1
|
Gao G, Feng S, Jiang Z, Hu C, Zhang Q, Tsang DCW. Efficient Hydrogenation of Glucose to Polyols over Hydrotalcite-Derived PtNi Alloy Catalyst under Mild Conditions. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Ge Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Shanshan Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Changwei Hu
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong999077, China
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong999077, China
| |
Collapse
|
2
|
Fu Y, Pichon B, Devred F, Singleton ML, Hermans S. Synthesis of spherical, rod, or chain Ni nanoparticles and their structure–activity relationship in glucose hydrogenation reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Abstract
Over the past 15 years, many articles have considered "nanozymes" as ferromagnetic nanoparticles having an "intrinsic peroxidase-like activity" in the presence of hydrogen peroxide. However, the definition and the catalytic activity of these nanozymes have been questioned. The present Perspective reports the main criteria that are essential to classify a nanoparticle as a nanozyme. It is important to consider that not all nanoparticles able to generate hydroxyl radicals in the presence of hydrogen peroxide without catalytic activity can be registered as nanozymes.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 Cedex, France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS, Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 Cedex, France
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Tescione F, Tammaro O, Bifulco A, Del Monaco G, Esposito S, Pansini M, Silvestri B, Costantini A. Silica Meets Tannic Acid: Designing Green Nanoplatforms for Environment Preservation. Molecules 2022; 27:1944. [PMID: 35335307 PMCID: PMC8948831 DOI: 10.3390/molecules27061944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hybrid tannic acid-silica-based porous nanoparticles, TA-SiO2 NPs, have been synthesized under mild conditions in the presence of green and renewable tannic acid biopolymer, a glycoside polymer of gallic acid present in a large part of plants. Tannic acid (TA) was exploited as both a structuring directing agent and green chelating site for heavy metal ions recovery from aqueous solutions. Particles morphologies and porosity were easily tuned by varying the TA initial amount. The sample produced with the largest TA amount showed a specific surface area an order of magnitude larger than silica nanoparticles. The adsorption performance was investigated by using TA-SiO2 NPs as adsorbents for copper (II) ions from an aqueous solution. The effects of the initial Cu2+ ions concentration and the pH values on the adsorption capability were also investigated. The resulting TA-SiO2 NPs exhibited a different adsorption behaviour towards Cu2+, which was demonstrated through different tests. The largest adsorption (i.e., ~50 wt% of the initial Cu2+ amount) was obtained with the more porous nanoplatforms bearing a higher final TA content. The TA-nanoplatforms, stable in pH value around neutral conditions, can be easily produced and their use would well comply with a green strategy to reduce wastewater pollution.
Collapse
Affiliation(s)
- Fabiana Tescione
- Institute for Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), P.le Enrico Fermi 1, 80055 Portici, Italy;
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Aurelio Bifulco
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| | - Giovanni Del Monaco
- Provincial Department of Caserta, Regional Agency for Environmental Protection of Campania (ARPAC), Via Arena-Centro Direzionale (San Benedetto), 81100 Caserta, Italy;
| | - Serena Esposito
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Michele Pansini
- Civil and Mechanical Engineering and INSTM Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, Italy;
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| |
Collapse
|
5
|
Dutta S, Bhat NS. Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview. RSC Adv 2022; 12:4891-4912. [PMID: 35425469 PMCID: PMC8981328 DOI: 10.1039/d1ra09196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| | - Navya Subray Bhat
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| |
Collapse
|
6
|
Bonelli B, Tammaro O, Martinovic F, Nasi R, Dell’Agli G, Rivolo P, Giorgis F, Ditaranto N, Deorsola FA, Esposito S. Reverse Micelle Strategy for the Synthesis of MnO x -TiO 2 Active Catalysts for NH 3-Selective Catalytic Reduction of NO x at Both Low Temperature and Low Mn Content. ACS OMEGA 2021; 6:24562-24574. [PMID: 34604638 PMCID: PMC8482467 DOI: 10.1021/acsomega.1c03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 06/02/2023]
Abstract
MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.
Collapse
Affiliation(s)
- Barbara Bonelli
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Olimpia Tammaro
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Ferenc Martinovic
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Roberto Nasi
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Gianfranco Dell’Agli
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino, Frosinone, Italy
| | - Paola Rivolo
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Fabrizio Giorgis
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Nicoletta Ditaranto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Fabio Alessandro Deorsola
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Serena Esposito
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
7
|
Mancuso A, Sacco O, Vaiano V, Bonelli B, Esposito S, Freyria FS, Blangetti N, Sannino D. Visible Light-Driven Photocatalytic Activity and Kinetics of Fe-Doped TiO 2 Prepared by a Three-Block Copolymer Templating Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3105. [PMID: 34198890 PMCID: PMC8201317 DOI: 10.3390/ma14113105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol-gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV-Vis spectroscopy, N2 adsorption/desorption at -196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc's plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc's plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.
Collapse
Affiliation(s)
- Antonietta Mancuso
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.M.); (V.V.)
| | - Olga Sacco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.M.); (V.V.)
| | - Barbara Bonelli
- Unit of Torino Politecnico, Department of Applied Science and Technology and INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (B.B.); (S.E.); (F.S.F.); (N.B.)
| | - Serena Esposito
- Unit of Torino Politecnico, Department of Applied Science and Technology and INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (B.B.); (S.E.); (F.S.F.); (N.B.)
| | - Francesca Stefania Freyria
- Unit of Torino Politecnico, Department of Applied Science and Technology and INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (B.B.); (S.E.); (F.S.F.); (N.B.)
| | - Nicola Blangetti
- Unit of Torino Politecnico, Department of Applied Science and Technology and INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (B.B.); (S.E.); (F.S.F.); (N.B.)
| | - Diana Sannino
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.M.); (V.V.)
| |
Collapse
|
8
|
Selective aqueous-phase hydrogenation of glucose and xylose over ruthenium-based catalysts: influence of the support. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wu J, Shen L, Duan S, Chen Z, Zheng Q, Liu Y, Sun Z, Clark JH, Xu X, Tu T. Selective Catalytic Dehydrogenative Oxidation of Bio‐Polyols to Lactic Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhe‐Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaoqi Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zheming Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - James H. Clark
- Green Chemistry Centre of Excellence University of York York YO105DD UK
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Road Shanghai 200032 China
- College of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 China
| |
Collapse
|
10
|
Wu J, Shen L, Duan S, Chen Z, Zheng Q, Liu Y, Sun Z, Clark JH, Xu X, Tu T. Selective Catalytic Dehydrogenative Oxidation of Bio‐Polyols to Lactic Acid. Angew Chem Int Ed Engl 2020; 59:13871-13878. [DOI: 10.1002/anie.202004174] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhe‐Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaoqi Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zheming Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - James H. Clark
- Green Chemistry Centre of Excellence University of York York YO105DD UK
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Road Shanghai 200032 China
- College of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 China
| |
Collapse
|
11
|
Liu C, Shang Y, Wang S, Liu X, Wang X, Gui J, Zhang C, Zhu Y, Li Y. Boron oxide modified bifunctional Cu/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ru Nanoparticles Embedded in Cubic Mesoporous Silica SBA-1 as Highly Efficient Catalysts for Hydrogen Generation from Ammonia Borane. Catalysts 2020. [DOI: 10.3390/catal10030267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cubic mesoporous silica SBA-1 functionalized with carboxylic acid (-COOH), namely S1B-C10, is used as a support to fabricate and confine Ru nanoparticles (NPs). The uniformly dispersed organic functional groups in SBA-1 are beneficial in attracting Ru cations, and as a result, homogenously distributed small sized Ru NPs are formed within the mesopores. The prepared Ru@S1B-C10 is utilized as a catalyst for H2 generation from the hydrolysis of ammonia borane (AB). The Ru@S1B-C10 catalyst demonstrates high catalytic activity for H2 generation (202 mol H2 molRu min−1) and lower activation energy (24.13 kJ mol−1) due to the small sized Ru NPs with high dispersion and the support’s interconnected mesoporous structure. The nanosized Ru particles provide abundant active sites for the catalytic reaction to take place, while the interconnected porous support facilitates homogenous transference and easy dispersal of AB molecules to the active sites. The catalyst demonstrates good recycle ability since the accumulation and leaking of NPs throughout catalysis can be effectively prevented by the support.
Collapse
|
13
|
Zhang G, Chen T, Zhang Y, Liu T, Wang G. Effective Conversion of Cellulose to Sorbitol Catalyzed by Mesoporous Carbon Supported Ruthenium Combined with Zirconium Phosphate. Catal Letters 2020. [DOI: 10.1007/s10562-020-03129-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Zhang G, Chen T, Zhang Y, Liu T, Wang G. The effect of physical morphology and the chemical state of Ru on the catalytic properties of Ru–carbon for cellulose hydrolytic hydrogenation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03014g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ru–carbon catalysts with different physical morphologies and chemical states of Ru were prepared by different methods and used to catalyze the hydrolytic hydrogenation of cellulose at high temperatures.
Collapse
Affiliation(s)
- Gang Zhang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology
| | - Tong Chen
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Yi Zhang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology
| | - Tao Liu
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology
| | - Gongying Wang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| |
Collapse
|