1
|
Li S, Ma Y, Li Y. Strain engineering of PtMn alloy enclosed by high-indexed facets boost ethanol electrooxidation. J Colloid Interface Sci 2025; 677:416-424. [PMID: 39096709 DOI: 10.1016/j.jcis.2024.07.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Surface strain engineering has proven to be an efficient strategy to enhance catalytic properties of platinum (Pt)-based catalysts for electrooxidation reactions. Herein, the S-doped PtMn concave cubes (CNCs) enclosed with high index facets (HIFs) and regulatable surface strain are successfully fabricated by two steps hydrothermal method. The S element with electrophilic property can modify the near-surface of PtMn nanocrystals, altering the electronic structure of Pt to effectively regulate the adsorption/desorption of intermediates in the ethanol electrooxidation reaction (EOR). The PtMnS1.1 catalyst with optimal surface strain delivered extraordinary catalytic performance on EOR in acidic media, with a specific activity of 2.88 mA/cm2 and mass activity of 1.10 mA/μgPt, which is 4.1 and 2.2 times larger than that of state-of-the-art Pt/C catalyst, respectively. Additionally, the PtMnS1.1 catalyst also achieve excellent catalytic properties in alkaline electrolyte for EOR. The results of kinetic studies indicated that the surface strain and modified electronic structure can degrade the activation energy barrier during the process of EOR, which is beneficial for enhance the reaction rate. This work provides a promising approach to construct highly efficient electrocatalysts with tunable surface strain effects for clean energy electro-chemical reactions.
Collapse
Affiliation(s)
- Shuna Li
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Duan D, Wu D, Shou H, Hu C, Hu C, Zhou M, Long R, Bi Y, Xiong Y. Thermal Management Approach to Stabilization of Disordered Active Sites for Sabatier Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2409048. [PMID: 39629974 PMCID: PMC11775512 DOI: 10.1002/advs.202409048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Indexed: 01/31/2025]
Abstract
The transition metal nanocatalysts containing disordered active sites can potentially achieve efficient Sabatier reactions with high selectivity. However, it remains a challenge to maintain the stability of these active sites in such an exothermic reaction. Here, a thermal management approach is reported to address this challenge. Specifically, an efficient and stable catalytic system is developed by integrating urchin-like Ru nanoparticles with disordered active sites (d-RuNUs) and multi-walled carbon nanotubes (MWCNTs) as heat transfer framework, which achieves a CH4 yield of 3.3 mol g-1 h-1 with nearly 100% selectivity in 12 h. The characterizations reveal that the thermal-induced crystallization seriously weakens the adsorption of CO2, leading to significant degradation of catalytic performance. The heat transfer simulation confirms that the MWCNTs with high thermal conductivity play a key role in rapidly redistributing the reaction heat, thereby preventing the crystallization of disordered structures. This work elucidates the deactivation mechanism of disordered active sites in exothermic reactions and opens the avenue for local thermal management of non-thermal equilibrium reactions.
Collapse
Affiliation(s)
- Delong Duan
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhouJiangsu215123China
| | - Di Wu
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Hongwei Shou
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuansheng Hu
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Canyu Hu
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Min Zhou
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis and Selective OxidationNational Engineering Research Center for Fine Petrochemical IntermediatesLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouGansu730000China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the MicroscaleKey Laboratory of Precision and Intelligent ChemistrySchool of Chemistry and Materials ScienceNational Synchrotron Radiation LaboratorySchool of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhouJiangsu215123China
| |
Collapse
|
3
|
Zhou B, Shi K, Teng X, Li Z, Chen L, Shi J. Membrane-Free Electrocatalytic Co-Conversions of PBS Waste Plastics and Maleic Acid into High-Purity Succinic Acid Solid. Angew Chem Int Ed Engl 2024; 63:e202411502. [PMID: 39072890 DOI: 10.1002/anie.202411502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Plastic pollution, an increasingly serious global problem, can be addressed through the full lifecycle management of plastics, including plastics recycling as one of the most promising approaches. System design, catalyst development, and product separation are the keys in improving the economics of electrocatalytic plastics recycling. Here, a membrane-free co-production system was devised to produce succinic acid (SA) at both anode and cathode respectively by the co-electrolysis of polybutylene succinate (PBS) waste plastics and biomass-derived maleic acid (MA) for the first time. To this end, Cr3+-Ni(OH)2 electrocatalyst featuring much enhanced 1,4-butanediol (BDO) oxidation reaction (BOR) activity has been synthesized and the role of doped Cr has been revealed as an "electron puller" to accelerate the rate-determining step (RDS) in the Ni2+/Ni3+ cycling. Impressively, an extra-high SA production rate of 3.02 g h-1 and ultra-high apparent Faraday efficiency towards SA (FEapparent=181.5 %) have been obtained. A carbon dioxide-assisted sequential precipitation approach has been developed to produce high-purity SA and byproduct NaHCO3 solids. Preliminary techno-economic analysis demonstrates that the reported system is economically profitable and promising for future industrial applications.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kai Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Teng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lisong Chen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
4
|
Zhao G, Lin J, Lu M, Li L, Xu P, Liu X, Chen L. Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals. Nat Commun 2024; 15:8463. [PMID: 39349448 PMCID: PMC11442646 DOI: 10.1038/s41467-024-52789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
The electrocatalytic valorization of polyethylene terephthalate-derived ethylene glycol to valuable glycolic acid offers considerable economic and environmental benefits. However, conventional methods face scalability issues due to rapid activity decay of noble metal electrocatalysts. We demonstrate that a dynamic potential cycling approach, which alternates the electrode potential between oxidizing and reducing values, significantly mitigates surface deactivation of noble metals during electrochemical oxidation of ethylene glycol. This method enhances catalyst activity by 20 times compared to a constant-potential approach, maintaining this performance for up to 60 h with minimal deactivation. In situ Raman and X-ray absorption spectroscopy show that this effectiveness results from efficient removal of surface oxide during the reaction. The strategy is applicable to polyethylene terephthalate hydrolysates and various noble metals, such as palladium, gold, and platinum, with palladium showing a high conversion rate in recent studies. Our approach offers an efficient and durable method for electrochemical upcycling of biomass-derived compounds.
Collapse
Affiliation(s)
- Gui Zhao
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiayi Lin
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China
| | - Mengying Lu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, PR China
| | - Pengtao Xu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China.
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China.
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, PR China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, PR China.
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Xia S, Wu F, Liu Q, Gao W, Guo C, Wei H, Hussain A, Zhang Y, Xu G, Niu W. Steering the Selective Production of Glycolic Acid by Electrocatalytic Oxidation of Ethylene Glycol with Nanoengineered PdBi-Based Heterodimers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400939. [PMID: 38618653 DOI: 10.1002/smll.202400939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Heterodimers of metal nanocrystals (NCs) with tailored elemental distribution have emerged as promising candidates in the field of electrocatalysis, owing to their unique structures featuring heterogeneous interfaces with distinct components. Despite this, the rational synthesis of heterodimer NCs with similar elemental composition remains a formidable challenge, and their impact on electrocatalysis has remained largely elusive. In this study, Pd@Bi-PdBi heterodimer NCs are synthesized through an underpotential deposition (UPD)-directed growth pathway. In this pathway, the UPD of Bi promotes a Volmer-Weber growth mode, allowing for judicious modulation of core-satellite to heterodimer structures through careful control of supersaturation and growth kinetics. Significantly, the heterodimer NCs are employed in the electrocatalytic process of ethylene glycol (EG) with high activity and selectivity. Compared with pristine Pd octahedra and common PdBi alloy NC, the unique heterodimer structure of the Pd@Bi-PdBi heterodimer NCs endows them with the highest electrocatalytic performance of EG and the best selectivity (≈93%) in oxidizing EG to glycolic acid (GA). Taken together, this work not only heralds a new strategy for UPD-directed synthesis of bimetallic NCs, but also provides a new design paradigm for steering the selectivity of electrocatalysts.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenxi Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haili Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yue Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Lv H, Mao Y, Yao H, Ma H, Han C, Yang YY, Qiao ZA, Liu B. Ir-Doped CuPd Single-Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C-C Bond. Angew Chem Int Ed Engl 2024; 63:e202400281. [PMID: 38339811 DOI: 10.1002/anie.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The development of highly efficient electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells is of decisive importance to hold higher energy efficiency. Despite some achievements, their progress, especially electrocatalytic selectivity to complete oxidated C1 products, is remarkably slower than expected. In this work, we developed a facile aqueous synthesis of Ir-doped CuPd single-crystalline mesoporous nanotetrahedrons (Ir-CuPd SMTs) as high-performance electrocatalyst for promoting oxidation cleavage of C-C bond in alkaline EG oxidation reaction (EGOR) electrocatalysis. The synthesis relied on precise reduction/co-nucleation and epitaxial growth of Ir, Cu and Pd precursors with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra Br- as the facet-selective agent under ambient conditions. The products featured concave nanotetrahedron morphology enclosed by well-defined (111) facets, single-crystalline and mesoporous structure radiated from the center, and uniform elemental composition without any phase separation. Ir-CuPd SMTs disclosed remarkably enhanced electrocatalytic activity and excellent stability as well as superior selectivity of C1 products for alkaline EGOR electrocatalysis. Detailed mechanism studies demonstrated that performance improvement came from structural and compositional synergies, which kinetically accelerated transports of electrons/reactants within active sites of penetrated mesopores and facilitated oxidation cleavage of high-energy-barrier C-C bond of EG for desired C1 products. More interestingly, Ir-CuPd SMTs performed well in coupled electrocatalysis of anode EGOR and cathode nitrate reduction, highlighting its high potential as bifunctional electrocatalyst in various applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yumeng Mao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, China
| | - Huazhong Ma
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
7
|
Shi K, Si D, Teng X, Chen L, Shi J. Pd/NiMoO 4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate. Nat Commun 2024; 15:2899. [PMID: 38575572 PMCID: PMC10995147 DOI: 10.1038/s41467-024-47179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Electrocatalytic conversion of organic small molecules is a promising technique for value-added chemical productions but suffers from high precious metal consumption, poor stability of electrocatalysts and tedious product separation. Here, a Pd/NiMoO4/NF electrocatalyst with much lowered Pd loading amount (3.5 wt.%) has been developed for efficient, economic, and ultra-stable glycolate synthesis, which shows high Faradaic efficiency (98.9%), yield (98.8%), and ultrahigh stability (1500 h) towards electrocatalytic ethylene glycol oxidation. Moreover, the obtained glycolic acid has been converted to value-added sodium glycolate by in-situ acid-base reaction in the NaOH electrolyte, which is atomic efficient and needs no additional acid addition for product separation. Moreover, the weak adsorption of sodium glycolate on the catalyst surface plays a significant role in avoiding excessive oxidation and achieving high selectivity. This work may provide instructions for the electrocatalyst design as well as product separation for the electrocatalytic conversions of alcohols.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Di Si
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Teng
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lisong Chen
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
8
|
Xu GR, Dong Z, Zhao Y, Zhang W, Sun Q, Ju D, Wang L. Alkali Etching of Porous PdCoZn Nanosheets for Boosting C-C Bond Cleavage of Ethylene Glycol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306341. [PMID: 37903360 DOI: 10.1002/smll.202306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Pd-based electrocatalysts are the most effective catalysts for ethylene glycol oxidation reaction (EGOR), while the disadvantages of poor stability, low resistance to neutrophilic, and low catalytic activity seriously hamper the development of direct ethylene glycol fuel cells (DEGFCs). In this work, defect-riched PdCoZn nanosheets (D-PdCoZn NSs) with ultrathin 2D NSs and porous structures are fabricated through the solvothermal and alkali etching processes. Benefiting from the presence of defects and ultrathin 2D structures, D-PdCoZn NSs demonstrate excellent electrocatalytic activity and good durability against EGOR in alkaline media. The mass activity and specific activity of D-PdCoZn NSs for EGOR are 9.5 A mg-1 and 15.7 mA cm-2 , respectively, which are higher than that of PdCoZn NSs, PdCo NSs, and Pd black. The D-PdCoZn NSs still maintain satisfactory mass activity after long-term durability tests. Meanwhile, in situ IR spectroscopy demonstrates that the presence of defects attenuated the adsorption of intermediates, which improves the selectivity of the C1 pathway with excellent anti-CO poisoning performance. This work not only provides an effective synthetic strategy for the preparation of Pd-based nanomaterials with defective structures but also indicates significant guidance for optimum C1 pathway selectivity of ethylene glycol and other challenging chemical transformations.
Collapse
Affiliation(s)
- Guang-Rui Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zemeng Dong
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingxiu Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qiyan Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
9
|
Yu R, Shao R, Ning F, Yu Y, Zhang J, Ma XY, Zhu R, Li M, Lai J, Zhao Y, Zeng L, Zhang J, Xia Z. Electronic and Geometric Effects Endow PtRh Jagged Nanowires with Superior Ethanol Oxidation Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305817. [PMID: 37814379 DOI: 10.1002/smll.202305817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Fanghua Ning
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Jing Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Guan G, Liu H, Xu J, Zhang Q, Dong Z, Lei L, Zhang C, Yue R, Gao H, Song G, Shen X. Ultrasmall PtMn nanoparticles as sensitive manganese release modulator for specificity cancer theranostics. J Nanobiotechnology 2023; 21:434. [PMID: 37980476 PMCID: PMC10657629 DOI: 10.1186/s12951-023-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Manganese-based nanomaterials (Mn-nanomaterials) hold immense potential in cancer diagnosis and therapies. However, most Mn-nanomaterials are limited by the low sensitivity and low efficiency toward mild weak acidity (pH 6.4-6.8) of the tumor microenvironment, resulting in unsatisfactory therapeutic effect and poor magnetic resonance imaging (MRI) performance. This study introduces pH-ultrasensitive PtMn nanoparticles as a novel platform for enhanced ferroptosis-based cancer theranostics. The PtMn nanoparticles were synthesized with different diameters from 5.3 to 2.7 nm with size-dominant catalytic activity and magnetic relaxation, and modified with an acidity-responsive polymer to create pH-sensitive agents. Importantly, R-PtMn-1 (3 nm core) presents "turn-on" oxidase-like activity, affording a significant enhancement ratio (pH 6.0/pH 7.4) in catalytic activity (6.7 folds), compared with R-PtMn-2 (4.2 nm core, 3.7 folds) or R-PtMn-3 (5.3 nm core, 2.1 folds), respectively. Moreover, R-PtMn-1 exhibits dual-mode contrast in high-field MRI. R-PtMn-1 possesses a good enhancement ratio (pH 6.4/pH 7.4) that is 3 or 3.2 folds for T1- or T2-MRI, respectively, which is higher than that of R-PtMn-2 (1.4 or 1.5 folds) or R-PtMn-3 (1.1 or 1.2 folds). Moreover, their pH-ultrasensitivity enabled activation specifically within the tumor microenvironment, avoiding off-target toxicity in normal tissues during delivery. In vitro studies demonstrated elevated intracellular reactive oxygen species production, lipid peroxidation, mitochondrial membrane potential changes, malondialdehyde content, and glutathione depletion, leading to enhanced ferroptosis in cancer cells. Meanwhile, normal cells remained unaffected by the nanoparticles. Overall, the pH-ultrasensitive PtMn nanoparticles offer a promising strategy for accurate cancer diagnosis and ferroptosis-based therapy.
Collapse
Affiliation(s)
- Guoqiang Guan
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qingpeng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhe Dong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hongchang Gao
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
11
|
Wang Y, Zheng M, Li Y, Chen J, Ye J, Ye C, Li S, Wang J, Zhu Y, Sun SG, Wang D. Oxygen-Bridged Long-Range Dual Sites Boost Ethanol Electrooxidation by Facilitating C-C Bond Cleavage. NANO LETTERS 2023; 23:8194-8202. [PMID: 37624651 DOI: 10.1021/acs.nanolett.3c02319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.43 mA/cm2 toward EOR, which is 13.3 times that of Pt/C, as well as remarkable stability. Electrochemical in situ Fourier transform infrared spectroscopy indicates that long-range Rh-O-Pt dual sites can increase the selectivity of C1 products and suppress the generation of a CO intermediate. Theoretical calculations further disclose that redistribution of the surface-localized electron around Rh-O-Pt can promote direct oxidation of -OH, accelerating C-C bond cleavage. This work provides a promising strategy for designing oxygen-bridged long-range dual sites to tune the activity and selectivity of complicated catalytic reactions.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunrui Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuna Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongfa Zhu
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Liu F, Gao X, Shi R, Guo Z, Tse ECM, Chen Y. Concerted and Selective Electrooxidation of Polyethylene-Terephthalate-Derived Alcohol to Glycolic Acid at an Industry-Level Current Density over a Pd-Ni(OH) 2 Catalyst. Angew Chem Int Ed Engl 2023; 62:e202300094. [PMID: 36656087 DOI: 10.1002/anie.202300094] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm-2 at 1.15 V vs. RHE) over a Pd-Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.
Collapse
Affiliation(s)
- Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xutao Gao
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhengxiao Guo
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Edmund C M Tse
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Zhu R, Yu R, Yin K, Zhang S, Chung-Yen Jung J, Zhao Y, Li M, Xia Z, Zhang J. Integration of multiple advantages into one catalyst: non-CO pathway of methanol oxidation electrocatalysis on surface Ir-modulated PtFeIr jagged nanowires. J Colloid Interface Sci 2023; 640:348-358. [PMID: 36867931 DOI: 10.1016/j.jcis.2023.02.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Developing highly active methanol oxidation electrocatalysts with superior anti-CO poisoning capability remains a grand challenge. Herein, a simple strategy was employed to prepare distinctive PtFeIr jagged nanowires with Ir located at the shell and Pt/Fe located at the core. The Pt64Fe20Ir16 jagged nanowire possesses an optimal mass activity of 2.13 A mgPt-1 and specific activity of 4.25 mA cm-2, giving the catalyst a great edge over PtFe jagged nanowire (1.63 A mgPt-1 and 3.75 mA cm-2) and Pt/C (0.38 A mgPt-1 and 0.76 mA cm-2). The in-situ Fourier transform infrared (FTIR) spectroscopy and differential electrochemical mass spectrometry (DEMS) unravel the origin of extraordinary CO tolerance in terms of key reaction intermediates in the non-CO pathway. Density functional theory (DFT) calculations add to the body of evidence that the surface Ir incorporation transforms the selectivity from CO pathway to non-CO pathway. Meanwhile, the presence of Ir serves to optimize surface electronic structure with weakened CO binding strength. We believe this work will advance the understanding of methanol oxidation catalytic mechanism and provide some insight into structural design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shiming Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Zhang PF, Zhuo HY, Dong YY, Zhou Y, Li YW, Hao HG, Li DC, Shi WJ, Zeng SY, Xu SL, Kong XJ, Wu YJ, Zhao JS, Zhao S, Li JT. Pt Nanoparticles Confined in a 3D Porous FeNC Matrix as Efficient Catalysts for Rechargeable Li-CO 2/O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2940-2950. [PMID: 36598797 DOI: 10.1021/acsami.2c18857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.
Collapse
Affiliation(s)
- Peng-Fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hong-Ying Zhuo
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yun-Yun Dong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hong-Guo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wen-Jing Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Su-Yuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Shu-Ling Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiang-Jin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yi-Jin Wu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Jin-Sheng Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Shu Zhao
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
15
|
Gao S, Li P, Shi Y, He Y, Lei L, Hao S, Zhang X. Ternary PtCoMo Alloy with Dual Surface Co and Mo Defects for Synergistically Enhanced Acidic Oxygen Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202201087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shaojie Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Ping Li
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| | - Yao Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| |
Collapse
|
16
|
Qiao M, Meng FY, Wu H, Wei Y, Zeng XF, Wang JX. PtCuRu Nanoflowers with Ru-Rich Edge for Efficient Fuel-Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204720. [PMID: 36269882 DOI: 10.1002/smll.202204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Xu X, Ma Z, Su Z, Li D, Dong X, Huang H, Qi M. The Synthesis of Carbon Black-Loaded Pt Concave Nanocubes with High-Index Facets and Their Enhanced Electrocatalytic Properties toward Glucose Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3761. [PMID: 36364535 PMCID: PMC9657639 DOI: 10.3390/nano12213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Catalysts with high catalytic activity and good stability are desirable in the electrocatalytic oxidation of glucose. Herein, Pt concave nanocubes with high-index facets (HIFs) supported by carbon black (Pt CNC/CB) are prepared through a hydrothermal method. The experimental results demonstrate that the peak current densities in different potential regions on the Pt CNC/CB anode are 0.22, 0.20, and 0.60 mA cm-2. The catalytic process of the glucose oxidation reaction is investigated in electrolytes with different pH values. Better stability is achieved by Pt CNC/CB than by Pt concave nanocubes (Pt CNCs). Abundant surface defects with low-coordinated atom numbers, such as steps, kinks, and edges, served as active sites in the electrocatalytic oxidation of glucose. With the addition of carbon black, the catalytic activity can be improved by facilitating the full exposure of the active surface defects on the HIFs of the Pt CNCs. Moreover, to address the aggregation of Pt CNCs, caused by the high surface energy of HIFs, the introduction of carbon material is an effective way to preserve the HIFs and thus enhance the stability of the catalyst. Hence, the prepared Pt CNC/CB electrocatalyst has great potential to be applied in the electrooxidation of glucose.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ze Ma
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zekun Su
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Danqing Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xufeng Dong
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Huang
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Min Qi
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022; 61:e202117229. [DOI: 10.1002/anie.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
19
|
Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
21
|
Zhu R, Yu Y, Yu R, Lai J, Chung-Yen Jung J, Zhang S, Zhao Y, Zhang J, Xia Z. PtIrM (M = Ni, Co) jagged nanowires for efficient methanol oxidation electrocatalysis. J Colloid Interface Sci 2022; 625:493-501. [PMID: 35749844 DOI: 10.1016/j.jcis.2022.06.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
It remains a huge challenge to develop methanol oxidation electrocatalysts with remarkable catalytic activity and anti-CO poisoning capability. Herein, PtIrNi and PtIrCo jagged nanowires are successfully synthesized via a facile wet-chemical approach. Pt and Ir components are concentrated in the exterior and Ni is concentrated in the interior of PtIrNi jagged nanowires, while PtIrCo jagged nanowires feature the homogeneous distribution of constituent metals. The PtIrNi and PtIrCo jagged nanowires exhibit mass activities of 1.88 A/mgPt and 1.85 A/mgPt, respectively, 3.24 and 3.19 times higher than that of commercial Pt/C (0.58 A/mgPt). In-situ Fourier transform infrared spectroscopy indicates that CO2 was formed at a very low potential for both nanowires, in line with the high ratio of forward current density to backward current density for PtIrNi jagged nanowires (1.30) and PtIrCo jagged nanowires (1.46) relative to Pt/C (0.76). Also, the CO stripping and X-ray photoelectron spectroscopy results substantiate the remarkable CO tolerance of the jagged nanowires. Besides, the two jagged nanowires possess exceptional activities toward ethanol and ethylene glycol oxidation reactions. This work provides a novel line of thought in terms of rational design of alcohol oxidation electrocatalysts with distinctive nanostructures.
Collapse
Affiliation(s)
- Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shiming Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
22
|
Fabrication of cobaltous telluride and carbon composite as a promising carrier for boosting electro oxidation of ethylene glycol on palladium in alkaline medium. J Colloid Interface Sci 2022; 616:316-325. [PMID: 35219197 DOI: 10.1016/j.jcis.2022.02.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
The development of highly active and earth-rich electrocatalysts remains a formidable challenge for the commercialization of fuel cells. Herein, a composite carrier composed of cobaltous telluride (CoTe) and carbon (C) has been designed for the first time to enhance the electrocatalytic performance of palladium (Pd) nanoparticles (NPs) for the electro-oxidation of ethylene glycol (EG). Remarkably, the mass activity for the as-prepared Pd/CoTe-C catalyst during the ethylene glycol oxidation reaction (EGOR) is found to reach up to 3917.3 mA mg-1, which is 2.2 times higher than that of Pd/Co-C (1785.0 mA mg-1) and 4.1 times greater than that of commercial Pd/C catalyst (962.4 mA mg-1), exceeding that obtained for most Pd-based electrocatalysts reported thus far. In particular, the Pd/CoTe-C catalyst shows better electrochemical stability toward the EGOR than the Pd/Co-C and commercial Pd/C catalysts. Thus, the Pd/CoTe-C electrocatalyst is expected to exhibit broad application prospects in the field of fuel cells.
Collapse
|
23
|
Zhang T, Zhao H, Yang J, Zhao J, Yan L, Chou L, Song H. Dual Interface Synergistic Catalysis: The Selective Hydrogenation of Crotonaldehyde Over Pt/Co3O4@PDA. Catal Letters 2022. [DOI: 10.1007/s10562-022-04022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C-C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202200899. [PMID: 35083836 DOI: 10.1002/anie.202200899] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/14/2023]
Abstract
Advanced electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells are strongly desired owing to the higher energy efficiency. Herein, Pd-PdSe heterostructural nanosheets (Pd-PdSe HNSs) have been successfully fabricated via a one-step approach. These Pd-PdSe HNSs feature unique electronic and geometrical structures, in which unconventional p-d hybridization interactions and tensile strain effect co-exist. Compared with commercial Pd/C and Pd NSs catalysts, Pd-PdSe HNSs display 5.5 (6.6) and 2.5 (2.6) fold enhancement of specific (mass) activity for the EG oxidation reaction (EGOR). Especially, the optimum C1 pathway selectivity of Pd-PdSe HNSs reaches 44.3 %, illustrating the superior C-C bond cleavage ability. Electrochemical in situ FTIR spectroscopy and theoretical calculations demonstrate that the extraordinary p-d hybridization interaction and tensile strain effect could effectively reduce the activation energy of C-C bond breaking and accelerate CO* oxidation, boosting the complete oxidation of EG and improving the catalytic performance.
Collapse
Affiliation(s)
- Yuchen Qin
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Wenlong Zhang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Fengqi Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, college of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xia Sheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Chenxi Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xiaoyu Liang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Pei Liu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xiaopeng Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xin Zheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Yunlai Ren
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Cuilian Xu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
25
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p–d Hybridization Interaction in Heterostructural Pd‐PdSe Nanosheets Boosts C−C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchen Qin
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Wenlong Zhang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Fengqi Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces college of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Xia Sheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Chenxi Li
- College of Life Science Chongqing Normal University Chongqing 401331 P. R. China
| | - Xiaoyu Liang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Pei Liu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xiaopeng Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xin Zheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Yunlai Ren
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Cuilian Xu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
26
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
27
|
Wang Y, Wang D, Li Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008151. [PMID: 34240475 DOI: 10.1002/adma.202008151] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Indexed: 05/03/2023]
Abstract
Atomically dispersed metal-based electrocatalysts have attracted increasing attention due to their nearly 100% atomic utilization and excellent catalytic performance. However, current fundamental comprehension and summaries to reveal the underlying relationship between single-atom site electrocatalysts (SACs) and corresponding catalytic application are rarely reported. Herein, the fundamental understandings and intrinsic mechanisms underlying SACs and corresponding electrocatalytic applications are systemically summarized. Different preparation strategies are presented to reveal the synthetic strategies with engineering the well-defined SACs on the basis of theoretical principle (size effect, metal-support interactions, electronic structure effect, and coordination environment effect). Then, an overview of the electrocatalytic applications is presented, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, oxidation of small organic molecules, carbon dioxide reduction reaction, and nitrogen reduction reaction. The underlying structure-performance relationship between SACs and electrocatalytic reactions is also discussed in depth to expound the enhancement mechanisms. Finally, a summary is provided and a perspective supplied to demonstrate the current challenges and opportunities for rational designing, synthesizing, and modulating the advanced SACs toward electrocatalytic reactions.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Zheng X, Wang G, Zhao Y, Wu L, Wang Y, Song Y, Tian P, Wang X. Controllable morphology of Pd-loaded potassium tantalates with high catalytic performance for ethylene glycol electrooxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Qiao B, Yang T, Shi S, Jia N, Chen Y, Chen X, An Z, Chen P. Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006534. [PMID: 33590702 DOI: 10.1002/smll.202006534] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The efficient electrocatalysts toward the ethylene glycol oxidation reaction (EGOR) are highly desirable for direct ethylene glycol fuel cells because of the sluggish kinetics of anodic EGOR. Herein, porous RhCu nanoboxes are successfully prepared through facile galvanic replacement reaction and succedent sodium borohydride reduction strategy. Benefiting from hierarchical pore structure, RhCu nanoboxes display excellent electrocatalytic performance toward the EGOR in alkaline medium with a mass activity of 775.1 A gRh -1 , which is 2.8 times as large as that of commercial Rh nanocrystals. Moreover, the long-term stability of RhCu nanoboxes is better than that of commercial Rh nanocrystals. Furthermore, the theoretical calculations demonstrate that RhCu nanoboxes possess lower adsorption energy of CO and lower reaction barrier (0.27 eV) for the COads oxidation with aid of the adsorbed OHads species, resulting in the outstanding electrocatalytic performance toward the EGOR. This work provides a meaningful reference for developing highly effective electrocatalysts toward the EGOR.
Collapse
Affiliation(s)
- Bin Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ting Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shufeng Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Nan Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
30
|
Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Affiliation(s)
- Honghui Ou
- Department of Chemistry Tsinghua University Beijing China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
32
|
High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Peng L, Zhou L, Kang W, Li R, Qu K, Wang L, Li H. Electrospinning Synthesis of Carbon-Supported Pt 3Mn Intermetallic Nanocrystals and Electrocatalytic Performance towards Oxygen Reduction Reaction. NANOMATERIALS 2020; 10:nano10091893. [PMID: 32971762 PMCID: PMC7559926 DOI: 10.3390/nano10091893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
To realize the large-scale application of fuel cells, it is still a great challenge to improve the performance and reduce the cost of cathode catalysts towards oxygen reduction reaction (ORR). In this work, carbon-supported ordered Pt3Mn intermetallic catalysts were prepared by thermal annealing electrospun polyacrylonitrile nanofibers containing Platinum(II) acetylacetonate/ Manganese(III) acetylacetonate. Compared with its counterparts, the ordered Pt3Mn intermetallic obtained at 950 °C exhibits a more positive half-potential and higher kinetic current density during the ORR process. Benefiting from their defined stoichiometry and crystal structure, the Mn atoms in Pt3Mn intermetallic can modulate well the geometric and electronic structure of surface Pt atoms, endowing Pt3Mn catalyst with an enhanced ORR catalytic activity. Moreover, it also has a better catalytic stability and methanol tolerance than commercial Pt/C catalyst. Our study provides a new strategy to fabricate a highly active and durable Pt3Mn intermetallic electrocatalyst towards ORR.
Collapse
|
34
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
35
|
Fan X, Liu D, Sun X, Yu X, Li D, Yang Y, Liu H, Diao J, Xie Z, Kong L, Xiao X, Zhao Z. Mn-doping induced changes in Pt dispersion and PtxMny alloying extent on Pt/Mn-DMSN catalyst with enhanced propane dehydrogenation stability. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Li M, Wang Y, Cai J, Li Y, Liu Y, Dong Y, Li S, Yuan X, Zhang X, Dai X. Surface sites assembled-strategy on Pt–Ru nanowires for accelerated methanol oxidation. Dalton Trans 2020; 49:13999-14008. [DOI: 10.1039/d0dt02567d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isolated Ru atoms activate more Pt atoms involved in the Langmuir–Hinshelwood (L–H) pathway, which collectively accelerate methanol oxidation.
Collapse
|
37
|
Poerwoprajitno AR, Gloag L, Cheong S, Gooding JJ, Tilley RD. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. NANOSCALE 2019; 11:18995-19011. [PMID: 31403640 DOI: 10.1039/c9nr05802h] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Driven by the quest for future energy solution, faceted metal nanoparticles are being pursued as the next generation electrocatalysts for renewable energy applications. Thanks to recent advancement in solution phase synthesis, different low- and high-index facets on metal nanocrystals become accessible and are tested for specific electrocatalytic reactions. This minireview summarises the key approaches to prepare nanocrystals containing the most catalytically active platinum group metals (Pt, Pd, Ru, Ir and Rh) exposed with low- and high-index facets using solution phase synthesis. Electrocatalytic studies related to the different facets are highlighted to emphasise the importance of exposing facets for catalysing these reactions, namely oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), alcohol oxidation including methanol (MOR) and ethanol oxidation reactions (EOR), formic acid oxidation reaction (FAOR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The future outlook discusses the challenges and opportunities for making electrocatalysts that are even more active and stable.
Collapse
Affiliation(s)
- Agus R Poerwoprajitno
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia and Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Zhang Y, Gao F, Song T, Wang C, Chen C, Du Y. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. NANOSCALE 2019; 11:15561-15566. [PMID: 31393499 DOI: 10.1039/c9nr05325e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of Pt-based networked nanowire nanocatalysts with high performance is significant in the application of direct alcohol fuel cells. However, it is still a challenge to precisely regulate the surface structure and further improve their catalytic behavior. For this purpose, we have synthesized a series of novel networked wicker-like PtFe nanowire catalysts, different from previous networked nanowire catalysts with smooth surfaces, and the PtFe catalysts possess branch-rich exteriors on the rough surface of each nanowire similar to wickers and they interconnect with each other, which lead to rich steps and defects. Importantly, after electrochemical tests, the composition-optimized Pt3Fe nanowires were found to exhibit superior catalytic performance towards the ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) compared to that of commercial Pt/C catalysts in acid media. In particular, the specific activities of Pt3Fe nanowires are 7.3 and 7.1 times higher than those of the Pt/C catalysts for EOR and MOR, respectively. In addition, the Pt3Fe nanowires also show the best durability among these catalysts after 1000 successive cycles, and their residual activities are far better than those of the Pt/C catalysts. The synthesis of wicker-like networked PtFe nanowires offers a new guideline to tune the structure and composition of nanocatalysts for their use in direct alcohol fuel cells and beyond.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
39
|
Luo B, Zhao F, Xie Z, Yuan Q, Yang F, Yang X, Li C, Zhou Z. Polyhedron-Assembled Ternary PtCuCo Nanochains: Integrated Functions Enhance the Electrocatalytic Performance of Methanol Oxidation at Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32282-32290. [PMID: 31408312 DOI: 10.1021/acsami.9b10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the preparation of a high-performance one-dimensional alloy nanostructure for fuel cells has been given increasing attention due to its smart-structure merits and electronic effect triggered by alloying different kinds of metals at the nanoscale. In this study, unique ternary PtCuCo nanochains assembled with small polyhedra are first achieved and used as high-performance anode electrocatalysts toward methanol oxidation at elevated temperature (60 °C) that is closer to the operating temperature of direct methanol fuel cells than room temperature. The specific activity/mass activity of Pt45Cu35Co20 one-dimensional nanochains can reach up to 18.24 mA cm-2/4.19 A mg-1Pt that is 9.25/10.47 times that of commercial Pt black in sulfuric acid medium. After a 3600 s durability test, the remaining current density of Pt45Cu35Co20 one-dimensional nanochains is 73.3 times that of commercial Pt black. The structure characterizations show that the high density of surface active sites, d-band center of the Pt downshift, moderate strain effect, and synergetic effect are jointly responsible for the enhanced electrocatalytic performance of one-dimensional ternary PtCuCo nanochains.
Collapse
Affiliation(s)
- Bin Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Fengling Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Zixuan Xie
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Qiang Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Fang Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Xiaotong Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Chaozhong Li
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| |
Collapse
|