1
|
Mao G, Zhou Q, Wang B, Xiong Y, Zheng X, Ma J, Fu L, Luo L, Wang Q. Modulating d-Orbital electronic configuration via metal-metal oxide interactions for boosting electrocatalytic methanol oxidation. J Colloid Interface Sci 2025; 677:657-665. [PMID: 39159520 DOI: 10.1016/j.jcis.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Coordinating the interfacial interaction between Pt-based nanoparticles (NPs) and supports is a significant strategy for the modulation of d-orbital electronic configuration and the adsorption behaviors of intermediates, which is of critical importance for boosting electrocatalytic performance. Herein, we demonstrated a specific synergy effect between the ordered PtFe intermetallic and neighboring oxygen vacancies (Ov), which provides an "ensemble reaction pool" to balance the barriers of both the activity, stability, and CO poisoning issues for the methanol oxidation reaction (MOR). In our proposed "ensemble reaction pool", the deprotonation of methanol occurs on the Pt site to form the intermediate *CO, where the strain derived from the PtFe intermetallic could alter the d-orbital electronic configuration of Pt, intrinsically weakening the *CO adsorption energy, and Ov in CeO2 promote hydroxyl species (*OH) adsorption, which will react with *CO, facilitating the dissociative adsorption of *CO, thus cooperatively enhancing the performance of MOR. The X-ray absorption fine structure (XAFS) analyses reveal the electron transfer in CeO2 and then convert Ce4+ to Ce3+. The density functional theory (DFT) calculations revealed that introducing Fe induces strain could modify the d-band center of Pt, and thus lower the energy barrier of the potential-determining step. Meanwhile, the introduction of CeO2 can favor the *OH adsorption, speeding up the oxidation and removal of *CO blocked at the Pt site. Furthermore, the determined atomic arrangement and surface composition of PtFe intermetallic further guarantee the stability of MOR by suppressing less-noble metal into the electrolyte.
Collapse
Affiliation(s)
- Guangtao Mao
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Qian Zhou
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Bin Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yuan Xiong
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Xingqun Zheng
- College of Safety Engineering, Chongqing University of Science & Technology, Chongqing 401331, China.
| | - Jun Ma
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Lin Fu
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Leqing Luo
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Qingmei Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
He J, Chen S, Ma Z, Wang M, He Q. Spatial Identification of Mott-Schottky Effect at Electrocatalytic Pd/Metal Oxide Interfaces for the Oxygen Reduction Reaction. ACS NANO 2024; 18:24283-24294. [PMID: 39163576 DOI: 10.1021/acsnano.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
To elucidate the microstructure and charge transfer behavior at the interface of Pd/metal oxide semiconductor (MOS) catalysts and systematically explore the crucial role of the Mott-Schottky effect in the oxygen reduction reaction (ORR) electrocatalysis process, this study established a testing system for spatially identifying Mott-Schottky effects and electronic properties at Pd/MOS interfaces, leveraging highly sensitive Kelvin probe force microscopy (KPFM). This system enabled visualization and quantification of the surface potential difference and Mott-Schottky barrier height (ΦSBH) at the Pd/MOS heterojunction interfaces. Furthermore, a series of Pd/MOS Mott-Schottky catalysts were constructed based on differences in work functions between Pd and n-type MOS. The abundant oxygen vacancies in these catalysts facilitated the adsorption and activation of oxygen molecules. Notably, the intensity of the built-in electric field in the Pd/MOS Mott-Schottky catalysts was calculated through surface potential and zeta potential analysis, systematically correlating the Mott-Schottky effect at the heterojunction interface of Pd/MOS with ORR activity and kinetics. By comprehensively exploring the correlation between the Mott-Schottky effect and ORR performance in Pd/MOS catalysts using the KPFM testing system, this study provides necessary tools and approaches for a deep understanding of heterogeneous interface charge transfer mechanisms, as well as for optimizing catalyst design and enhancing ORR performance.
Collapse
Affiliation(s)
- Jing He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiyuan Chen
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhuang Ma
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Hu T, Liu J, Yuan H, Zhang L, Wang Y. Interface Charge Distribution Engineering of Pd-CeO 2 /C for Efficient Carbohydrazide Oxidation Reaction. CHEMSUSCHEM 2024; 17:e202301078. [PMID: 37723645 DOI: 10.1002/cssc.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Jiali Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Hongjie Yuan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Limin Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| |
Collapse
|
6
|
Huang Z, Li W, Jiang J, Zhou W, Zhang M, Mao R, Wang Z, Xie J, Hu Z. Cerium oxide boosted CoFe-N codoped carbon nanotubes with abundant oxygen-vacancies toward efficient oxygen reduction and methanol oxidation reaction. J Colloid Interface Sci 2024; 654:164-173. [PMID: 37839234 DOI: 10.1016/j.jcis.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
In this study, we designed a novel strategy that utilizes N-doped carbon nanotubes as the chemical bond supporter to stabilize ultrafine CoFe alloy and introduces secondary CeO2 active sites into the hybrid, resulting in the formation of CeO2/CoFe-NCNTs heterostructures with exceptional bifunctional electrocatalytic capabilities. To be specific, solution dispersion and high-temperature calcination methods were employed to create the CoFe-NCNTs active sites through the introduction of ethylenediamine into the network interstitials of Co-EDTA and Fe-EDTA. The CeO2/CoFe-NCNTs hybrid not only promotes oxygen absorption and conversion of intermediates, but also accelerates charge transfer capability, thus enhancing oxygen reduction reaction (ORR) performance, while simultaneously inducing boosted the methanol oxidation reaction (MOR) activity. Moreover, the well-dispersed CoFe nanoparticles within the hybrid hold significant potential for establishing metal-nitrogen bonds with the N-doped carbon nanotube network, resulting in efficient catalytic behavior driven by synergistic effects with CeO2 nanoparticles, which contributes to reactant activation. As expected, the resultant CeO2/CoFe-NCNTs-2 exhibits remarkable electrocatalytic performance, with a current density of 281.40 mA cm-2 at a scan rate of 200 mV s-1 and a low Tafel slope (71.3 mV dec-1) for MOR, as well as achieving excellent half-wave potential and onset potential values of 0.834 and 0.90 V (vs. RHE) for ORR. Additionally, it exhibits durable cycle stability for both MOR and ORR, retaining 92.8% and 96.4% of its initial current density during the I-t test, respectively. This work establishes a highly efficient bifunctional earth-abundant electrocatalysts for both anode and cathode reactions in methanol fuel cells.
Collapse
Affiliation(s)
- Zhiye Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Woyuan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junjie Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Weitong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingmei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Ruiji Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhuokai Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zonggui Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
7
|
Yue T, Shi Y, Ji Y, Jia J, Chang Y, Chen J, Jia M. Interfacial engineering of nickel selenide with CeO 2 on N-doped carbon nanosheets for efficient methanol and urea electro-oxidation. J Colloid Interface Sci 2024; 653:1369-1378. [PMID: 37801847 DOI: 10.1016/j.jcis.2023.09.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
The design of low cost, high efficiency electrocatalysts for methanol oxidation reactions (MOR) and urea oxidation reactions (UOR) is a pressing need to address the energy crisis and water pollution. In the present work, we developed Cerium dioxide (CeO2) and nickel selenide (Ni0.85Se) nanoparticles integrated into three-dimensional N-doped carbon nanosheets to be used as efficient and stable bifunctional electrocatalysts for MOR and UOR. By optimizing the selenization temperature, the CeO2-modified Ni0.85Se obtained at selenization temperature of 550 °C (CeO2-Ni0.85Se-550-NC) has the best MOR and UOR electrochemical performance. The CeO2-Ni0.85Se-550-NC potential only requires 1.309 V (MOR) and 1.294 V (UOR) to reach 10 mA cm-2, respectively. The DFT study reveals that CeO2-Ni0.85Se-550-NC has the best reaction path with the synergistic effect between CeO2 and Ni0.85Se. The outstanding catalytic performance of CeO2-Ni0.85Se-550-NC may be due to the cointeraction between CeO2 and Ni0.85Se, allowing more defects that function as catalytic sites while promoting fast electron transfer in the N-doped carbon substrate.
Collapse
Affiliation(s)
- Tingting Yue
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China
| | - Yue Shi
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China
| | - Yaxin Ji
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China
| | - Junxiang Chen
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| |
Collapse
|
8
|
Zou T, Wang Y, Xu F. Defect-Engineered Charge Transfer in a PtCu/Pr xCe 1-xO 2 Carbon-Free Catalyst for Promoting the Methanol Oxidation and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58296-58308. [PMID: 38064379 DOI: 10.1021/acsami.3c11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Platinum (Pt) and Pt-based alloys have been extensively studied as efficient catalysts for both the anode and cathode of direct methanol fuel cells (DMFC). Defect engineering has been revealed to be practicable in tuning the charge transfer between Pt and transition metals/supports, which leads to the charge density rearrangement and facilitates the electrocatalytic performance. Herein, Pr-doped CeO2 nanocubes were used as the noncarbon support of a PtCu catalyst. The concentration and structure of oxygen vacancy (Vo) defects were engineered by Pr doping. Besides the Vo monomer, the oxygen vacancy with a linear structure is also observed, leading to the one-dimensional PtCu. The Vo concentration shows the volcanic scenario as Pr increased. Accordingly, the activities of PtCu/PrxCe1-xO2 toward methanol oxidation and oxygen reduction reactions exhibit the volcanic scenario. PtCu/Pr0.15Ce0.85O2 exhibits the optimal catalytic performance with the specific activity 3.57 times higher than that of Pt/C toward MOR and 1.34 times higher toward ORR. The MOR and ORR mass activities of PtCu/Pr0.15Ce0.85O2 reached 1.05 and 0.12 A·mg-1, which are 3.09 and 0.92 times the values of Pt/C, respectively. The abundant Vo afforded surplus electrons, which tailored the electron transfer between PtCu and PrxCe1-xO2, leading to enhanced catalytic performance of PtCu/PrxCe1-xO2. DFT calculations on PtCu/Pr0.15Ce0.85O2 revealed that Pr doping reduced the band gap of CeO2 and lowered the overpotential.
Collapse
Affiliation(s)
- Tianhua Zou
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | - Yifen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | - Feng Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
9
|
Zhou S, Zheng G, Ji F, Wang J, Liu Z, Shi J, Li J, Hu Y, Deng C, Fan L, Cai W. Ni dispersed ultrathin carbon nanosheets as bi-functional oxygen electrocatalyst induced from graphite-like porous supramolecule. J Colloid Interface Sci 2023; 652:1578-1587. [PMID: 37666190 DOI: 10.1016/j.jcis.2023.08.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Excellent porosity and accessibility are key requirements during carbon-based materials design for energy conversion applications. Herein, a Ni-based porous supramolecular framework with graphite-like morphology (Ni-SOF) was rationally designed as a carbon precursor. Ultrathin carbon nanosheets dispersed with Ni nanoparticles and Ni-Nx sites (Ni@NiNx-N-C) were obtained via in-situ exfoliation during pyrolysis. Due to the hetero-porous structure succeeding from Ni-SOF, the Ni@NiNx-N-C catalyst showed outstanding bifunctional oxygen electrocatalytic activity with a narrow gap of 0.69 V between potential to deliver 10 mA cm-2 oxygen evolution and half-wave potential of oxygen reduction reaction, which even surpassed the Pt/C + IrO2 pair. Therefore, the corresponding zinc-air battery exhibited excellent power output and stability. The multiple Ni-based active sites, the unique 2D structure with a high graphitization degree and large specific surface area synergistically contributed to the excellent bifunctional electrocatalytic activity of Ni@NiNx-N-C. This work provided a novel viewpoint for the development of carbon-based electrocatalyst.
Collapse
Affiliation(s)
- Shunfa Zhou
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Guoli Zheng
- Department Key Laboratory of Catalysis and Materials of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng Ji
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, Shanghai 200245, China
| | - Jiatang Wang
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhao Liu
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jiawei Shi
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Li
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yang Hu
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
| | - Chengwei Deng
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, Shanghai 200245, China.
| | - Liyuan Fan
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - Weiwei Cai
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
10
|
Chandrasekharan Meenu P, Roy S. Electro-oxidation Reaction of Methanol over Reducible Ce 1-x-yNi xSr yO 2-δ: A Mechanistic Probe of Participation of Lattice Oxygen. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471142 DOI: 10.1021/acsami.3c05262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Methanol oxidation reaction crucially depends on the formation of -OOH species over the catalyst's surface. Ni-based catalysts are by far the choice of materials, where the redox couple of Ni2+/Ni3+ facilitates the formation of -OOH species by surface reconstructions. However, it is challenging to oxidize Ni2+ as it generates charge-transfer orbitals near the Fermi energy level. One possible solution is to substitute Ni2+ with a reducible oxide support, which will not only facilitate the Ni2+ → Ni3+ oxidation but also adsorb oxygenated species like -OOH at a lower potential owing to its oxophilicity. This work shows with the help of structural and surface studies that the reducible CeO2 support in Ni and Sr co-doped Ce1-x-yNixSryO2-δ solid solution can easily facilitate Ni2+ → Ni3+ oxidation as well as evolution of lattice oxygen during the methanol oxidation reaction. While the Ni3+ species helped in formation of -OOH surface intermediates, the evolved lattice oxygen eased the CO oxidation process in order to bring out the better CO-tolerant methanol oxidation activity over Ce1-x-yNixSryO2-δ. The study shows the unique importance of the electronic interactions between the active site and support and involvement of lattice oxygen in the methanol oxidation reaction.
Collapse
Affiliation(s)
- Preetha Chandrasekharan Meenu
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
11
|
Pan B, Shan S, Wang J, Tang Q, Guo L, Jin T, Wang Q, Li Z, Usman M, Chen F. Nickel -supported PdM (M = Au and Ag) nanodendrites as formate oxidation (electro)catalytic anodes for direct fuel cells and hydrogen generation at room temperature. NANOSCALE 2023; 15:7032-7043. [PMID: 36974475 DOI: 10.1039/d2nr06637h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The study provides a proof of concept for the first time that unique palladium-gold (PdAu) and palladium-silver (PdAg) nanodendrites are bifunctional catalytic active sites for formate oxidation reactions (FORs) and formate dehydrogenation reactions (FDRs). The unique nanodendritic structure was developed via a simple galvanic displacement reaction for the direct growth of PdAu and PdAg nanodendrites on a nickel foam (PdAu/NiNF and PdAg/NiNF). These PdAu/NiNF and PdAg/NiNF electrodes exhibited 2.32 and 1.59 times higher specific activity than that of the commercial Pd/C electrode and promising stability toward FORs. Moreover, the PdAu/NiNF and PdAg/NiNF nanodendrites were also highly active and selective catalysts for hydrogen generation from a formate solution with turnover frequency (TOF) values of 311 h-1 and 287 h-1 respectively. Impressively, a passive air-breathing formate fuel cell with PdAu/NiNF used as an anode can yield an open-circuit voltage of 1.12 V and a peak power density of 21.7 mW cm-2, which outperforms most others reported in the literature. PdAu and PdAg nanodendritic catalysts supported on a nickel foam demonstrate an open structure and uniform catalyst distribution and offer a promising nanoalloy for air-breathing formate fuel cells and on-site chemical hydrogen production systems.
Collapse
Affiliation(s)
- Bowei Pan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuang Shan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junpeng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Quan Tang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhen Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Muhammad Usman
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
12
|
Wang Y, Pan Y, Jiang Y, Xu M, Jiang J. Wearable electrochemical gas sensor for methanol leakage detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
13
|
Gao M, Wang L, Yang Y, Sun Y, Zhao X, Wan Y. Metal and Metal Oxide Supported on Ordered Mesoporous Carbon as Heterogeneous Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Meiqi Gao
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Lili Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yang Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yafei Sun
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiaorui Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| |
Collapse
|
14
|
Yang F, Ren R, Zhang X, Waqas M, Peng X, Wang L, Liu X, Chen DH, Fan Y, Chen W. Tailoring the electronic structure of PdAg alloy nanowires for high oxygen reduction reaction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Su Z, Li X, Si W, Artiglia L, Peng Y, Chen J, Wang H, Chen D, Li J. Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + U Calculation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiansheng Li
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Deli Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
16
|
Luo L, Fu C, Guo Y, Cai X, Luo X, Tan Z, Xue R, Cheng X, Shen S, Zhang J. Ultrafine Core@Shell Cu 1Au 1@Cu 1Pd 3 Nanodots Synergized with 3D Porous N-Doped Graphene Nanosheets as a High-Performance Multifunctional Electrocatalyst. ACS NANO 2023; 17:2992-3006. [PMID: 36706226 DOI: 10.1021/acsnano.2c11627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rationally combining designed supports and metal-based nanomaterials is effective to synergize their respective physicochemical and electrochemical properties for developing highly active and stable/durable electrocatalysts. Accordingly, in this work, sub-5 nm and monodispersed nanodots (NDs) with the special nanostructure of an ultrafine Cu1Au1 core and a 2-3-atomic-layer Cu1Pd3 shell are synthesized by a facile solvothermal method, which are further evenly and firmly anchored onto 3D porous N-doped graphene nanosheets (NGS) via a simple annealing (A) process. The as-obtained Cu1Au1@Cu1Pd3 NDs/NGS-A exhibits exceptional electrocatalytic activity and noble-metal utilization toward the alkaline oxygen reduction, methanol oxidation, and ethanol oxidation reactions, showing dozens-fold enhancements compared with commercial Pd/C and Pt/C. Besides, it also has excellent long-term electrochemical stability and electrocatalytic durability. Advanced and comprehensive experimental and theoretical analyses unveil the synthetic mechanism of the special core@shell nanostructure and further reveal the origins of the significantly enhanced electrocatalytic performance: (1) the prominent structural properties of NGS, (2) the ultrasmall and monodispersed size as well as the highly uniform morphology of the NDs-A, (3) the special Cu-Au-Pd alloy nanostructure with an ultrafine core and a subnanometer shell, and (4) the strong metal-support interaction. This work not only develops a facile method for fabricating the special metal-based ultrafine-core@ultrathin-shell nanostructure but also proposes an effective and practical design paradigm of comprehensively and rationally considering both supports and metal-based nanomaterials for realizing high-performance multifunctional electrocatalysts, which can be further expanded to other supports and metal-based nanomaterials for other energy-conversion or environmental (electro)catalytic applications.
Collapse
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xiyang Cai
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xiashuang Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zehao Tan
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Rui Xue
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xiaojing Cheng
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
17
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
18
|
Li G, Wang S, Li H, Guo P, Li Y, Ji D, Zhao X. Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4210. [PMID: 36500832 PMCID: PMC9736472 DOI: 10.3390/nano12234210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Palladium (Pd) nanostructures are highly active non-platinum anodic electrocatalysts in alkaline direct methanol fuel cells (DMFCs), and their electrocatalytic performance relies highly on their morphology and composition. This study reports the preparation, characterizations, and electrocatalytic properties of palladium-copper alloys loaded on the carbon support. XC-72 was used as a support, and hydrazine hydrate served as a reducing agent. PdxCuy/XC-72 nanoalloy catalysts were prepared in a one-step chemical reduction process with different ratios of Pd and Cu. A range of analytical techniques was used to characterize the microstructure and electronic properties of the catalysts, including transmission electron microscopy (TEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma emission spectroscopy (ICP-OES). Benefiting from excellent electronic structure, Pd3Cu2/XC-72 achieves higher mass activity enhancement and improves durability for MOR. Considering the simple synthesis, excellent activity, and long-term stability, PdxCuy/XC-72 anodic electrocatalysts will be highly promising in alkaline DMFCs.
Collapse
Affiliation(s)
- Guixian Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shoudeng Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Hongwei Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Peng Guo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Yanru Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Dong Ji
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xinhong Zhao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
19
|
Liu Y, Wang QL, Yang YY. CO 2 and Formate Pathway of Methanol Electrooxidation at Rhodium Electrodes in Alkaline Media: An In Situ Electrochemical Attenuated Total Refection Surface-Enhanced Infrared Absorption Spectroscopy and Infrared Reflection Absorption Spectroscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12510-12520. [PMID: 36205573 DOI: 10.1021/acs.langmuir.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rh catalysts exhibit unexpected high activity for the methanol oxidation reaction (MOR) in alkaline conditions, making them potential anodic catalysts for direct methanol fuel cells (DMFCs). Nevertheless, the MOR mechanism on Rh electrodes has not been clarified thus far, which impedes the development of high-efficiency Rh-based MOR catalysts. To investigate it, a combination of in situ electrochemical techniques called attenuated total refection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and infrared reflection absorption spectroscopy (IRAS) is used. Cyclic voltammograms of MOR at Rh electrodes show considerable activity in alkaline media rather than acidic media, although the real-time ATR-SEIRA spectral results demonstrate that methanol can rarely self-decompose on Rh at open-circuit conditions. Meanwhile, in combination of ATR-SEIRAS and IRAS results, CO2 and formate are thought to be MOR products, suggesting a dual-pathway mechanism ("CO2 pathway" and "formate pathway"). Specifically, COad species, which are the major intermediates in the CO2 pathway, can produce at lower potentials and be oxidized into CO2 at a potential of 0.5-0.75 V. Concurrently, the formate can be produced from 0.5 V and diffuse into the bulk electrolyte to become one of the MOR products, while the further electrochemical conversion of formate to CO2 is essentially negligible. More directly, the apparent selectivity (r) of the CO2 pathway is estimated to reach ca. 0.63 at 0.9 V, confirming the potential-dependent selectivity of MOR at Rh surfaces. This study might provide fresh insights into the design and fabrication of effective Rh-based catalysts for MOR.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| | - Qiong-Lan Wang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| |
Collapse
|
20
|
Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Tang L, Huang F, Xu D, Zhang X, Wang Z, Zhang W. Flower‐like Au@CeO2 Core‐shell Nanospheres as Efficient Photocatalyst for Multicomponent Reaction of Alcohols and Amidines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Tang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Fei Huang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Xinming Zhang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Zhenghua Wang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
22
|
Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Askari MB, Rozati SM, Di Bartolomeo A. Fabrication of Mn3O4-CeO2-rGO as Nanocatalyst for Electro-Oxidation of Methanol. NANOMATERIALS 2022; 12:nano12071187. [PMID: 35407306 PMCID: PMC9002773 DOI: 10.3390/nano12071187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Recently, the use of metal oxides as inexpensive and efficient catalysts has been considered by researchers. In this work, we introduce a new nanocatalyst including a mixed metal oxide, consisting of manganese oxide, cerium oxide, and reduced graphene oxide (Mn3O4-CeO2-rGO) by the hydrothermal method. The synthesized nanocatalyst was evaluated for the methanol oxidation reaction. The synergetic effect of metal oxides on the surface of rGO was investigated. Mn3O4-CeO2-rGO showed an oxidation current density of 17.7 mA/cm2 in overpotential of 0.51 V and 91% stability after 500 consecutive rounds of cyclic voltammetry. According to these results, the synthesized nanocatalyst can be an attractive and efficient option in the methanol oxidation reaction process.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
| | - Seyed Mohammad Rozati
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
- Correspondence: (S.M.R.); (A.D.B.)
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and Interdepartmental Center NANOMATES, University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (S.M.R.); (A.D.B.)
| |
Collapse
|
24
|
Xue J, Wu X, Feng L. Pt/Mn 3O 4 cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chem Commun (Camb) 2022; 58:2371-2374. [PMID: 35080569 DOI: 10.1039/d2cc00105e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pt particles anchored onto Mn3O4 cubes were found to have high anti-CO poisoning abilities for C1- and C2-alcohol fuel oxidations in acid electrolyte, due to an electronic effect that enriched the surfaces of the Pt particles with electrons and due to the oxophilicity of Mn3O4 in the system.
Collapse
Affiliation(s)
- Jia Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiang Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
25
|
Recent developments in Pd-CeO2 nano-composite electrocatalysts for anodic reactions in anion exchange membrane fuel cells. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
26
|
Zhang Y, Wang D, Wang S. High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104339. [PMID: 34741405 DOI: 10.1002/smll.202104339] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
High-entropy alloys (HEAs) are expected to function well as electrocatalytic materials, owing to their widely adjustable composition and unique physical and chemical properties. Recently, HEA catalysts are extensively studied in the field of electrocatalysis; this motivated the authors to investigate the relationship between the structure and composition of HEAs and their electrocatalytic performance. In this review, the latest advances in HEA electrocatalysts are systematically summarized, with special focus on nitrogen fixation, the carbon cycle, water splitting, and fuel cells; in addition, by combining this with the characterization and analysis of HEA microstructures, rational design strategies for optimizing HEA electrocatalysts, including controllable preparation, component regulation, strain engineering, defect engineering, and theoretical prediction are proposed. Moreover, the existing issues and future trends of HEAs are predicted, which will help further develop these high-entropy materials.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
27
|
He Y, Yang X, Li Y, Liu L, Guo S, Shu C, Liu F, Liu Y, Tan Q, Wu G. Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04550] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunsong Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Shengwu Guo
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chengyong Shu
- Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Feng Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
28
|
Qiao W, Zha M, Yang Y, Hu G, Feng L. Pd17Se15 alloy on Se sphere with high anti-poisoning ability for alcohol fuel electrooxidation. Chem Commun (Camb) 2022; 58:10651-10654. [DOI: 10.1039/d2cc04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-deficient effect of Pd in the Pd17Se15 catalyst effectively weakens the adsorption of CO poisoning species and enhances the electrocatalytic performance of alcohol electrooxidation in an alkaline medium.
Collapse
|
29
|
Wu X, Wei J, Wu C, Lv G, Wu L. ZrO 2/CeO 2/polyacrylic acid nanocomposites with alkaline phosphatase-like activity for sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120165. [PMID: 34304012 DOI: 10.1016/j.saa.2021.120165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we synthesized ZrO2/CeO2/polyacrylic acid (PAA) nanocomposites (nanozyme) with phosphatase-like activity. ZrO2 evenly distributed in CeO2 nanorods considered as lewis acids to enhance the phosphatase-like activity of CeO2 nanorods. Furthermore, PAA was used to coat ZrO2/CeO2/ nanorods and improve the dispersion, stability and robustness. The ZrO2/CeO2/PAA nanocomposites had 100% enhanced phosphatase-like activity compared with CeO2 nanorods and excellent adaptability in a wide pH range from 4.0 to 12.0. ZrO2/CeO2/PAA nanocomposites could hydrolyze methyl parathion (MP) to p-nitrophenol (p-NP) with bright yellow color for colorimetric detection. The developed colorimetric detection system showed a linear response from 7.60 × 10-11-7.60 × 10-8 M with a detection limit of 0.021 nM and was successfully applied for the determination of MP in corn samples.
Collapse
Affiliation(s)
- Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
30
|
Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Guo Y, Zhu H, Zhao H, Zhao Q, Zhou C, Suo B, Zou W, Jiang Z, Li Y. A theoretical study of the electrochemical reduction of CO 2 on cerium dioxide supported palladium single atoms and nanoparticles. Phys Chem Chem Phys 2021; 23:26185-26194. [PMID: 34812826 DOI: 10.1039/d1cp03835d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/CeO2 catalysts show superior catalytic performance owing to their optimal cycling activity and stability. In this study, single-atom Pd and eight-atom Pd nanoparticle clusters were supported on the surface of CeO2(110) to investigate the effect of loaded-metal size on the catalytic performance of the Pd-CeO2 system for CO2 reduction. We investigated the CO2 reduction reaction (CRR) that produces C1 products (CO, HCOOH, CH3OH, and CH4) on Pd8/CeO2 and Pd/CeO2 by density functional theory. The structures, CO2 adsorption configurations, and CO2 reduction mechanisms of these two electrocatalysts were systematically studied. Subsequently, different reduction pathways on Pd8/CeO2 and Pd/CeO2 were investigated to identify the optimal reaction pathway for further assessment. The results showed that both of these catalysts are more selective towards the production of CH3OH than CH4. Moreover, compared to Pd/CeO2 and Pd4/CeO2 (from a previously reported study) the production of CH3OH via the CRR on Pd8/CeO2 exhibited the lowest limiting potential. These results demonstrate the superiority of Pd8/CeO2 as an electrocatalyst for the electrochemical reduction of CO2 to CH3OH.
Collapse
Affiliation(s)
- Yannv Guo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - He Zhao
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Qinfu Zhao
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Caihua Zhou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Zhenyi Jiang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yawei Li
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
32
|
Qiao Z, Wang C, Zeng Y, Spendelow JS, Wu G. Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006805. [PMID: 34061449 DOI: 10.1002/smll.202006805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.
Collapse
Affiliation(s)
- Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chenyu Wang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jacob S Spendelow
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
33
|
Li J, Chang Y, Li D, Feng L, Zhang B. Efficient synergism of V 2O 5 and Pd for alkaline methanol electrooxidation. Chem Commun (Camb) 2021; 57:7035-7038. [PMID: 34169300 DOI: 10.1039/d1cc02934g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient synergism of high valence state V and Pd nanoparticles imparted their high catalytic performance and anti-poisoning ability for alkaline methanol electrooxidation.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, P. R. China. and School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yajun Chang
- Coray Power Co. Ltd, Shanghai, 201100, China
| | - Dongze Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, P. R. China.
| |
Collapse
|
34
|
Ye N, Bai Y, Jiang Z, Fang T. Design the PdCu/TaN C electrocatalyst with core-shell structure having high efficiency for methanol and formic acid oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Xin Y, Dai X, Lv G, Wei X, Li S, Li Z, Xue T, Shi M, Zou K, Chen Y, Liu Y. Stability-Enhanced α-Ni(OH) 2 Pillared by Metaborate Anions for Pseudocapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28118-28128. [PMID: 34106673 DOI: 10.1021/acsami.1c04525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
α-Ni(OH)2 is an ideal candidate material for a supercapacitor except for its low conductivity and poor stability. In this work, BO2--intercalated α-NixCo(1-x)(OH)2 is synthesized by a hydrothermal method at a low cost. The Co dopant can decrease the charge-transfer resistance and enhance the cyclic stability. The special unsaturated electronic state of BO2- enhances the bonding with metal ions and attracts water molecules. Thus, the BO2- ions support the hydroxide layers as pillars and create efficient paths for proton transportation, optimizing the utilization of α-Ni(OH)2. The three-dimensional (3D) flowerlike morphology supplies an enormous number of active sites, and r-GO is added to improve the conductivity. As a result, the modified α-Ni(OH)2 exhibits the specific capacitance of 2179, 1592, and 1423 F·g-1 at 1, 20, and 40 A·g-1, respectively, showing improved rate performance. Matching with the commercial activated carbon (AC) as an anode, the asymmetric capacitor delivers an energy density of 40.66 W·h·kg-1 when its power density is 187.06 W·kg-1. Meanwhile, it retains 81.5% capacitance of the initial cycle at 5 A·g-1 after 3000 cycles. With conductivity enhanced and structure stabilized, the modified α-Ni(OH)2 confronts broader fields of application.
Collapse
Affiliation(s)
- Yanfei Xin
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guangjun Lv
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuedong Wei
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China
| | - Sai Li
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Zhiqiang Li
- Heilongjiang Jushengquan New Energy Co., Ltd., Mudanjiang 157000, P. R. China
| | - Tong Xue
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ming Shi
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kunyang Zou
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
36
|
Wang H, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Deng K, Wang L. Porous PdAg alloy nanostructures with a concave surface for efficient electrocatalytic methanol oxidation. NANOTECHNOLOGY 2021; 32:355402. [PMID: 34030138 DOI: 10.1088/1361-6528/ac0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Tuning the composition and surface structure of the metal nanocrystals offered viable avenues for enhancing catalytic performances. Herein, we report a facile one-pot strategy for the formation of PdAg porous alloy nanostructures (PANs) with a concave surface. Due to their highly open nanostructures and tunable d-band center features, PdAg PANs exhibit superior electrocatalytic activity and long-term durability than Pd nanoparticles (NPs) and Pd/C for methanol oxidation reaction (MOR) in alkaline media. Our results provide a feasible and efficient approach for the controlled synthesis of high-performance Pd-based nanomaterials for alkaline MOR.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
37
|
Li X, Yang X, Liu L, Zhao H, Li Y, Zhu H, Chen Y, Guo S, Liu Y, Tan Q, Wu G. Chemical Vapor Deposition for N/S-Doped Single Fe Site Catalysts for the Oxygen Reduction in Direct Methanol Fuel Cells. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaohang Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - He Zhao
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Yawei Li
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Haiyan Zhu
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Shengwu Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
38
|
Li W, Wang Q, Wang L, Fu XZ, Luo JL. Mesoporous CeO2–C hybrid spheres as efficient support for platinum nanoparticles towards methanol electrocatalytic oxidation. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Defective PdRh bimetallic nanocrystals enable enhanced methanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Qiao W, Yang X, Li M, Feng L. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. NANOSCALE 2021; 13:6884-6889. [PMID: 33885489 DOI: 10.1039/d1nr01005k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methanol electrooxidation is significant in realizing effective C1 liquid fuel applications. Herein, hollow Pd/Te nanorods were fabricated and evaluated for methanol oxidation, and they were found to exhibit high catalytic efficiency for methanol oxidation in alkaline electrolyte compared to Pd or Pd/C catalysts. The hybrid structure of hexagonal crystal Te and face-centered cubic Pd was formed by microwave assisted Pd nanoparticle deposition over the surface of Te nanorods. Strong electronic effects and facile oxophilic properties were indicated in the Pd/Te system by spectroscopic analysis, which mainly accounts for the high catalytic performance for methanol oxidation. Specifically, they showed a peak current density of 90.1 mA cm-2 for methanol oxidation, around 3.5 times higher than that of commercial Pd/C (26.3 mA cm-2). High catalytic stability was also observed for Pd/Te, with a current retention of 64.3% after 3600 s of chronoamperometric testing, much higher than for Pd catalysts (20.1%). High anti-CO poisoning ability of the Pd/Te catalyst was demonstrated in the CO-stripping voltammetry results, and faster catalytic kinetics were also observed for this catalyst system. The electron-rich state of Pd and high active site exposure are responsible for the high performance of the Pd/Te catalyst in methanol oxidation.
Collapse
Affiliation(s)
- Wei Qiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | | | | | | |
Collapse
|
41
|
Yuan K, Guo Y, Huang L, Zhou L, Yin HJ, Liu H, Yan CH, Zhang YW. Tunable Electronic Metal-Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorg Chem 2021; 60:4207-4217. [PMID: 33373226 DOI: 10.1021/acs.inorgchem.0c03219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental study on the metal-support interactions of supported metal catalysts is of great importance for developing heterogeneous catalysts with high performance, is still attracting and challenging in many heterogeneous catalytic reactions. In this work, we report the catalytic performances of CeO2-supported noble-metal catalysts among single atoms, subnanoclusters (∼1 nm), and nanoparticles (2.2-2.7 nm) upon low-temperature CO oxidation reaction between 50 and 250 °C. The subnanoclusters and nanoparticles of Ru, Rh, and Ir showed much higher activities than those of the single atoms, while a Pd single-atom catalyst was more active than Pd subnanoclusters and nanoparticles. According to the results of multiple ex situ and in situ characterizations, the much different activities of Ru, Rh, Ir, and Pd were derived from the alterable electronic metal-support interactions (EMSI), which determine the concurrent reaction pathway including the famous Mars van Krevelen mechanism and carbonate-intermediate route on the most active metal sites of Mδ+ (0 < δ < 1) for Ru, Rh, and Ir and Pd2+ for Pd. Also, the moderate EMSI of CeO2-supported Rh subnanoclusters furthest benefited activation of the adsorbed CO molecule and ensured it the highest activity among CeO2-supported Ru, Rh, and Ir catalysts with similar metal deposit sizes.
Collapse
Affiliation(s)
- Kun Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liang Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Yin S, Wang Z, Liu S, Jiao S, Tian W, Xu Y, Li X, Wang L, Wang H. Flexible synthesis of Au@Pd core-shell mesoporous nanoflowers for efficient methanol oxidation. NANOSCALE 2021; 13:3208-3213. [PMID: 33528487 DOI: 10.1039/d0nr08758k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of bimetallic core-shell nanostructures with mesoporous surfaces is considered significant to strengthen the catalytic activity and stability for direct methanol fuel cells. Here, we report a flexible method to synthesize Au@Pd core-shell mesoporous nanoflowers (Au@mPd NFs) with Au core coated with mesoporous Pd nano-petals, in which polymeric micelle-assembled structures are used as templates to induce the formation of mesopores. Benefiting from the electronic and structural effects, Au@mPd NFs show excellent electrocatalytic activity and stability for methanol oxidation reaction in alkaline electrolytes. This study demonstrates a versatile strategy for the fabrication of core-shell mesoporous nanoflowers with adjustable composition.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| |
Collapse
|
43
|
Li Y, Wang H, Priest C, Li S, Xu P, Wu G. Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000381. [PMID: 32671924 DOI: 10.1002/adma.202000381] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Clean and efficient energy storage and conversion via sustainable water and nitrogen reactions have attracted substantial attention to address the energy and environmental issues due to the overwhelming use of fossil fuels. These electrochemical reactions are crucial for desirable clean energy technologies, including advanced water electrolyzers, hydrogen fuel cells, and ammonia electrosynthesis and utilization. Their sluggish reaction kinetics lead to inefficient energy conversion. Innovative electrocatalysis, i.e., catalysis at the interface between the electrode and electrolyte to facilitate charge transfer and mass transport, plays a vital role in boosting energy conversion efficiency and providing sufficient performance and durability for these energy technologies. Herein, a comprehensive review on recent progress, achievements, and remaining challenges for these electrocatalysis processes related to water (i.e., oxygen evolution reaction, OER, and oxygen reduction reaction, ORR) and nitrogen (i.e., nitrogen reduction reaction, NRR, for ammonia synthesis and ammonia oxidation reaction, AOR, for energy utilization) is provided. Catalysts, electrolytes, and interfaces between the two within electrodes for these electrocatalysis processes are discussed. The primary emphasis is device performance of OER-related proton exchange membrane (PEM) electrolyzers, ORR-related PEM fuel cells, NRR-driven ammonia electrosynthesis from water and nitrogen, and AOR-related direct ammonia fuel cells.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Huanhuan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Siwei Li
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ping Xu
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
44
|
Ren F, Chen X, Xing R, Du Y. Rod-like MnO 2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation. J Colloid Interface Sci 2021; 582:561-568. [PMID: 32911405 DOI: 10.1016/j.jcis.2020.07.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
Anode catalyst is one of the core components of fuel cell, but its poor catalytic activity, short lifespan, and high price are tricky problems to the commercialization of fuel cell. Herein, a novel rod-like MnO2 decorated reduced graphene oxide (RGO) supported Pd hybrid (Pd/RGO-MnO2) has been designed, which manifests more negative onset oxidation potential, higher peak current density, and better long-term stability relative to Pd/RGO and pure Pd catalysts when serving for ethylene glycol electrooxidation. This enhancement may be due to the addition of MnO2, which can effectively promote the adsorption of hydroxyl at a lower potential and produce a strong electronic interaction with Pd, as confirmed by X-ray photoelectron spectroscopy (XPS) technique. In view of its excellent performance and low cost, Pd/RGO-MnO2 is considered to be a potential and effective anode catalyst for DEGFCs.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Xuanrong Chen
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Rong Xing
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
45
|
Wang W, Wang M. Nitrogen modulated NiMoO 4 with enhanced activity for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00786f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiMoO4 catalyst modified with nitrogen can significantly improve the electrocatalytic oxidation performance of HMF to FDCA.
Collapse
Affiliation(s)
- Wei Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Min Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
46
|
Lei H, Zhang Q. In situ electrochemical redox tuning of Pd-Co hybrid electrocatalysts for high-performance methanol oxidation: Strong metal-support interaction. J Colloid Interface Sci 2020; 588:476-484. [PMID: 33429344 DOI: 10.1016/j.jcis.2020.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Construction of strong metal-support interaction (SMSI) is of fundamental interest in the preparation of supported metal nanoparticle catalysts with enhanced catalytic activity. Herein, we report a facile in situ electrochemical redox tuning approach to build strong interactions between metals and supports. As for a typical example, a composite electrocatalyst of Pd-Co hybrid nanoparticles directly developed on Ni substrate is found to follow a distinct surface self-reconstruction process in alkaline media via an in situ electrochemical redox procedure, which results in structural transition from the original nanoparticles (NPs) to nanosheets (NSs) coupled with a phase transformation of the Co component, Co → CoO/Co(OH)2. The SMSI is observed in the electrochemically tuned Pd-Co hybrid system and leads to significantly enhanced catalytic activity for methanol oxidation reaction (MOR) due to the modified atomic/electronic structure, increased surface area, and more exposed electroactive sites. Compared with commercial Pd/C catalyst, the electrochemically tuned Pd-Co hybrid catalyst with SMSI exhibits superior catalytic activity (2330 mA∙mgPd-1) and much better stability (remains 503 mA∙mgPd-1 after 1000 cycles and 172 mA∙mgPd-1 after 5000 s), and therefore has great potential in practical applications.
Collapse
Affiliation(s)
- Hao Lei
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093, PR China.
| |
Collapse
|
47
|
Meléndez‐González PC, Sánchez‐Castro E, Alonso‐Lemus IL, Pérez‐Hernández R, Escobar‐Morales B, Garay‐Tapia AM, Pech‐Rodríguez WJ, Rodríguez‐Varela J. Bifunctional Pd‐CeO
2
Nanorods/C Nanocatalyst with High Electrochemical Stability and Catalytic Activity for the ORR and EOR in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202003755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Perla C. Meléndez‐González
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Esther Sánchez‐Castro
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Ivonne L. Alonso‐Lemus
- CONACYT Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Raúl Pérez‐Hernández
- Estudios Ambientales Instituto Nacional de Investigaciones Nucleares Carr. México-Toluca. S/N. La Marquesa Ocoyoacac, Edo. De México C.P. 52750 México
| | - Beatriz Escobar‐Morales
- CONACYT, Energía Renovable Centro de Investigación Científica de Yucatán Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida Yucatán C.P. 97200 México
| | - Andrés M. Garay‐Tapia
- Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey Alianza Norte 202, Autopista Monterrey-Aeropuerto km 10, Parque PIIT, Apodaca Nuevo León C.P. 66628 México
| | - Wilian J. Pech‐Rodríguez
- Maestría en Ingeniería Universidad Politécnica de Victoria Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Cd Victoria Tamps. C.P.87138 México
| | - Javier Rodríguez‐Varela
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| |
Collapse
|
48
|
Wang H, Fang Q, Gu W, Du D, Lin Y, Zhu C. Noble Metal Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52234-52250. [PMID: 33174718 DOI: 10.1021/acsami.0c14007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal-based nanomaterials have been a hot research topic during the past few decades. Particularly, self-assembled porous architectures have triggered tremendous interest. At the forefront of porous nanostructures, there exists a research endeavor of noble metal aerogels (NMAs), which are unique in terms of macroscopic assembly systems and three-dimensional (3D) porous network nanostructures. Combining excellent features of noble metals and the unique structural traits of porous nanostructures, NMAs are of high interest in diverse fields, such as catalysis, sensors, and self-propulsion devices. Regardless of these achievements, it is still challenging to rationally design well-tailored NMAs in terms of ligament sizes, morphologies, and compositions and profoundly investigate the underlying gelation mechanisms. Herein, an elaborate overview of the recent progress on NMAs is given. First, a simple description of typical synthetic methods and some advanced design engineering are provided, and then, the gelation mechanism models of NMAs are discussed in detail. Furthermore, promising applications particularly focusing on electrocatalysis and biosensors are highlighted. In the final section, brief conclusions and an outlook on the existing challenges and future chances of NMAs are also proposed.
Collapse
Affiliation(s)
- Hengjia Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Qie Fang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
49
|
Fan L, Dai J, Huang Z, Xiao J, Li Q, Huang J, Zhou SF, Zhan G. Biomimetic Au/CeO 2 Catalysts Decorated with Hemin or Ferrous Phthalocyanine for Improved CO Oxidation via Local Synergistic Effects. iScience 2020; 23:101852. [PMID: 33313493 PMCID: PMC7721650 DOI: 10.1016/j.isci.2020.101852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Biomimetic catalysts have drawn broad research interest owing to both high specificity and excellent catalytic activity. Herein, we report a series of biomimetic catalysts by the integration of biomolecules (hemin or ferrous phthalocyanine) onto well-defined Au/CeO2, which leads to the high-performance CO oxidation catalysts. Strong electronic interactions among the biomolecule, Au, and CeO2 were confirmed, and the CO uptake over hemin-Au/CeO2 was roughly about 8 times greater than Au/CeO2. Based on the Au/CeO2(111) and hemin-Au/CeO2(111) models, the density functional theory calculations reveal the mechanisms of the biomolecules-assisted catalysis process. The theoretical prediction suggests that CO and O2 molecules preferentially bind to the surface of noncontacting Au atoms (low-coordinated sites) rather than the biomolecule sites, and the accelerating oxidation of Au-bound CO occurs via either the Langmuir-Hinshelwood mechanism or the Mars-van Krevelen mechanism. Accordingly, the findings provide useful insights into developing biomimetic catalysts with low cost and high activity.
Collapse
Affiliation(s)
- Longlong Fan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Jingran Xiao
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China.,College of Food and Biology Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
50
|
Wang Y, Liu B, Liu Y, Song C, Wang W, Li W, Feng Q, Lei Y. Accelerating charge transfer to enhance H 2 evolution of defect-rich CoFe 2O 4 by constructing a Schottky junction. Chem Commun (Camb) 2020; 56:14019-14022. [PMID: 33095217 DOI: 10.1039/d0cc05656a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate a charge transfer boosted hydrogen (H2) evolution of transition metal oxides via a Schottky junction. The FeNi and metallic defect-rich CoFe2O4 (DCF) as well as semiconducting nitrogen-doped carbon (NC), named as FeNi/DCF/NC, possessed only 6.5% charge transfer resistance of DCF. Theoretical calculations indicate that the enhanced electron movement happened from FeNi/DCF to NC. The H2 evolution activity of FeNi/DCF/NC showed 5.8-fold improvement compared to that of DCF at the overpotential of 400 mV in 1.0 M KOH. This work provides an effective way to enhance the electrocatalytic activity of oxides for the H2 evolution reaction and related reactions.
Collapse
Affiliation(s)
- Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China. and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Biao Liu
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Yi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Chengye Song
- School of Materials and Mechanical Engineering, Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenkui Li
- School of Materials and Mechanical Engineering, Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Qingguo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|