation but with less bifurcation. These results offer a unique view into the mechanism of metal-catalyzed allylic substitution.
Collapse
Affiliation(s)
- Malkaye Kpante
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Lawrence M Wolf
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
12
|
Hidalgo N, Romero-Pérez C, Maya C, Fernández I, Campos J. Reactivity of [Pt(P t Bu 3) 2] with Zinc(I/II) Compounds: Bimetallic Adducts, Zn-Zn Bond Cleavage, and Cooperative Reactivity. Organometallics 2021; 40:1113-1119. [PMID: 34602699 PMCID: PMC8479860 DOI: 10.1021/acs.organomet.1c00088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 11/30/2022]
Abstract
Metal-only Lewis pairs (MOLPs) based on zinc electrophiles are particularly interesting due to their relevance to Negishi cross-coupling reactions. Zinc-based ligands in bimetallic complexes also render unique reactivity to the transition metals at which they are bound. Here we explore the use of sterically hindered [Pt(P t Bu3)2] (1) to access Pt/Zn bimetallic complexes. Compounds [(P t Bu3)2Pt → Zn(C6F5)2] (2) and [Pt(ZnCp*)6] (3) (Cp* = pentamethylcyclopentadienyl) were isolated by reactions with Zn(C6F5)2 and [Zn2Cp*2], respectively. We also disclose the cooperative reactivity of 1/ZnX2 pairs (X = Cl, Br, I, and OTf) toward water and dihydrogen, which can be understood in terms of bimetallic frustration.
Collapse
Affiliation(s)
- Nereida Hidalgo
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Carlos Romero-Pérez
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Celia Maya
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
Químicas, Universidad Complutense
de Madrid, Madrid 28040, Spain
| | - Jesús Campos
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| |
Collapse
|
13
|
McNeece AJ, Jesse KA, Filatov AS, Schneider JE, Anderson JS. Catalytic hydrogenation enabled by ligand-based storage of hydrogen. Chem Commun (Camb) 2021; 57:3869-3872. [PMID: 33729221 PMCID: PMC8058320 DOI: 10.1039/d0cc08236h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biology employs exquisite control over proton, electron, H-atom, or H2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole Ni complex where an H2 equivalent can be stored on the ligand periphery without metal-based redox changes and can be leveraged for catalytic hydrogenations. Kinetic and computational analysis suggests ligand hydrogenation proceeds by H2 association followed by H-H scission. This complex is an unusual example where a synthetic system can mimic biology's ability to mediate H2 transfer via secondary coordination sphere-based processes.
Collapse
Affiliation(s)
- Andrew J McNeece
- Department of Chemistry, University of Chicago, 929 E 57th St., Chicago, IL 60637, USA.
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, 929 E 57th St., Chicago, IL 60637, USA.
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, 929 E 57th St., Chicago, IL 60637, USA.
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, 929 E 57th St., Chicago, IL 60637, USA.
| | - John S Anderson
- Department of Chemistry, University of Chicago, 929 E 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Mi J, Huo S, Zeng Y, Meng L, Li X. Control of the Regioselectivity of Alkyne Hydrostannylation by Tuning the Metal Pair of Heterobimetallic Catalysts: A Theoretical Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- JinHui Mi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
- National Experimental Chemistry Teaching Center, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Suhong Huo
- School of Safety Supervision, North China Institute of Science and Technology, Langfang 065201, P. R. China
| | - Yanli Zeng
- National Experimental Chemistry Teaching Center, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| |
Collapse
|
15
|
Duan L, Jiang K, Zhu H, Yin B. CuCl 2-catalyzed highly stereoselective and chemoselective reduction of alkynyl amides into α,β-unsaturated amides using silanes as hydrogen donors. Org Biomol Chem 2021; 19:365-369. [PMID: 33332519 DOI: 10.1039/d0ob02037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A CuH-catalyzed Z-selective partial reduction of alkynyl amides to afford α,β-unsaturated amides using silane as the hydrogen donor is developed. This reaction is carried out under mild conditions and able to accommodate a broad scope of alkynyl amides including those bearing a terminal carbon-carbon double bond or triple bond, affording alkenyl amides with high stereoselectivity and excellent yields.
Collapse
Affiliation(s)
- Lingfei Duan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Navarro M, Campos J. Bimetallic frustrated Lewis pairs. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Synergistic effect between Ni single atoms and acid–base sites: Mechanism investigation into catalytic transfer hydrogenation reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mankad NP, Yu HC. Catalytic Reactions by Heterobimetallic Carbonyl Complexes with Polar Metal–Metal Interactions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1339-3417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractHeterobinuclear catalysts capable of bimetallic cooperative bond activation provide an alternative pathway to approach the discovery of novel and unique reactivity and selectivity in catalytic transformations, complementing more traditional mononuclear precious metal catalysts. This review summarizes recent advances in homogenous catalysis using heterobimetallic carbonyl catalysts with polar metal–metal interactions.1 Introduction2 Hydrogenation and Hydrofunctionalization3 Carbonylation and Carboxylation4 Oxidative Transformations5 Conclusion and Outlook
Collapse
|
19
|
Bajo S, Alférez MG, Alcaide MM, López‐Serrano J, Campos J. Metal-only Lewis Pairs of Rhodium with s, p and d-Block Metals. Chemistry 2020; 26:16833-16845. [PMID: 32722855 PMCID: PMC7756578 DOI: 10.1002/chem.202003167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Metal-only Lewis pairs (MOLPs) in which the two metal fragments are solely connected by a dative M→M bond represent privileged architectures to acquire fundamental understanding of bimetallic bonding. This has important implications in many catalytic processes or supramolecular systems that rely on synergistic effects between two metals. However, a systematic experimental/computational approach on a well-defined class of compounds is lacking. Here we report a family of MOLPs constructed around the RhI precursor [(η5 -C5 Me5 )Rh(PMe3 )2 ] (1) with a series of s, p and d-block metals, mostly from the main group elements, and investigate their bonding by computational means. Among the new MOLPs, we have structurally characterized those formed by dative bonding between 1 and MgMeBr, AlMe3 , GeCl2 , SnCl2 , ZnMe2 and Zn(C6 F5 )2, as well as spectroscopically identified the ones resulting from coordination to MBArF (M=Na, Li; BArF - =[B(C6 H2 -3,5-(CF3 )2 )4 ]- ) and CuCl. Some of these compounds represent unique examples of bimetallic structures, such as the first unambiguous cases of Rh→Mg dative bonding or base-free rhodium bound germylene and stannylene species. Multinuclear NMR spectroscopy, including 103 Rh NMR, is used to probe the formation of Rh→M bonds. A comprehensive theoretical analysis of those provides clear trends. As anticipated, greater bond covalency is found for the more electronegative acids, whereas ionic character dominates for the least electronegative nuclei, though some degree of electron sharing is identified in all cases.
Collapse
Affiliation(s)
- Sonia Bajo
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Macarena G. Alférez
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - María M. Alcaide
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Joaquín López‐Serrano
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
20
|
Hidalgo N, Moreno JJ, Pérez-Jiménez M, Maya C, López-Serrano J, Campos J. Evidence for Genuine Bimetallic Frustrated Lewis Pair Activation of Dihydrogen with Gold(I)/Platinum(0) Systems. Chemistry 2020; 26:5982-5993. [PMID: 31971290 DOI: 10.1002/chem.201905793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Indexed: 01/07/2023]
Abstract
A joint experimental/computational effort to elucidate the mechanism of dihydrogen activation by a gold(I)/platinum(0) metal-only frustrated Lewis pair (FLP) is described herein. The drastic effects on H2 activation derived from subtle ligand modifications have also been investigated. The importance of the balance between bimetallic adduct formation and complete frustration has been interrogated, providing for the first time evidence for genuine metal-only FLP reactivity in solution. The origin of a strong inverse kinetic isotopic effect has also been clarified, offering further support for the proposed bimetallic FLP-type cleavage of dihydrogen.
Collapse
Affiliation(s)
- Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan José Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, University of Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
21
|
Chen BWJ, Mavrikakis M. How coverage influences thermodynamic and kinetic isotope effects for H2/D2 dissociative adsorption on transition metals. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02338k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen isotope effects are influenced by adsorbate coverage: at high coverages, isotope effects are lower than at low coverages. This helps to rationalize observed isotope effects, allowing more precise elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
22
|
Desai SP, Ye J, Islamoglu T, Farha OK, Lu CC. Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Timur Islamoglu
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|