1
|
Treacy SM, Rovis T. Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis. SYNTHESIS-STUTTGART 2024; 56:1967-1978. [PMID: 38962497 PMCID: PMC11218547 DOI: 10.1055/s-0042-1751518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments in ligand-to-metal charge transfer in transition metal catalysis focusing on the organic transformations made possible through this mechanism.
Collapse
Affiliation(s)
- S M Treacy
- Columbia University, Department of Chemistry, 3000 Broadway, Havemeyer Hall, New York, NY 10027, USA
| | - T Rovis
- Columbia University, Department of Chemistry, 3000 Broadway, Havemeyer Hall, New York, NY 10027, USA
| |
Collapse
|
2
|
May AM, Dempsey JL. A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions. Chem Sci 2024; 15:6661-6678. [PMID: 38725519 PMCID: PMC11079626 DOI: 10.1039/d3sc05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Collapse
Affiliation(s)
- Ann Marie May
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| |
Collapse
|
3
|
Pan XY, Sun GX, Huang FP, Qin WJ, Teng QH, Wang K. Photogenerated chlorine radicals activate C(sp3)-H bonds of alkylbenzenes to access quinazolinones. Org Biomol Chem 2024; 22:2968-2973. [PMID: 38529682 DOI: 10.1039/d4ob00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
An Fe-catalyzed visible-light induced condensation of alkylbenzenes with anthranilamides has been developed. Upon irradiation, the trivalent iron complex could generate chlorine radicals, which successfully abstracted the hydrogen of benzylic C-H bonds to form benzyl radicals. And these benzyl radicals were converted into oxygenated products under air conditions, which subsequently reacted with anthranilamides for the synthesis of quinazolinones.
Collapse
Affiliation(s)
- Xin-Yao Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Gui-Xia Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Fang-Ping Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Jian Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Qing-Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
4
|
Monirialamdari M, Albrecht A. Decarboxylative photoinduced ligand-to-metal charge transfer reaction: synthesis of 2-substituted chroman-4-ones. Chem Commun (Camb) 2024; 60:1265-1268. [PMID: 38194239 DOI: 10.1039/d3cc05331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this manuscript, a photoinduced ligand-to-metal charge transfer (LMCT) approach, employing transition-metal-based photocatalysts, for the efficient alkylation of electron-poor olefin is described. The developed redox-neutral process benefits from mild reaction conditions and involves a wide range of chromone-3-carboxylic acids as well as nucleophiles amenable to selective C-H functionalization leading to the formation of 2-substituted chroman-4-one compounds with potential biological activity.
Collapse
Affiliation(s)
- Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
5
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
6
|
Hasnan NSN, Mohamed MA, Nordin NA, Wan Ishak WNR, Kassim MB. Microtubular cellulose-derived kapok fibre as a solid electron donor for boosting photocatalytic H 2O 2 production over C-doped g-C 3N 4 hybrid complexation. Carbohydr Polym 2023; 317:121096. [PMID: 37364961 DOI: 10.1016/j.carbpol.2023.121096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Cellulose continues to play an important and emerging role in photocatalysis, and its favourable properties, such as electron-rich hydroxyl groups, could enhance the performance of photocatalytic reactions. For the first time, this study exploited the kapok fibre with microtubular structure (t-KF) as a solid electron donor to enhance the photocatalytic activity of C-doped g-C3N4 (CCN) via ligand-to-metal-charge-transfer (LMCT) to improve hydrogen peroxide (H2O2) production performance. As confirmed by various characterisation techniques, the hybrid complex consisting of CCN grafted on t-KF was successfully developed in the presence of succinic acid (SA) as a cross-linker via a simple hydrothermal approach. The complexation formation between CCN and t-KF results in the CCN-SA/t-KF sample displaying a higher photocatalytic activity than pristine g-C3N4 to produce H2O2 under visible light irradiation. The enhanced physicochemical and optoelectronic properties of CCN-SA/t-KF imply that the LMCT mechanism is crucial in improving photocatalytic activity. This study promotes utilising the unique t-KF material's properties to develop a low-cost and high-performance cellulose-based LMCT photocatalyst.
Collapse
Affiliation(s)
- Nur Shamimie Nadzwin Hasnan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohamad Azuwa Mohamed
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Nurul Atikah Nordin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Nor Roslam Wan Ishak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohammad B Kassim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Single‐Atomic Pd Embedded 2D g‐C
3
N
4
Homogeneous Catalyst Analogues for Efficient LMCT Induced Full‐Visible‐Light Photocatalytic Suzuki Coupling**. ChemistrySelect 2022. [DOI: 10.1002/slct.202202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
London HC, Pritchett DY, Pienkos JA, McMillen CD, Whittemore TJ, Bready CJ, Myers AR, Vieira NC, Harold S, Shields GC, Wagenknecht PS. Photochemistry and Photophysics of Charge-Transfer Excited States in Emissive d10/ d0 Heterobimetallic Titanocene Tweezer Complexes. Inorg Chem 2022; 61:10986-10998. [PMID: 35786924 DOI: 10.1021/acs.inorgchem.2c01746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transition-metal complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts due to the lack of deactivating d-d states. Herein, the synthesis and characterization of nine titanocene complexes of the formula Cp2Ti(C2Ar)2·MX (where Ar = phenyl, dimethylaniline, or triphenylamine; and MX = CuCl, CuBr, or AgCl) are presented. Solid-state structural characterization demonstrates that MX coordinates to the alkyne tweezers and CuX coordination has a greater structural impact than AgCl. All complexes, including the parent complexes without coordinated MX, are brightly emissive at 77 K (emission max between 575 and 767 nm), with the coordination of MX redshifting the emission in all cases except for the coordination of AgCl into Cp2Ti(C2Ph)2. TDDFT investigations suggest that emission is dominated by arylalkynyl-to-titanium 3LMCT in all cases except Cp2Ti(C2Ph)2·CuBr, which is dominated by CuBr-to-Ti charge transfer. In room-temperature fluid solution, only Cp2Ti(C2Ph)2 and Cp2Ti(C2Ph)2·AgCl are emissive, albeit with photoluminescent quantum yields ≤2 × 10-4. The parent complexes photodecompose in room-temperature solution with quantum yields, Φrxn, between 0.25 and 0.99. The coordination of MX decreases Φrxn by two to three orders of magnitude. There is a clear trend that Φrxn increases as the emission energy increases. This trend is consistent with a competition between energy-gap-law controlled nonradiative decay and thermally activated intersystem crossing between the 3LMCT state and the singlet transition state for decomposition.
Collapse
Affiliation(s)
- Henry C London
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - David Y Pritchett
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jared A Pienkos
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Thomas J Whittemore
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Alexis R Myers
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Noah C Vieira
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Shannon Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
9
|
Niu B, Sachidanandan K, Cooke MV, Casey TE, Laulhé S. Photoinduced C(sp 3)-H Chalcogenation of Amide Derivatives and Ethers via Ligand-to-Metal Charge-Transfer. Org Lett 2022; 24:4524-4529. [PMID: 35729078 PMCID: PMC9650966 DOI: 10.1021/acs.orglett.2c01505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A photoinduced, iron(III) chloride-catalyzed C-H activation of N-methyl amides and ethers leads to the formation of C-S and C-Se bonds via a ligand-to-metal charge transfer (LMCT) process. This methodology converts secondary and tertiary amides, sulfonamides, and carbamates into the corresponding amido-N,S-acetal derivatives in good yields. Mechanistic work revealed that this transformation proceeds through a hydrogen atom transfer (HAT) involving chlorine radical intermediates.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Krishnakumar Sachidanandan
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Maria Victoria Cooke
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Taylor E Casey
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sébastien Laulhé
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
12
|
Lian P, Li R, Wang L, Wan X, Xiang Z, Wan X. Photoredox aerobic oxidation of unreactive amine derivatives through LMCT excitation of copper dichloride. Org Chem Front 2022. [DOI: 10.1039/d2qo01032a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Taking advantage of the chlorine radical as a HAT catalyst, a versatile oxidation system for unreactive amines has been well established.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lili Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Gläsel T, Baumann BN, Hapke M. Cobalt Catalysts for [2+2+2] Cycloaddition Reactions: Isolated Precatalysts and in situ Generated Catalysts. CHEM REC 2021; 21:3727-3745. [PMID: 34859570 DOI: 10.1002/tcr.202100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
[2+2+2] Cycloaddition reactions belong to the not even large class of reactions, which can be catalyzed or mediated by a significant number of different transition metals. Cobalt complexes belong to the catalysts that paved the way for the extensive use and profound mechanistic knowledge on this particular transformation. Beside the established role, cyclopentadienyl (Cp) cobalt complexes inherit in synthetic applications of the cyclotrimerization reaction, modification of the precatalysts opened up novel reactivities and versatility for such catalytic initiators. At the same time the development of in situ generated cobalt catalysts allowed the conversion of novel substrates as well as novel reaction modes to be realized. In this personal account recent developments will be presented and the possibilities of catalysts containing cobalt atoms in different oxidation states be discussed.
Collapse
Affiliation(s)
- Tim Gläsel
- Institute for Catalysis (INCA), Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Benedikt N Baumann
- Institute for Catalysis (INCA), Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Marko Hapke
- Institute for Catalysis (INCA), Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,Research Group Catalytic Cycloadditions, Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
14
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
16
|
Abderrazak Y, Bhattacharyya A, Reiser O. Durch sichtbares Licht induzierte Homolyse unedler, gut verfügbarer Metallsubstratkomplexe: Eine komplementäre Aktivierungsstrategie in der Photoredoxkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Aditya Bhattacharyya
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
17
|
London HC, Whittemore TJ, Gale AG, McMillen CD, Pritchett DY, Myers AR, Thomas HD, Shields GC, Wagenknecht PS. Ligand-to-Metal Charge-Transfer Photophysics and Photochemistry of Emissive d 0 Titanocenes: A Spectroscopic and Computational Investigation. Inorg Chem 2021; 60:14399-14409. [PMID: 34495657 DOI: 10.1021/acs.inorgchem.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes with ligand-to-metal charge-transfer (LMCT) excited states involving d0 metals represent a new design for photocatalysts. Herein, the photochemistry and photophysics of d0 titanocenes of the type Cp2Ti(C2R)2, where C2R = ethynylphenyl (C2Ph), 4-ethynyldimethylaniline (C2DMA), or 4-ethynyltriphenylamine (C2TPA), have been investigated. Cp2Ti(C2Ph)2 and Cp2Ti(C2DMA)2 have also been characterized by single-crystal X-ray diffraction. The two aryl rings in Cp2Ti(C2DMA)2 are nearly face-to-face in the solid state, whereas they are mutually perpendicular for Cp2Ti(C2Ph)2. All three complexes are brightly emissive at 77 K but photodecompose at room temperature when irradiated into their lowest-energy absorption band. The emission wavelengths and photodecomposition quantum yields are as follows: Cp2Ti(C2Ph)2, 575 nm and 0.65; Cp2Ti(C2TPA)2, 642 nm and 0.42; Cp2Ti(C2DMA)2, 672 nm and 0.25. Extensive benchmarking of the density functional theory (DFT) model against the structural data and of the time-dependent DFT (TDDFT) model against the absorption and emission data was performed using combinations of 13 different functionals and 4 basis sets. The model that predicted the absorption and emission data with the greatest fidelity utilized MN15/LANL2DZ for both the DFT optimization and the TDDFT. Computational analysis shows that absorption involves a transition to a 1LMCT state. Whereas the spectroscopic data for Cp2Ti(C2TPA)2 and Cp2Ti(C2DMA)2 are well modeled using the optimized structure of these complexes, Cp2Ti(C2Ph)2 required averaging of the spectra from multiple rotamers involving rotation of the Ph rings. Consistent with this finding, an energy scan of all rotamers showed a very flat energetic surface, with less than 1.3 kcal/mol separating the minimum and maximum. The computational data suggest that emission occurs from a 3LMCT state. Optimization of the 3LMCT state demonstrates compression of the C-Ti-C bond angle, consistent with the known products of photodecomposition.
Collapse
Affiliation(s)
- Henry C London
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J Whittemore
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Ariel G Gale
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - David Y Pritchett
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Alexis R Myers
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Hannah D Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
18
|
Abderrazak Y, Bhattacharyya A, Reiser O. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 60:21100-21115. [PMID: 33599363 PMCID: PMC8519011 DOI: 10.1002/anie.202100270] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Indexed: 01/16/2023]
Abstract
The mainstream applications of visible-light photoredox catalysis predominately involve outer-sphere single-electron transfer (SET) or energy transfer (EnT) processes of precious metal RuII or IrIII complexes or of organic dyes with low photostability. Earth-abundant metal-based Mn Ln -type (M=metal, Ln =polydentate ligands) complexes are rapidly evolving as alternative photocatalysts as they offer not only economic and ecological advantages but also access to the complementary inner-sphere mechanistic modes, thereby transcending their inherent limitations of ultrashort excited-state lifetimes for use as effective photocatalysts. The generic process, termed visible-light-induced homolysis (VLIH), entails the formation of suitable light-absorbing ligated metal-substrate complexes (Mn Ln -Z; Z=substrate) that can undergo homolytic cleavage to generate Mn-1 Ln and Z. for further transformations.
Collapse
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Aditya Bhattacharyya
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
19
|
Tanaka J, Nagashima Y, Araujo Dias AJ, Tanaka K. Photo-Induced ortho-C-H Borylation of Arenes through In Situ Generation of Rhodium(II) Ate Complexes. J Am Chem Soc 2021; 143:11325-11331. [PMID: 34283597 DOI: 10.1021/jacs.1c05859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced in situ "oxidation" of half-sandwich metal complexes to "high-valent" cationic metal complexes has been used to accelerate catalytic reactions. Here, we report the unprecedented photoinduced in situ "reduction" of half-sandwich metal [Rh(III)] complexes to "low-valent" anionic metal [Rh(II)] ate complexes, which facilitate ligand exchange with electron-deficient elements (diboron). This strategy was realized by using a functionalized cyclopentadienyl (CpA3) Rh(III) catalyst we developed, which enabled the basic group-directed room temperature ortho-C-H borylation of arenes.
Collapse
Affiliation(s)
- Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Antônio Junio Araujo Dias
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Yasui T, Tatsumi R, Yamamoto Y. Highly Enantioselective [2+2+2] Cycloaddition of Enediynes Enabled by Cobalt/Organophotoredox Cooperative Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8603, Japan
| | - Rine Tatsumi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
21
|
Treacy SM, Rovis T. Copper Catalyzed C(sp 3)-H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. J Am Chem Soc 2021; 143:2729-2735. [PMID: 33576606 DOI: 10.1021/jacs.1c00687] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Utilizing catalytic CuCl2 we report the functionalization of numerous feedstock chemicals via the coupling of unactivated C(sp3)-H bonds with electron-deficient olefins. The active cuprate catalyst undergoes Ligand-to-Metal Charge Transfer (LMCT) to enable the generation of a chlorine radical which acts as a powerful hydrogen atom transfer reagent capable of abstracting strong electron-rich C(sp3)-H bonds. Of note is that the chlorocuprate catalyst is an exceedingly mild oxidant (0.5 V vs SCE) and that a proposed protodemetalation mechanism offers a broad scope of electron-deficient olefins, offering high diastereoselectivity in the case of endocyclic alkenes. The coupling of chlorine radical generation with Cu reduction through LMCT enables the generation of a highly active HAT reagent in an operationally simple and atom economical protocol.
Collapse
Affiliation(s)
- Sean M Treacy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Zhong Y, Feng Q, Wang X, Yang L, Korovich AG, Madsen LA, Tong R. Photocatalyst-independent photoredox ring-opening polymerization of O-carboxyanhydrides: stereocontrol and mechanism. Chem Sci 2021; 12:3702-3712. [PMID: 34163644 PMCID: PMC8179436 DOI: 10.1039/d0sc05550f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Photoredox ring-opening polymerization of O-carboxyanhydrides allows for the synthesis of polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. While powerful, obviating the use of precious metal-based photocatalysts would be attractive from the perspective of simplifying the protocol. Herein, we report the Co and Zn catalysts that are activated by external light to mediate efficient ring-opening polymerization of O-carboxyanhydrides, without the use of exogenous precious metal-based photocatalysts. Our methods allow for the synthesis of isotactic polyesters with high molecular weights (>200 kDa) and narrow molecular weight distributions (M w/M n < 1.1). Mechanistic studies indicate that light activates the oxidative status of a CoIII intermediate that is generated from the regioselective ring-opening of the O-carboxyanhydride. We also demonstrate that the use of Zn or Hf complexes together with Co can allow for stereoselective photoredox ring-opening polymerizations of multiple racemic O-carboxyanhydrides to synthesize syndiotactic and stereoblock copolymers, which vary widely in their glass transition temperatures.
Collapse
Affiliation(s)
- Yongliang Zhong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| | - Quanyou Feng
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| | - Lei Yang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Andrew G Korovich
- Department of Chemistry, Virginia Polytechnic Institute and State University 1040 Drillfield Drive, Blacksburg Virginia 24061 USA
| | - Louis A Madsen
- Department of Chemistry, Virginia Polytechnic Institute and State University 1040 Drillfield Drive, Blacksburg Virginia 24061 USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| |
Collapse
|
23
|
Ravetz B, Tay NES, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS CENTRAL SCIENCE 2020; 6:2053-2059. [PMID: 33274281 PMCID: PMC7706074 DOI: 10.1021/acscentsci.0c00948] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 05/05/2023]
Abstract
Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.
Collapse
Affiliation(s)
- Benjamin
D. Ravetz
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas E. S. Tay
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L. Joe
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
- E-mail:
| | - Melda Sezen-Edmonds
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael A. Schmidt
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Janey
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- E-mail:
| |
Collapse
|
24
|
Terephthalate acid decorated TiO2 for visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Neumeier M, Chakraborty U, Schaarschmidt D, de la Pena O'Shea V, Perez‐Ruiz R, Jacobi von Wangelin A. Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angew Chem Int Ed Engl 2020; 59:13473-13478. [PMID: 32190960 PMCID: PMC7496134 DOI: 10.1002/anie.202000907] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/11/2022]
Abstract
Successful combinations of visible-light photocatalysis with metal catalysis have recently enabled the development of hitherto unknown chemical reactions. Dual mechanisms from merging metal-free photocatalysts and earth-abundant metal catalysts are still in their infancy. We report a photo-organo-iron-catalyzed cyclotrimerization of alkynes by photoredox activation of a ligand-free Fe catalyst. The reaction operates under very mild conditions (visible light, 20 °C, 1 h) with 1-2 mol % loading of the three catalysts (dye, amine, FeCl2 ).
Collapse
Affiliation(s)
- Michael Neumeier
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Uttam Chakraborty
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Dieter Schaarschmidt
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | - Raul Perez‐Ruiz
- Photoactivated ProcessesIMDEA Energy InstituteRamin de la Sagra 328935MistolesSpain
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | | |
Collapse
|
26
|
Neumeier M, Chakraborty U, Schaarschmidt D, Pena O'Shea V, Perez‐Ruiz R, Jacobi von Wangelin A. Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael Neumeier
- Department of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Uttam Chakraborty
- Department of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Dieter Schaarschmidt
- Department of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Victor Pena O'Shea
- Photoactivated Processes IMDEA Energy Institute Ramin de la Sagra 3 28935 Mistoles Spain
| | - Raul Perez‐Ruiz
- Photoactivated Processes IMDEA Energy Institute Ramin de la Sagra 3 28935 Mistoles Spain
- Departamento de Química Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | | |
Collapse
|
27
|
|
28
|
Bergamaschi E, Beltran F, Teskey CJ. Visible-Light Controlled Divergent Catalysis Using a Bench-Stable Cobalt(I) Hydride Complex. Chemistry 2020; 26:5180-5184. [PMID: 32027425 PMCID: PMC7217149 DOI: 10.1002/chem.202000410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 01/22/2023]
Abstract
While the use of visible light in conjunction with transition metal catalysis offers powerful opportunities to switch between on/‐off states of catalytic activity, the next frontier would be the ability to switch the actual function of the catalyst and resulting products. Here we report such an example of multi‐dimensional catalysis. Featuring an easily prepared, bench‐stable cobalt(I) hydride complex in conjunction with pinacolborane, we can switch the reaction outcome between two widely employed transformations, olefin migration and hydroboration, with visible light as the trigger.
Collapse
Affiliation(s)
- Enrico Bergamaschi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frédéric Beltran
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
29
|
Sagadevan A, Charitou A, Wang F, Ivanova M, Vuagnat M, Greaney MF. Ortho C-H arylation of arenes at room temperature using visible light ruthenium C-H activation. Chem Sci 2020; 11:4439-4443. [PMID: 34122900 PMCID: PMC8159458 DOI: 10.1039/d0sc01289k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ruthenium-catalyzed ortho C–H arylation process is described using visible light. Using the readily available catalyst [RuCl2(p-cymene)]2, visible light irradiation was found to enable arylation of 2-aryl-pyridines at room temperature for a range of aryl bromides and iodides. A ruthenium-catalyzed ortho C–H arylation process is described using visible light.![]()
Collapse
Affiliation(s)
| | - Anastasios Charitou
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Fen Wang
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Maria Ivanova
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martin Vuagnat
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michael F Greaney
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
30
|
An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. J Am Chem Soc 2020; 142:6216-6226. [PMID: 32181657 DOI: 10.1021/jacs.0c00212] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern photoredox catalysis has traditionally relied upon metal-to-ligand charge-transfer (MLCT) excitation of metal polypyridyl complexes for the utilization of light energy for the activation of organic substrates. Here, we demonstrate the catalytic application of ligand-to-metal charge-transfer (LMCT) excitation of cerium alkoxide complexes for the facile activation of alkanes utilizing abundant and inexpensive cerium trichloride as the catalyst. As demonstrated by cerium-catalyzed C-H amination and the alkylation of hydrocarbons, this reaction manifold has enabled the facile use of abundant alcohols as practical and selective hydrogen atom transfer (HAT) agents via the direct access of energetically challenging alkoxy radicals. Furthermore, the LMCT excitation event has been investigated through a series of spectroscopic experiments, revealing a rapid bond homolysis process and an effective production of alkoxy radicals, collectively ruling out the LMCT/homolysis event as the rate-determining step of this C-H functionalization.
Collapse
Affiliation(s)
- Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Yuegang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Kaining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Zhiwei Zuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Xia S, Hu K, Lei C, Jin J. Intramolecular Aromatic C–H Acyloxylation Enabled by Iron Photocatalysis. Org Lett 2020; 22:1385-1389. [DOI: 10.1021/acs.orglett.0c00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siqi Xia
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 20032, China
| | - Kunjun Hu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 20032, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 20032, China
| |
Collapse
|
32
|
|
33
|
Livshits MY, Turlington MD, Trindle CO, Wang L, Altun Z, Wagenknecht PS, Rack JJ. Picosecond to Nanosecond Manipulation of Excited-State Lifetimes in Complexes with an Fe II to Ti IV Metal-to-Metal Charge Transfer: The Role of Ferrocene Centered Excited States. Inorg Chem 2019; 58:15320-15329. [PMID: 31686500 DOI: 10.1021/acs.inorgchem.9b02316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved transient absorption spectroscopy and computational analysis of D-π-A complexes comprising FeII donors and TiIV acceptors with the general formula RCp2Ti(C2Fc)2 (where RCp = Cp*, Cp, and MeOOCCp) and TMSCp2Ti(C2Fc)(C2R) (where R = Ph or CF3) are reported. The transient absorption spectra are consistent with an FeIII/TiIII metal-to-metal charge-transfer (MMCT) excited state for all complexes. Thus, excited-state decay is assigned to back-electron transfer (BET), the lifetime of which ranges from 18.8 to 41 ps. Though spectroscopic analysis suggests BET should fall into the Marcus inverted regime, the observed kinetics are not consistent with this assertion. TDDFT calculations reveal that the singlet metal-to-metal charge-transfer (1MMCT) excited state for the FeII/TiIV complexes is not purely MMCT in nature but is contaminated with the higher-energy 1Fc (d-d) state. For the diferrocenyl complexes, RCp2Ti(C2Fc)2, the ratio of MMCT to Fc centered character ranges from 57:43 for the Cp* complex to 85:15 for the MeOOCCp complex. For the diferrocenyl and monoferrocenyl complexes investigated herein, the excited-state lifetimes decrease with increased 1Fc character. The effect of CuI coordination was also analyzed by time-resolved transient absorption spectroscopy and reveals the elongation of the excited-state lifetime by 3 orders of magnitude to 63 ns. The transient spectra and TDDFT analysis suggest that the long-lived excited state in Cp2Ti(C2Fc)2·CuX (where X is Cl or Br) is a triplet iron species with an electron arrangement of TiIV-3FeII-CuI.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Michael D Turlington
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Carl O Trindle
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Lei Wang
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Zikri Altun
- Department of Physics , Marmara University , Göztepe Kampus , 34772 Istanbul , Turkey
| | - Paul S Wagenknecht
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
34
|
Thongpaen J, Manguin R, Dorcet V, Vives T, Duhayon C, Mauduit M, Baslé O. Visible Light Induced Rhodium(I)‐Catalyzed C−H Borylation. Angew Chem Int Ed Engl 2019; 58:15244-15248. [DOI: 10.1002/anie.201905924] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jompol Thongpaen
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
- LCC-CNRSUniversité de Toulouse, CNRS Toulouse France
| | - Romane Manguin
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - Thomas Vives
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - Marc Mauduit
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Olivier Baslé
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
- LCC-CNRSUniversité de Toulouse, CNRS Toulouse France
| |
Collapse
|
35
|
Orrego-Hernández J, Cobo J, Portilla J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS OMEGA 2019; 4:16689-16700. [PMID: 31616852 PMCID: PMC6788039 DOI: 10.1021/acsomega.9b02796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 05/20/2023]
Abstract
A convenient access toward novel fluoroionophores based on 1-(2-pyridyl)-4-styrylpyrazoles (PSPs) substituted at position 3 with donor or acceptor aryl groups is reported. The synthesis proceeds in two steps: the first one via Wittig olefination of the appropriate 4-formylpyrazole and then Mizoroki-Heck coupling to yield the desired products in an overall yield of up to 69%. Photophysical properties of products (4-styryl) and their intermediates (4-vinyl) were explored, finding that they have strong blue-light emission with high quantum yields (up to 66%) due to ICT phenomena. The 3-phenyl PSP was studied as a turn-off fluorescent probe in metal ion sensing, finding a high selectivity to Hg2+ (LOD = 3.1 × 10-7 M) in a process that could be reversed with ethylenediamine. The sensing mechanism and binding mode of the ligand to Hg2+ were established by HRMS analysis and 1H NMR titration tests.
Collapse
Affiliation(s)
- Jessica Orrego-Hernández
- Bioorganic Compounds
Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica
Campus las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Jaime Portilla
- Bioorganic Compounds
Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| |
Collapse
|
36
|
Thongpaen J, Manguin R, Dorcet V, Vives T, Duhayon C, Mauduit M, Baslé O. Visible Light Induced Rhodium(I)‐Catalyzed C−H Borylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jompol Thongpaen
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
| | - Romane Manguin
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - Thomas Vives
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - Marc Mauduit
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Olivier Baslé
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
| |
Collapse
|
37
|
Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Cobalt‐Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Koji Takizawa
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tomoyuki Sekino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shunta Sato
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
38
|
Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Cobalt‐Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angew Chem Int Ed Engl 2019; 58:9199-9203. [DOI: 10.1002/anie.201902509] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Koji Takizawa
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tomoyuki Sekino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shunta Sato
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
39
|
Flores DM, Schmidt VA. Intermolecular 2 + 2 Carbonyl–Olefin Photocycloadditions Enabled by Cu(I)–Norbornene MLCT. J Am Chem Soc 2019; 141:8741-8745. [DOI: 10.1021/jacs.9b03775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel M. Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Theunissen C, Ashley MA, Rovis T. Visible-Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. J Am Chem Soc 2019; 141:6791-6796. [PMID: 31010292 PMCID: PMC7097883 DOI: 10.1021/jacs.8b13663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Olefin metathesis is now one of the most efficient ways to create new carbon-carbon bonds. While most efforts focused on the development of ever-more efficient catalysts, a particular attention has recently been devoted to developing latent metathesis catalysts, inactive species that need an external stimulus to become active. This furnishes an increased control over the reaction which is crucial for applications in materials science. Here, we report our work on the development of a new system to achieve visible-light-controlled metathesis by merging olefin metathesis and photoredox catalysis. The combination of a ruthenium metathesis catalyst bearing two N-heterocyclic carbenes with an oxidizing pyrylium photocatalyst affords excellent temporal and spatial resolution using only visible light as stimulus. Applications of this system in synthesis, as well as in polymer patterning and photolithography with spatially resolved ring-opening metathesis polymerization, are described.
Collapse
Affiliation(s)
- Cédric Theunissen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Melissa A. Ashley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
41
|
McCusker JK. Electronic structure in the transition metal block and its implications for light harvesting. Science 2019; 363:484-488. [PMID: 30705184 DOI: 10.1126/science.aav9104] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transition metal-based chromophores play a central role in a variety of light-enabled chemical processes ranging from artificial solar energy conversion to photoredox catalysis. The most commonly used compounds include elements from the second and third transition series (e.g., ruthenium and iridium), but their Earth-abundant first-row analogs fail to engage in photoinduced electron transfer chemistry despite having virtually identical absorptive properties. This disparate behavior stems from fundamental differences in the nature of 3d versus 4d and 5d orbitals, resulting in an inversion in the compounds' excited-state electronic structure and undermining the ability of compounds with first-row elements to engage in photoinduced electron transfer. This Review will survey the key experimental observations establishing this difference in behavior, discuss the underlying reasons for this phenomenon, and briefly summarize efforts that are currently under way to alter this paradigm and open the door to new opportunities for using Earth-abundant materials for photoinduced electron transfer chemistries.
Collapse
Affiliation(s)
- James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|