1
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
2
|
Qiu Y, Wu Z, Ou X, Zhao Q, Lei H, Wang C. Construction of Functionalized Oxindoles by Quinone-Carbonate Synergistically Triggered Intermolecular Radical Coupling. J Org Chem 2024; 89:12753-12761. [PMID: 39189527 DOI: 10.1021/acs.joc.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We disclose a rapid and nontoxic procedure to construct various oxindoles. This method harnesses the power of a catalytic amount of quinone in synergy with Cs2CO3, showcasing remarkable compatibility with a wide range of functional groups. Mechanistic investigations reveal that it operates via a radical pathway, likely initiated by the single-electron transfer from quinone-Cs2CO3 complexes. This pivotal electron transfer event leads to the generation of a crucial alkyl radical intermediate, contributing to the overall success and efficacy of the transformation.
Collapse
Affiliation(s)
- Yun Qiu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Zecheng Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xingyun Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Qiuting Zhao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Hao Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
3
|
Yoshioka E, Imoto Y, Yamaoka Y, Ikeda T, Takahashi H, Tanaka R, Hayashi N, Miyabe H. Intramolecular Cyclopropanation of Active Methylene Derivatives Based on FeCl 2 or FeCl 3-Promoted Radical-Polar Crossover Reactions. Chemistry 2024; 30:e202400602. [PMID: 38658317 DOI: 10.1002/chem.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Radical-polar crossover reactions were studied for the intramolecular cyclopropanation of active methylene derivatives. In the presence of FeCl3 as a stoichiometric oxidant and K2HPO4 as a base, the dehydrogenative cyclopropanation of active methylenes proceeded through the FeCl3-promoted oxidative radical cyclization followed by the ionic cyclization to give the bicyclic cyclopropanes. The use of α-chloro-active methylenes leads the subcatalytic cyclopropanation involving two redox pathways. In the presence of K2HPO4, the redox cyclopropanation proceeded by using FeCl2 (20 mol%) in combination with ligand (20 mol%).
Collapse
Affiliation(s)
- Eito Yoshioka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yuuki Imoto
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yousuke Yamaoka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Tomoko Ikeda
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hiroki Takahashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Ryousuke Tanaka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Naoki Hayashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hideto Miyabe
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| |
Collapse
|
4
|
Fang L, Yu J, Yu Z, Tong F, Zhang C, Hu D, Zhang JQ, Ren H. Photoinduced Metal- and Photosensitizer-Free Decarbonylative C-H Alkylation of Cyclic Sulfamidate Imines. J Org Chem 2023. [PMID: 38058173 DOI: 10.1021/acs.joc.3c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photoinduced decarbonylative C-C bond formation with readily accessible aldehydes as alkyl sources is described. This protocol provides a sustainable alternative for the effective construction of diverse valuable 4-alkylated sulfonyl ketimines under metal- and photosensitizer-free conditions. Significantly, in this reaction, air serves as the green oxidant, and cyclic sulfamidate imines play a dual role of substrate and photocatalyst, thus affording a concise reaction system for C-H alkylation of cyclic sulfamidate imines.
Collapse
Affiliation(s)
- Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiawen Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Zhiyun Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Feifei Tong
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chun Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
5
|
III R, Lujan B, Martinez A, Manasi R, DeBow JD, Kou KGM. A Fenton Approach to Aromatic Radical Cations and Diarylmethane Synthesis. J Org Chem 2023; 88:15060-15066. [PMID: 37847050 PMCID: PMC10629232 DOI: 10.1021/acs.joc.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/18/2023]
Abstract
Manipulating carbon-centered radicals to add to electron-deficient systems is a well-precedented process. By coupling the Fe(II)-mediated Fenton reaction with the Fe(III)-mediated single-electron oxidation of anisolic compounds, we demonstrate how electron-rich carbon-centered radicals can react with electron-rich arenes through a radical-polar cascade pathway. This bioinspired approach produces diarylmethane derivatives from simple unfunctionalized precursors.
Collapse
Affiliation(s)
- Robert
Crowley III
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | | | | | - Roni Manasi
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Justin D. DeBow
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Kevin G. M. Kou
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
6
|
Mahecha-Mahecha C, Borrego-Muñoz P, Pombo LM, Gamba-Sánchez D. On the way to potential antifungal compounds: synthesis and in vitro activity of 2-benzofuranylacetic acid amides. RSC Adv 2023; 13:25296-25304. [PMID: 37622023 PMCID: PMC10445276 DOI: 10.1039/d3ra04737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Crop losses caused by microbial infections are a significant global issue, especially in tropical regions. The development of novel antimicrobial agents, particularly antifungal agents, has been explored from various perspectives, including chemical synthesis. However, conventional approaches typically involve synthesizing new and potent compounds on a small scale (a few milligrams), making the scale-up of the reaction a major challenge. In this manuscript, we present a method for the synthesis of new and active (against Fusarium oxysporum) benzofuranyl acetic acid amides. Our strategy allows us to synthesize the key precursor on the gram scale, enabling the production of sufficient quantities of other active compounds within short timeframes for conducting biological studies. All the reactions used in this manuscript are recognized by their industrial application.
Collapse
Affiliation(s)
- Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes Cra 1 No. 18A-12 Q:305 Bogotá 111711 Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas Bogotá 110311 Colombia
| | - Luis M Pombo
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas Bogotá 110311 Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes Cra 1 No. 18A-12 Q:305 Bogotá 111711 Colombia
| |
Collapse
|
7
|
Bisht R, Popescu MV, He Z, Ibrahim AM, Crisenza GEM, Paton RS, Procter DJ. Metal-Free Arylation of Benzothiophenes at C4 by Activation as their Benzothiophene S-Oxides. Angew Chem Int Ed Engl 2023; 62:e202302418. [PMID: 37000422 PMCID: PMC10953450 DOI: 10.1002/anie.202302418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/01/2023]
Abstract
Benzothiophenes, activated by oxidation to the corresponding S-oxides, undergo C-H/C-H-type coupling with phenols to give C4 arylation products. While an electron-withdrawing group at C3 of the benzothiophene is important, the process operates without a directing group and a metal catalyst, thus rendering it compatible with sensitive functionalities-e.g. halides and formyl groups. Quantum chemical calculations suggest a formal stepwise mechanism involving heterolytic cleavage of an aryloxysulfur species to give a π-complex of the corresponding benzothiophene and a phenoxonium cation. Subsequent addition of the phenoxonium cation to the C4 position of the benzothiophene is favored over the addition to C3; Fukui functions predict that the major regioisomer is formed at the more electron-rich position between C3 and C4. Varied selective manipulation of the benzothiophene products showcase the synthetic utility of the metal-free arylation process.
Collapse
Affiliation(s)
- Ranjana Bisht
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mihai V. Popescu
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - Zhen He
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ameer M. Ibrahim
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Robert S. Paton
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
8
|
Majhi J, Granados A, Matsuo B, Ciccone V, Dhungana RK, Sharique M, Molander GA. Practical, scalable, and transition metal-free visible light-induced heteroarylation route to substituted oxindoles. Chem Sci 2023; 14:897-902. [PMID: 36755706 PMCID: PMC9890556 DOI: 10.1039/d2sc05918e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
The synthetic application of (hetero)aryl radicals in organic synthesis has been known since the last century. However, their applicability has significantly suffered from ineffective generation protocols. Herein, we present a visible-light-induced transition metal-free (hetero)aryl radical generation from readily available (hetero)aryl halides for the synthesis of 3,3'-disubstituted oxindoles. This transformation is amenable to a wide range of (hetero)aryl halides as well as several easily accessible acrylamides, and it is also scalable to multigram synthesis. Finally, the versatility of the oxindole products is demonstrated through their conversion to a variety of useful intermediates applicable to target-directed synthesis.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Vittorio Ciccone
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
9
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Sathish E, Gupta AK, Deeksha, Mishra SK, Sawant DM, Singh R. Heteroarylation of Congested α-Bromoamides with Imidazo-Heteroarenes and Indolizines via Aza-Oxyallyl Cations: Enroute to Dibenzoazepinone and Zolpidem Analogues. J Org Chem 2022; 87:14168-14176. [PMID: 36260747 DOI: 10.1021/acs.joc.2c01708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report a highly efficient and unprecedented approach for heteroarylation of congested α-bromoamides via electrophilic aromatic substitution of imidazo-heteroarenes and indolizines under mild reaction conditions (room temperature, metal, and oxidant free). The participation of an in situ generated aza-oxyallyl cation as an alkylating agent is the hallmark of this transformation. The method was readily adapted to synthesize novel imidazo-heteroarene-fused dibenzoazepinone architectures of potential medicinal value.
Collapse
Affiliation(s)
- Elagandhula Sathish
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Ashis Kumar Gupta
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Deeksha
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Sandeep Kumar Mishra
- Department of Physics and NMR Research Center, Indian Institute of Science Education and Research, 411008Pune, India
| | - Devesh M Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Ritesh Singh
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| |
Collapse
|
11
|
Mori A, Curpanen S, Pezzetta C, Perez-Luna A, Poli G, Oble J. C–H Activation Based Functionalizations of Furfural Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessia Mori
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| | | | | | | | | | - Julie Oble
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| |
Collapse
|
12
|
Curpanen S, Poli G, Perez Luna A, Oble J. C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sébastien Curpanen
- Sorbonne Universite Institut Parisien de Chimie Moléculaire paris FRANCE
| | - Giovanni Poli
- Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | | | - Julie Oble
- Sorbonne University IPCM 4 place Jussieu 75005 Paris FRANCE
| |
Collapse
|
13
|
Mamedov VA, Galimullina VR, Kadyrova SF, Rizvanov IK, Latypov SK. A concise synthesis of indolin-2-ones via direct acid-catalyzed intramolecular Friedel-Crafts alkylation of 3-chloro-N-(substituted)-2-oxo-N,3-diarylpropanamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Pan A, Chojnacka M, Crowley R, Göttemann L, Haines BE, Kou KGM. Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers. Chem Sci 2022; 13:3539-3548. [PMID: 35432882 PMCID: PMC8943850 DOI: 10.1039/d1sc06422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel-Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel-Crafts reactivity.
Collapse
Affiliation(s)
- Aaron Pan
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Maja Chojnacka
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Robert Crowley
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Lucas Göttemann
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Brandon E Haines
- Department of Chemistry, Westmont College 955 La Paz Road Santa Barbara CA 93108 USA
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| |
Collapse
|
15
|
Hirata G, Shimoharai Y, Shimada T, Nishikata T. Transition metal-free ether coupling and hydroamidation enabling the efficient synthesis of congested heterocycles. Chem Commun (Camb) 2022; 58:3665-3668. [PMID: 35224595 DOI: 10.1039/d1cc06871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we discovered that α-bromocarboxamides react with alkynols containing tertiary alcohol moieties to produce congested ethers or heterocycles. Here, the etherification and hydroamidation reactions can be controlled by a suitable base. Both C-O and C-N bond formations occurred without a transition-metal catalyst. The stereospecific etherification and cyclization of diastereo-enriched α-bromocarboxamide afforded the corresponding diastereo-enriched ether and heterocyclic compound.
Collapse
Affiliation(s)
- Goki Hirata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Yusuke Shimoharai
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Taisei Shimada
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
16
|
Li W, Liang C, Luo B, Wang Z, Li H, Li X, Yang H, Li H. Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides Catalyzed by an Iron Salt. J Org Chem 2022; 87:1554-1558. [PMID: 34981920 DOI: 10.1021/acs.joc.1c02522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The one-step, direct perfluoroalkylation of terminal alkynes with perfluoroalkyl iodides has been developed in which a simple ligandless iron salt is employed as the catalyst. Various perfluoroalkylated alkynes could be afforded in good to excellent yields with good functional group compatibility. Preliminary mechanistic studies suggest the involvement of the perfluoroalkyl radical in the catalytic cycle and the perfluoroalkylated alkenyl iodides as intermediates. The method provides straight, streamlined, and sustainable access to perfluoroalkylated acetylenes.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changfa Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Baogui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenhui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hengyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanjian Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
17
|
Wu S, Zhao Q, Wu C, Wang C, Lei H. Transition-metal-free oxindole synthesis: quinone-K 2CO 3 catalyzed intramolecular radical cyclization. Org Chem Front 2022. [DOI: 10.1039/d2qo00205a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and highly efficient transition-metal-free approach for the conversion of α-bromoanilides to 3,3-disubstituted oxindoles is described. This transformation is promoted by catalytic amount of 9,10-phenanthrenequinone (PQ) together with K2CO3,...
Collapse
|
18
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S-Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021; 60:25313-25317. [PMID: 34582085 DOI: 10.1002/anie.202112180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Benzothiophenes are valuable heterocycles that are widely used in medicines, agrochemicals, and materials science. Herein, we report a general method for the synthesis of enantioenriched 2,3-disubstituted benzothiophenes via a transition-metal-free C2-alkylation of benzothiophenes with boronic esters. The reactions utilize benzothiophene S-oxides in lithiation-borylations to generate intermediate arylboronate complexes, and subsequent Tf2 O-promoted S-O bond cleavage to trigger a Pummerer-type 1,2-metalate shift, which gives the coupled products with complete enantiospecificity. Primary, secondary and tertiary alkyl boronic esters and aryl boronic esters are successfully coupled with a range of C3-substituted benzothiophenes. Importantly, this transformation does not require the use of C3 directing groups, therefore it overcomes a major limitation of previously developed transition-metal-mediated C2 alkylations of benzothiophenes.
Collapse
Affiliation(s)
- Ruocheng Sang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
19
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S‐Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruocheng Sang
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
20
|
Li JQ, Tan HL, Ma DD, Zhu XX, Cui HL. Formylation and Bromination of Pyrrolo[2,1- a]isoquinoline Derivatives with Bromoisobutyrate and Dimethyl Sulfoxide. J Org Chem 2021; 86:10118-10128. [PMID: 34213904 DOI: 10.1021/acs.joc.1c00844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed an efficient formylation of pyrroloisoquinolines using bromoisobutyrate and dimethyl sulfoxide as carbonyl reagent. Various formylated pyrroloisoquinolines could be prepared in good yields (up to 94%). This formylation process can be easily scaled up to gram scale with good yield. In most cases of pyrroloisoquinolines without methoxy groups, the combination of bromoisobutyrate and dimethyl sulfoxide could act as a bromination reagent, delivering brominated pyrroloisoquinolines in acceptable to good yields (up to 82%).
Collapse
Affiliation(s)
- Jia-Qin Li
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Hui-Lin Tan
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Dan-Dan Ma
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Xin-Xin Zhu
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
21
|
Dobah F, Mazodze CM, Petersen WF. Cross-Dehydrogenative Cyclization-Dimerization Cascade Sequence for the Synthesis of Symmetrical 3,3'-Bisoxindoles. Org Lett 2021; 23:5466-5470. [PMID: 34232674 DOI: 10.1021/acs.orglett.1c01799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of symmetrical 3,3'-bisoxindoles from simple acyclic β-oxoanilides is reported. The described method forges three new C-C bonds in a single step via a sequential Mn(OAc)3·2H2O mediated oxidative radical cyclization-fragmentation-dimerization process. The scope of this reaction is demonstrated in the preparation of a variety of 3,3'-bisoxindoles, as well as its application toward the formal synthesis of the Calycanthaceae alkaloid, (±)-folicanthine.
Collapse
Affiliation(s)
- Farhaan Dobah
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - C Munashe Mazodze
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
22
|
Su L, Sun H, Liu J, Wang C. Construction of Quaternary Carbon Center via NHC Catalysis Initiated by an Intermolecular Heck-Type Alkyl Radical Addition. Org Lett 2021; 23:4662-4666. [PMID: 34080869 DOI: 10.1021/acs.orglett.1c01400] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A quaternary carbon center containing an oxindole motif is constructed via NHC-catalyzed transition-metal and aldehyde-free intermolecular Heck-type alkyl radical addition initiated annulation. This redox-neutral protocol also features a simple procedure, broad substrate scope, good functional group tolerance and could be smoothly amplified to a gram scale. The mechanism study shows that the reaction possibly undergoes two folds of SET processes with an NHC radical cation intermediate involved.
Collapse
Affiliation(s)
- Lanjun Su
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huan Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chengming Wang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
23
|
Quintavalla A, Veronesi R, Carboni D, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γ‐Unsaturated Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Davide Carboni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
24
|
Karlinskii BY, Ananikov VP. Catalytic C-H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. CHEMSUSCHEM 2021; 14:558-568. [PMID: 33207076 DOI: 10.1002/cssc.202002397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/17/2020] [Indexed: 06/11/2023]
Abstract
C-H functionalization is one of the most convenient and powerful tools in the arsenal of modern chemistry, deservedly nominated as the "Holy Grail" of organic synthesis. A frequent disadvantage of this method is the need for harsh reaction conditions to carry out transformations of inert C-H bonds, which limits the possibility of its use for modifying less stable substrates. Biomass-derived furan platform chemicals, which have a relatively unstable aromatic furan core and highly reactive side chain substituents, are extremely promising and valuable organic molecules that are currently widely used in a variety of research and industrial fields. The high sensitivity of furan derivatives to acids, strong oxidants, and high temperatures significantly limits the use of classical methods of C-H functionalization for their modification. New methods of catalytic functionalization of non-reactive furan cores are urgently required to obtain a new generation of materials with controlled properties and potentially bioactive substances.
Collapse
Affiliation(s)
- Bogdan Y Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
25
|
Yu W, Zhu B, Shi F, Zhou P, Wu W, Jiang H. Selective Synthesis of Non‐Aromatic Five‐Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/
N
‐Chlorophthalimide System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
26
|
Abstract
A NHC-catalyzed metal-free oxindole synthesis method is developed.
Collapse
Affiliation(s)
- Chengming Wang
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- China
| | - Lixia Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- China
| |
Collapse
|
27
|
Yuan J, Zhang X, Yang C. Regioselective Pd-catalyzed α-alkylation of furans using alkyl iodides. RSC Adv 2021; 11:13832-13838. [PMID: 35423913 PMCID: PMC8697702 DOI: 10.1039/d1ra01522b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
A practical and regioselective strategy to synthesize α-alkylfurans via Pd-catalyzed direct C–H alkylation using alkyl iodides was developed.
Collapse
Affiliation(s)
- Jiaqi Yuan
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Chunhao Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
28
|
Liao J, Yang X, Ouyang L, Lai Y, Huang J, Luo R. Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01453b] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review is devoted to highlighting main achievements in the development of cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles.
Collapse
Affiliation(s)
- Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Xiao Yang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Lu Ouyang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Yinlong Lai
- College of Chemistry and Environmental Engineering
- Shaoguan University
- Shaoguan 512005
- China
| | - Jiuzhong Huang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Renshi Luo
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| |
Collapse
|
29
|
Li D. Copper-Catalyzed Alkylation of Silyl Enol Ethers with Sterically Hindered α-Bromocarbonyls: Access to the Histamine H 3 Receptor Antagonist. J Org Chem 2021; 86:609-618. [PMID: 33295766 DOI: 10.1021/acs.joc.0c02277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general and efficient copper-catalyzed alkylation of silyl enol ethers with functionalized alkyl bromides has been developed for the synthesis of the sterically hindered γ-ketoesters. The transformation was induced through C(sp3)-halogen activation of commercially available sterically hindered alkyl bromides under mild conditions in good results. The strategy could be used for the synthesis of biologically active histamine H3 receptor (H3R) antagonist for medicinal purposes.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|
30
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
31
|
Morgan D, Yarwood SJ, Barker G. Recent Developments in C−H Functionalisation of Benzofurans and Benzothiophenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Morgan
- Institute of Chemical Sciences Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| | - Stephen J. Yarwood
- Institute of Biological Chemistry Biophysics and Bioengineering Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| | - Graeme Barker
- Institute of Chemical Sciences Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| |
Collapse
|
32
|
Yu W, Zhu B, Shi F, Zhou P, Wu W, Jiang H. Selective Synthesis of Non‐Aromatic Five‐Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/
N
‐Chlorophthalimide System. Angew Chem Int Ed Engl 2020; 60:1313-1322. [DOI: 10.1002/anie.202010889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
33
|
Iwasaki M, Kazao Y, Ishida T, Nishihara Y. Synthesis of Oxygen-Containing Heterocyclic Compounds by Iron-Catalyzed Alkylative Cyclization of Unsaturated Carboxylic Acids and Alcohols. Org Lett 2020; 22:7343-7347. [PMID: 32870016 DOI: 10.1021/acs.orglett.0c02671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-catalyzed alkylative cyclization of alkenes bearing oxygen nucleophiles with secondary and tertiary alkyl bromides through carbon-carbon and carbon-oxygen bond formations has been developed. A broad substrate scope is an attractive feature of this synthetic method, providing a variety of potentially bioactive five- and six-membered oxygen-containing heterocycles. The reaction pathway is proposed to involve a radical addition of the in situ-formed alkyl radical to an alkene followed by carbon-oxygen bond-forming intramolecular cyclization.
Collapse
|
34
|
Khusnutdinov RI, Bayguzina AR. New advances in the catalysis of organic reactions by iron compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes and systematizes the literature data on a new promising application area of iron compounds, that is, catalysis of organic reactions. The considered reactions include halogenation, formation of C−C bonds with the participation of various substrates, new methods for the synthesis of ethers and aromatic and heteroaromatic carboxylic acid esters, N-alkylation of aliphatic and aromatic amines and amidation of olefins and cyclopropane-containing hydrocarbons. The advances in the synthesis of quinolines and unusual cyclization reactions catalyzed by iron complexes are described.
The bibliography includes 144 references.
Collapse
|
35
|
Luo W, Yang Y, Liu B, Yin B. Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. J Org Chem 2020; 85:9396-9404. [PMID: 32524818 DOI: 10.1021/acs.joc.0c01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A protocol for FeCl2-catalyzed oxidative decarbonylative α-alkylation of acyl furans using alkyl aldehydes as the alkylating agents has been developed. This protocol affords α-alkyl-α-acylfurans in moderate to good yields in a practical and sustainable fashion. Mechanistic studies suggest that the reaction proceeds via generation of an alkyl radical from the alkyl aldehyde, addition of the radical to the furan ring, and subsequent rearomatization.
Collapse
Affiliation(s)
- Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
36
|
Bakhoda AG, Wiese S, Greene C, Figula BC, Bertke JA, Warren TH. Radical Capture at Nickel(II) Complexes: C–C, C–N, and C–O Bond Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abolghasem Gus Bakhoda
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Stefan Wiese
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Christine Greene
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Bryan C. Figula
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Jeffery A. Bertke
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Timothy H. Warren
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| |
Collapse
|
37
|
Ota K, Nagao K, Ohmiya H. N-Heterocyclic Carbene-Catalyzed Radical Relay Enabling Synthesis of δ-Ketocarbonyls. Org Lett 2020; 22:3922-3925. [DOI: 10.1021/acs.orglett.0c01199] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Ota
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Ye Y, Chen H, Yao K, Gong H. Iron-Catalyzed Reductive Vinylation of Tertiary Alkyl Oxalates with Activated Vinyl Halides. Org Lett 2020; 22:2070-2075. [PMID: 32096641 DOI: 10.1021/acs.orglett.0c00561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present herein a rare and efficient method for the creation of vinylated all carbon quaternary centers via Fe-catalyzed cross-electrophile coupling of vinyl halides with tertiary alkyl methyl oxalates. The reaction displays excellent functional group tolerance and broad substrate scope, which allows cascade radical cyclization and vinylation to afford complex bicyclic and spiral structural motifs. The reaction proceeds via tertiary alkyl radicals, and the putative vinyl-Br/Fe complexation appears to be crucial for activating the alkene and enabling a possibly concerted radical addition/C-Fe forming process.
Collapse
Affiliation(s)
- Yang Ye
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Ken Yao
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
39
|
Kyne SH, Lefèvre G, Ollivier C, Petit M, Ramis Cladera VA, Fensterbank L. Iron and cobalt catalysis: new perspectives in synthetic radical chemistry. Chem Soc Rev 2020; 49:8501-8542. [DOI: 10.1039/d0cs00969e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron and cobalt complexes are at the origin of high valuable synthetic pathways involving radical intemediates.
Collapse
Affiliation(s)
- Sara H. Kyne
- School of Chemistry
- Faculty of Science
- Monash University
- Clayton
- Australia
| | - Guillaume Lefèvre
- i-CLeHS CSB2D
- Chimie ParisTech
- 11 rue Pierre et Marie Curie
- FR 75005 Paris
- France
| | - Cyril Ollivier
- Sorbonne Université
- CNRS
- UMR8232
- Institut Parisien de Chimie Moléculaire
- F-75252 Paris Cedex 05
| | - Marc Petit
- Sorbonne Université
- CNRS
- UMR8232
- Institut Parisien de Chimie Moléculaire
- F-75252 Paris Cedex 05
| | | | - Louis Fensterbank
- Sorbonne Université
- CNRS
- UMR8232
- Institut Parisien de Chimie Moléculaire
- F-75252 Paris Cedex 05
| |
Collapse
|
40
|
Li D, Shen X. Iron-catalyzed regioselective alkylation of 1,4-quinones and coumarins with functionalized alkyl bromides. Org Biomol Chem 2020; 18:750-754. [DOI: 10.1039/c9ob02289a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient Fe-catalyzed regioselective alkylation of 1,4-quinones and coumarins, using functionalized alkyl bromides as alkylating reagents, has been developed.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Xianfu Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
41
|
Pan Z, Liu Y, Hu F, Liu Q, Shang W, Xia C. Photochemical α-carboxyalkylation of tryptophols and tryptamines via C–H functionalization. Chem Commun (Camb) 2020; 56:4930-4933. [DOI: 10.1039/d0cc00847h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A process for the α-carboxyalkylation of tryptophols and tryptamines by the functionalization of C–H bonds under visible light irradiation has been developed.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| | - Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| | - Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- China
| |
Collapse
|
42
|
Tsuchiya N, Nishikata T. Construction of Vicinal Quaternary Carbons via Cu-catalyzed Dearomative Radical Addition. CHEM LETT 2019. [DOI: 10.1246/cl.190247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
43
|
Wei WT, Luo MJ, Teng F, Song RJ, Li JH. Silver-catalyzed oxidative 1,2-alkyletherification of unactivated alkenes with α-bromoalkyl carbonyls: facile access to highly substituted 2,3-dihydrofurans. Chem Commun (Camb) 2019; 55:11111-11114. [DOI: 10.1039/c9cc05695e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A silver-catalysed C–Br oxidative functionalization/annulative oxygenation process for producing valuable quaternary-carbon-possessing 2,3-dihydrofuran is presented.
Collapse
Affiliation(s)
- Wen-Ting Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- School of Materials Science and Chemical Engineering
| | - Mu-Jia Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- School of Materials Science and Chemical Engineering
| |
Collapse
|